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We study the impact of the finite-size effect on the continuous-variable measurement-device-independent
quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter
estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate
the parameters. We also analyze the relationship between the number of exchanged signals and the optimal
modulation variance in the protocol. It is proved that when Charlie’s position is close to Bob, the CV-MDI
QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact
of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate
that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should
not be ignored.
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I. INTRODUCTION

Quantum key distribution (QKD) [1–4] is the most mature
technology in quantum cryptography, which allows two distant
legitimate parties, Alice and Bob, to generate secret keys
through an untrusted channel controlled by an eavesdropper,
Eve. The coherent-state continuous-variable QKD protocol
(CV-QKD) [5,6], based on continuous modulation (Gaussian
modulation), was proposed in 2002 [7]. To effectively improve
protocol security transmission distance, a continuous-variable
two-way quantum key distribution protocol was proposed
[8,9]. After that, the CV-QKD protocol has received increasing
attention in the past few years due to its high secret-key rate and
low-cost advantage [10–15]. In the experiment, Jouguet et al.
[16] achieved the CV-QKD experiment of all-fiber Gaussian
modulation coherent state and homodyne detection of 80 km in
the laboratory. The field tests of a CV-QKD system [17] have
extended the distribution distance to 50 km over commercial
fiber, where the secure key rates are two orders of magnitude
higher than previous field test demonstrations.

Although the QKD protocols, including CV protocols
[14,15,18], are guaranteed to have unconditional security in
theory based on quantum physics, the actual security is related
to the performance of the device. Due to the imperfection of the
detector in the practical CV-QKD system, Eve can implement
quantum hacking attacks for CV detectors, such as the local
oscillator calibration attack [19,20], the wavelength attack
[21,22], the detector saturation attack [23]. These attacks use
the detector’s imperfect characteristics to operate the detector
results to reduce the additional noise variance, so that Alice and
Bob estimate the secret-key rate too high, resulting in security
risks. For this reason, continuous-variable measurement-
device-independent (CV-MDI) protocol has been proposed
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[24,25]. Since the measurement part of the protocol is
completely committed by an untrusted third party, the security
of the protocol does not depend on the security of the detector.
Therefore, this protocol can naturally resist all hacker attacks
against detectors.

In most conventional security proofs, the theoretical secu-
rity analysis relies on the assumption that the two communi-
cation parties exchange the infinite number of signals in the
asymptotic scheme [4]. Hence, the finite-size effect is the key
problem that CV protocol needs to be solved in the practical
implementation. In recent years, the attention of researchers
has gradually shifted to the practical security of CV-QKD
protocol. Scarani and Renner [26] proposed a security bound
based on smooth min-entropy in 2008. In 2010, Leverrier et al.
[27] extended the finite-size analysis framework from discrete-
variable (DV) protocol to CV protocol, taking into account
the finite-size effect of the parameter estimation process. In
2012, Jouguet et al. [28] researched the finite-size effect of
the CV-QKD protocol on the secret-key rate in the case of
practical detections. So far, the security of the CV-MDI QKD
protocol in the asymptotic scenario has been demonstrated
[24,25,29–31]. But the feasibility of CV-MDI QKD protocol
under finite-size effects has not yet been confirmed.

To solve this problem, we study the influence of the finite-
size effect on the CV-MDI QKD protocol under collective
attack. Here we only consider the reverse reconciliation
protocol and for the direct reconciliation protocol we can
use the similar calculation method. The numerical simulations
of the protocol are given at block lengths between 106 and
1010. When Charlie is placed in Bob (asymmetric case) and
considering the optimal modulation variance conditions, the
farthest transmission distance can reach 86 km for reconcilia-
tion efficiency β = 1 and 75 km for β = 96.9%. Finally, we
discuss the impact of the practical detection on the CV-MDI
QKD protocol under the finite-size effect.

The rest of this paper is organized as follows: In Sec. II, we
first introduce the main idea of the CV-MDI QKD protocol, and
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FIG. 1. A schematic diagram of CV-MDI QKD. BS stands for
50 : 50 beam splitter, Hom stands for homodyne detection.

then study the finite-size analysis of the parameter-estimation
process of CV-MDI QKD protocol in detail and introduce
the method and formulas that are used in finite-size analysis.
In Sec. III, we show the simulation results of the secret-
key rate and give the optimal modulation variance and the
maximal transmission distance under different conditions. Our
conclusions are drawn in Sec. IV.

II. CV-MDI QKD PROTOCOL AND PARAMETER
ESTIMATION

The setup of the CV-MDI QKD protocol is illustrated in
Fig. 1. The Gaussian modulation coherent-state CV-MDI QKD
protocol is mainly described as follows: First, Alice and Bob
use lasers to generate light sources, and prepare Gaussian
coherent states independently by using the phase modulator
and amplitude modulator, respectively. Then, Alice and Bob
send the prepared quantum states to an untrusted third party
(Charlie) for a continuous-variable Bell measurement. The
specific operation is that Charlie receives two quantum states
through a 50 : 50 beam splitter, and then uses two homodyne
detectors to measure the interference results. Next, Charlie
publishes his measurement results. Finally, Alice and Bob use
the corrected data for parameter estimation, data postprocess-
ing, data reconciliation, and private-key amplification to get
the final security secret key.

The above is the protocol process of the CV-MDI
QKD protocol in the prepare-and-measure (PM) scheme.
The PM scheme is easy to implement, but it often uses
the entanglement-based (EB) scheme in security analysis. The
equivalence between the EB scheme of the CV-MDI QKD
protocol and the PM scheme has been proven in Ref. [24],
and the EB scheme of the CV-MDI QKD protocol is shown
in Fig. 2. The equivalence is reflected in two points: On
the one hand, the equivalence of the state preparation; that
is, the heterodyne detection of one mode of the two-mode
squeezed (EPR) state is equivalent to the preparation of a
Gaussian modulation coherent state. On the other hand, the
data correction process in the PM scheme is equivalent to
the displacement operation in the EB scheme. Therefore, only
the EB version of the CV-MDI QKD protocol is analyzed in
the following security analysis.

To calculate the secret-key rate of the CV-MDI QKD proto-
col, the researchers proposed two calculation methods [24,25]:
One is the secret-key-rate formula based on entanglement
swapping. That is, assuming that Bob’s EPR state preparation
and displacement operations are regarded as manipulated

FIG. 2. Entanglement-based scheme of CV-MDI QKD with prac-
tical detector. T1 (T2) is the channel transmittance for Alice-Charlie
(Bob-Charlie), ε1 (ε2) is the channel excess noise for Alice-Charlie
(Bob-Charlie). η is the efficiency of the detection, v is the variance of
the thermal state, vel is the variance of electronic noise. EPR is the
two-mode squeezed state, P-Hom is practical homodyne detection,
Hom is ideal homodyne detection, Het is heterodyne detection.

by Eve in Fig. 2, then the CV-MDI QKD protocol can be
equivalent to a one-way CV-QKD protocol. The other is the
secret-key-rate formula based on the subscenario. That is, each
subscenario is the same as a one-way CV-QKD protocol, and
the final secret-key rate is the mean of the key rate of each
subscenario. CV-MDI QKD protocol in the asymptotic regime
and collective attack conditions, the secret-key rate of the
former is smaller than the latter’s secret-key rate. Moreover,
in the case of finite size, the two security analysis methods are
equivalent to the coherent-state CV-QKD one-way protocol
using heterodyne detection. In the following, because the idea
of security analysis is more concise and the calculation of the
secret-key rate is simpler, we adopt the former secret-key-rate
calculation method.

According to the finite-size-effect analysis of the discrete-
variable QKD protocol against collective attacks, the expres-
sion of the secret-key rate of the one-way CV-QKD protocol
against collective attack in the finite-size case is [27]

k = n

N

[
βI (a : b) − Sε

PE
(b : E) − �(n)

]
, (1)

where N is the total number of signals exchanged by Alice and
Bob, of which only n signals are used to generate the keys. β ∈
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[0,1] is the reconciliation efficiency, and I (a : b) is the mutual
information of Alice and Bob. Considering the influence of the
finite-size effect on the accuracy of the parameter estimation;
that is, under certain failure probability εPE , the true channel
parameters are within a certain confidence interval near the
estimated parameters, then the conditional entropy of Eve and
Bob is expressed as SεPE

(b : E). The most important parameter
in the expression, �(n), is related to the security of the private
key amplification [27]. Its value is given by

�(n) = (2dimHX + 3)

√
log2(2/ε̃)

n
+ 2

n
log2(1/εPA). (2)

In Eq. (1), �(n) is the correction term in the formula
for the security secret-key rate, which varies with the total
length of the exchanged signals. The first term of Eq. (2) is
the convergence speed of the smooth minimum entropy of
an independent and identically distributed state to the von
Neumann entropy, which is the main part to determine �(n).
HX corresponds to the dimension of the Hilbert space of the
variable x in the raw key, taking dim HX = 2 [27] in the
CV protocol. ε̄ and εPA are the smoothing parameter and
the failure probability of private key amplification processes,
respectively, and we take their optimal value as ε̄ = εPA =
10−10 [27].

In the following, we study the impact of the finite-size effect
on the parameter estimation process of the CV-MDI QKD
protocol. More precisely, we analyze the influence of finite
signal length N on the estimation of channel excess noise ε1,
ε2. Due to the limited signal length, the statistical fluctuation
of the sampling estimation in the parameter estimation process
will be worse, which makes the evaluation accuracy of both
communication sides on Eve’s eavesdropping behavior worse.
To ensure the security of the protocol, it is necessary to do
the worst estimate of the impact of eavesdropping. That is,
one needs to compute the maximum value of the Holevo
information between Eve and Bob in the case of statistical
fluctuation in the parameter estimation, the maximum value
of SεPE

(b : E).
The calculation of SεPE

(b : E) depends on the covariance
matrix γA1B ′

1 of shared state ρA1B ′
1 of Alice and Bob in the EB

version of the protocol. In particular, in the CV-MDI QKD
protocol, we need to consider the statistical fluctuation of
the channel transmittance (T1,T2) and the excess noise of the
Alice-Charlie channel and the Bob-Charlie channel (ε1,ε2),
the Alice modulation variance VA, and the Bob modulation
variance VB , respectively.

In the EB version of the CV-MDI QKD protocol, as shown
in Fig. 1, before Charlie makes a homodyne detection to the C

and D modes respectively, γA1CDB1 takes the following form:

γA1CDB1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1I2

√
1
2T1

(
V 2

1 − 1
)
σz

√
1
2T1

(
V 2

1 − 1
)
σz 0I2√

1
2T1

(
V 2

1 − 1
)
σz

[
1
2T1(V1 + χ1) + 1

2T2(V1 + χ2)
]
I2

[
1
2T1(V1 + χ1) − 1

2T2(V1 + χ2)
]
I2

√
1
2T2

(
V 2

2 − 1
)
σz√

1
2T1

(
V 2

1 − 1
)
σz

[
1
2T1(V1 + χ1) − 1

2T2(V1 + χ2)
]
I2

[
1
2T1(V1 + χ1) + 1

2T2(V1 + χ2)
]
I2 −

√
1
2T2

(
V 2

2 − 1
)
σz

0I2

√
1
2T2

(
V 2

2 − 1
)
σz −

√
1
2T2

(
V 2

2 − 1
)
σz V2I2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)

where I2 is the 2 × 2 identity matrix and σz = [
1 0
0 −1

]
, so γA1CDB1 is obviously an 8 × 8 covariance matrix. The parameters of

the above matrix are given by V1 = VA + 1, V2 = VB + 1, where VA and VB are the modulation variance of Alice and Bob
in the PM protocol. T1 and T2 are the transmittance of the Alice-Charlie channel and the Bob-Charlie channel. ε1 and ε2 in
χ1 = 1

T1
− 1 + ε1, χ2 = 1

T2
− 1 + ε2 are the excess noise of the corresponding channel. According to the covariance matrix in

Eq. (3), we know the modulation variance of Alice and Bob, 〈x2
1 〉and 〈x2

2 〉, the variance of Charlie, 〈y2
1〉, 〈y2

2〉, and 〈y1y2〉,
the covariance of Alice and Charlie, 〈x1y1〉, and the covariance of Bob and Charlie, 〈x2y2〉. These values and secret-key-rate
parameters are related through 〈

x2
1

〉 = V1 − 1 = VA,
〈
x2

2

〉 = V2 − 1 = VB, (4)〈
y2

1

〉 = 〈
y2

2

〉 = 1
2 (T1VA + T2VB) + 1 + 1

2 (T1ε1 + T2ε2), (5)

〈x1y1〉 =
√

T1

2
(V1 − 1) =

√
T1

2
VA, 〈x2y2〉 =

√
T2

2
(V2 − 1) =

√
T2

2
VB, (6)

〈y1y2〉 = 1
2 (T1VA − T2VB) + 1

2 (T1ε1 − T2ε2). (7)

In practical CV-MDI QKD systems, the quantities esti-
mated by Alice and Bob are obtained by the sampling of
m = N − n pairs of correlated variables (xi,yi)i=1...m. Since
the Alice-Charlie channel and the Bob-Charlie channel are

linear channels, the variables of Alice, Bob, and Charlie follow
a Gaussian distribution. Within this model, we consider that the
data before the beam splitter is represented as y ′

1, y ′
2. So before

the beam splitter, Alice and Charlie’s and Bob and Charlie’s
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data are linked through the following relation:

y ′
1 = t ′1x1 + z1,

(8)
y ′

2 = t ′2x2 + z2,

where t ′1 = √
T1, t ′2 = √

T2, z1, z2 follow a centered normal
distribution with unknown variance σ ′

1
2 = 1 + T1ε1, σ ′

2
2 =

1 + T2ε2. According to the known parameter relations in the
covariance matrix, it can be expressed that the variance of the
unknown parameters before the beam splitter:

〈y ′
1

2〉 = 〈
y1

2
〉 + 〈y1y2〉

= T1VA + 1 + T1ε1 = t ′1
2
VA + σ ′

1
2
, (9)

〈y ′
2

2〉 = 〈
y2

2
〉 − 〈y1y2〉

= T2VB + 1 + T2ε2 = t ′2
2
VB + σ ′

2
2
. (10)

Maximum-likelihood estimators t̂ ′1, t̂ ′2, σ̂ ′
1

2
, σ̂ ′

2

2
, V̂A, and V̂B

are known for the normal linear model [27]:

t̂ ′1 =
∑m

i=1 x1iy
′
1i∑m

i=1 x1i
2

, t̂ ′2 =
∑m

i=1 x2iy
′
2i∑m

i=1 x2i
2

, (11)

σ̂ ′
1

2 = 1

m

m∑
i=1

(
y ′

1i − t̂ ′1x1i

)2
,

(12)

σ̂ ′
2

2 = 1

m

m∑
i=1

(
y ′

2i − t̂ ′2x2i

)2
,

V̂A = 1

m

m∑
i=1

x2i
2,

(13)

V̂B = 1

m

m∑
i=1

x1i
2.

The estimators t̂ ′1, t̂ ′2, σ̂ ′
1

2
, σ̂ ′

2

2
, V̂A, and V̂B are independent

estimators with the following distributions:

t̂ ′1 ∼ N

(
t

′
1,

σ ′
1

2∑m
i=1 x2

1i

)
, t̂ ′2 ∼ N

(
t

′
2,

σ ′
2

2∑m
i=1 x2

2i

)
, (14)

mσ̂ ′
1

2

σ ′
1

2 ,
mσ̂ ′

2

2

σ ′
2

2 ,
mV̂A

VA

,
mV̂B

VB

∼ χ2(m − 1), (15)

where t ′1, t ′2, σ ′
1

2, σ ′
2

2, VA, and VB are the true values of the
parameters. Due to the limit of length m, we can estimate the
confidence interval for these parameters when the confidence
probability is εPE/2:

t
′−
1 ∈ [t̂ ′1 − �t ′1,t̂ ′1 + �t ′1],

t
′
2 ∈ [t̂ ′2 − �t ′2,t̂ ′2 + �t ′2], (16)

σ ′
1

2 ∈ [
σ̂ ′

1

2 − �σ ′
1

2
,σ̂ ′

1

2 + �σ ′
1

2]
,

σ ′
2

2 ∈ [
σ̂ ′

2

2 − �σ ′
2

2
,σ̂ ′

2

2 + �σ ′
2

2]
, (17)

VA ∈ [V̂A − �VA,V̂A + �VA],

VB ∈ [V̂B − �VB,V̂B + �VB], (18)

where

�t ′1 = zεPE/2

√
σ̂ ′

1

2

mVA

, �t ′2 = zεPE/2

√
σ̂ ′

2

2

mVA

,

�σ ′
1

2 = zεPE/2
σ̂ ′

1

2√
2√

m
, �VA = zεPE/2

V̂A

√
2√

m
,

�σ ′
2

2 = zεPE/2
σ̂ ′

2

2√
2√

m
, �VB = zεPE/2

V̂B

√
2√

m
,

and zεPE/2 satisfies 1 − erf(zεPE/2/
√

2)/2 = εPE/2. εPE is the
failure probability of the parameter estimation process, which
generally takes 10−10. erf(x) is the error function, which is
defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt. (19)

We can estimate T1 = t̂ ′1
2
, T2 = t̂ ′2

2
and ε1 = σ̂ ′

1
2−1

t̂ ′1
2 , ε2 = σ̂ ′

2
2−1

t̂ ′2
2

by previous estimators and confidence intervals. Next, Charlie
uses two homodyne detectors to measure the C and D
modes, and Bob performs displacement operations based on
Charlie’s measurements. Indeed, the CV-MDI QKD protocol
is equivalent to a one-way CV-QKD protocol when Bob’s
EPR state preparations and displacement operations are also
untrusted. Then the covariance matrix γA1B

′
1

of the state ρA1B
′
1

shared by Alice and Bob is

γA1B
′
1
=

⎛
⎝ V1I2

√
T

(
V 2

1 − 1
)
σz√

T
(
V 2

1 − 1
)
σz

[
T (V1 − 1) + 1 + T ε′]I2

⎞
⎠,

(20)

where

T = T1

2
g2,

ε′ = 1 + 1

T1
[2 + T2(ε2 − 2) + T1(ε2 − 1)]

+ 1

T1

(√
2

g

√
VB −

√
T2

√
VB + 2

)2

.

Here one selects g = √
2/T2

√
VB/(VB + 2) [24] so that the

equivalent excess noise ε′ is minimal. So there is

ε′ = ε1 + 1

T1
[T2(ε2 − 2) + 2]. (21)

Accordingly, the mutual information between Alice and Bob
has the following form:

IAB = log2

[
T (V + χ ) + 1

T (1 + χ ) + 1

]
, (22)

where χ = 1
T

− 1 + ε′.
In the equivalent one-way-protocol model, the analysis

method of the finite-size effect on the parameter estimation
is consistent with the CV-QKD protocol. Within this model,
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Alice and Bob’s data respectively satisfies the Gaussian distri-
bution and their data are linked through the following relation:

y = tx + z, (23)

where t = √
T and z follows a centered normal distribution

with unknown variance σ 2 = 1 + T ε′. For any value of the
modulation variance VA, S(b : E) and the variables t , σ 2 are
related as follows:

∂S(b : E)

∂t

∣∣∣∣
σ 2

< 0,
∂S(b : E)

∂σ 2

∣∣∣∣
t

> 0. (24)

This means that, under 1 − εPE probability, there is a covari-
ance matrix that minimizes the secret-key rate:

γA1B
′
1
=

(
(VA + 1)I2 tminZσz

tminZσz

(
t2
minVA + σ 2

max

)
I2

)
, (25)

where VA is the modulation variance of Alice. And for
Gaussian modulation, the parameter Z = (VA

2 + 2VA)1/2.
To analyze the impact of the statistical fluctuation of each
parameter on the covariance matrix, the parameters to be
estimated are substituted into the above matrix. The covariance
matrix is changed into

γA1B
′
1
=

⎛
⎝ (VA + 1)I2

t ′1
t ′2

√
VB

VB+2Zσz

t ′1
t ′2

√
VB

VB+2Zσz

[
t ′1

2

t ′2
2

VB

VB+2VA + 1 + VB

VB+2

(
σ ′

1
2+σ ′

2
2−2t ′2

2

t
′2
2

)]
I2

⎞
⎠. (26)

When the estimated parameters are determined, we can
calculate the maximum value of SεPE

(b : E). In consequence,
the secret-key rate of the CV-MDI QKD protocol against
collective attack with the finite-size effect can be calculated
according to Eqs. (1) and (2).

III. SIMULATION RESULTS AND DISCUSSION

In this section, we give and discuss the numerical simulation
results of the CV-MDI QKD protocol in the ideal detection case
with the finite-size effect. See the appendix for the impact of the
practical detection on the CV-MDI QKD protocol. To consider
the characteristics of CV-MDI QKD protocol, we first perform
numerical simulations of the secret-key rate in the ideal
reconciliation efficiency. In the following figures, the dark red
solid lines, dark blue dot-dashed lines, dark black dotted lines,
light yellow solid lines, light pink dot-dashed lines, and light
green dotted lines correspond to the block lengths of 106, 107,

FIG. 3. Comparison between the maximal transmission distance
for the CV-MDI QKD protocol under the finite-size effect. The CV-
MDI QKD protocol with ideal reconciliation efficiency β = 1, where
the secret-key rate k is positive. The block lengths from left to right
curves correspond to N =106, 107, 108, 109, 1010. Here we use the
ideal modulation variance VA = VB = 105 and excess noises ε1 =
ε2 = 0.002 [16].

108, 109, 1010, and asymptotic curves, respectively. Figure 3
shows the relationship between transmission distance from
Alice to Charlie (LAC) and from Bob to Charlie (LBC) of the
CV-MDI QKD protocol under the finite-size effect. It can be
seen that, under different block lengths, when Bob is placed in
the untrusted third party (LBC = 0), the asymmetric structure
LAC has the farthest transmission distance; more than 85 km.
When LBC increases, LAC decreases rapidly and the sum of the
two is also reduced. For N = 1010 (light green dashed line),
even if LAC is reduced to 0, the farthest LBC cannot exceed
7 km.

For the sake of optimizing the performance of the protocol,
we also need to consider the optimal modulation variance of the
protocol under different block lengths. Figure 4 shows the re-
lationship between the modulation variance and the secret-key
rate under the ideal reconciliation efficiency of the CV-MDI
QKD protocol with the finite-size effect. We find that, with the
improvement of the modulation variance, the secret-key rate
gradually converges under the ideal reconciliation efficiency
(β = 1). The optimal modulation variance of the CV-MDI
QKD protocol with the finite-size effect in the asymmetric
case tends to be infinite. We choose VA = VB = 105 to see the
performance of the protocol in the ideal modulation.

Figure 5 displays the impact of the finite-size effect
on the CV-MDI QKD protocol under the asymmetric case
and ideal modulation variance. As shown in the figure,
when the data length is N = 106 (dark red solid line), the
security transmission distance is about 32 km. When the data
length is N = 1010 (light pink dot-dashed line), the security
transmission distance of the protocol is up to 86 km, and the
longer the data length, the closer the security transmission
distance is to asymptotic regime.

Noteworthily, in Eq. (1), the reconciliation efficiency β

can be regarded as the ratio between the actual extracted
mutual information and the ideal extracted mutual information
[32]. After data reverse reconciliation, the length of the
key shared between Alice and Bob becomes nβI (x : y).
Therefore, under the finite-size effect, imperfect reconcil-
iation efficiency will also affect the security transmission
distance of the CV-MDI QKD protocol. Figure 6 shows the
optimal modulation variance of the CV-MDI QKD protocol
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FIG. 4. Optimal modulation variance for the CV-MDI QKD
protocol in the asymmetric case with the finite-size effect. CV-MDI
QKD protocol with ideal reconciliation efficiency β = 1. From top
to bottom, the block length N is equal to 106, 107, 108, 109, and 1010.
Here we use the excess noises ε1 = ε2 = 0.002 [16].

with imperfect reconciliation efficiency β= 96.9% [33,34]
in different block lengths. The numbers at the end of the
arrow are the values of the optimal modulation variance.
The simulation results show that the finite-size effect has
an influence on the optimal modulation variance under the
imperfect reconciliation efficiency. With the increase of block
length, the optimal modulation variance is decreasing.

Similarly, in the imperfect reconciliation efficiency, the
asymmetric case of the CV-MDI QKD protocol has the farthest
security transmission distance, as shown in Fig. 7. And the
selection of the optimal modulation variance increases the final
security transmission distance. In Fig. 8, we display the
relationship between secret-key rate and transmission distance
of the CV-MDI QKD protocol in the asymmetric case with
the finite-size effect under imperfect reconciliation efficiency
and optimal modulation variance. The simulation results show
that the optimal modulation variance improves the security
transmission distance while increasing the secret-key rate. And

FIG. 5. Secret-key rate for the CV-MDI QKD protocol in the
asymmetric case with the finite-size effect. The CV-MDI QKD
protocol with ideal reconciliation efficiency β = 1. The block lengths
from left to right curves correspond to N = 106, 107, 108, 109, 1010

and the asymptotic regime. Here we use the ideal modulation variance
VA = VB = 105, and excess noises ε1 = ε2 = 0.002 [16].

FIG. 6. Optimal modulation variance for the CV-MDI QKD
protocol in asymmetric case with the finite-size effect. The CV-MDI
QKD protocol with imperfect reconciliation efficiency β = 96.9%.
From top to bottom, the block length N is equal to 106, 107, 108, 109,
and 1010. Here we use the excess noises ε1 = ε2 = 0.002 [16].

when the data length is 106 (dark red solid line), the security
transmission distance is about 23 km.When the data length is
1010 (light pink dot-dashed line), the protocol has a far greater
security transmission distance, close to 75 km in the case of
imperfect reconciliation efficiency (β = 96.9%).

IV. CONCLUSION

In this paper, we roughly describe the CV-MDI QKD
protocol and propose a finite-size analysis of the CV-MDI
QKD protocol under collective attack. This provides a bridge
for the theoretical and practicality of the CV-MDI QKD
protocol. By using the continuous-variable protocol under
the finite-size scenario of the secret-key-rate formula for
numerical simulation, we see that the secret-key rate and the

FIG. 7. Comparison among the maximal transmission distance
for the CV-MDI QKD protocol under the finite-size effect. The
CV-MDI QKD protocol with imperfect reconciliation efficiency
β = 96.9%, within which the secret-key rate k is positive. The
block lengths from left to right curves correspond to N =
106, 107, 108, 109, 1010. Here we use the optimal modulation variance
and excess noises ε1 = ε2 = 0.002 [16].
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FIG. 8. Secret-key rate for the CV-MDI QKD protocol in
the asymmetric case with the finite-size effect. The CV-MDI
QKD protocol with imperfect reconciliation efficiency β = 96.9%.
The block lengths from left to right curves correspond to N =
106, 107, 108, 109, 1010, and the asymptotic regime. Here we use
the optimal modulation variance and excess noises ε1 = ε2 = 0.002
[16].

security transmission distance are affected when considering
the finite-size effect.

The results demonstrate that the finite-size effect also
influences the optimal modulation variance. With the increase
of the block length, the optimal modulation variance is
decreasing. And at various block lengths between 106 and
1010, when Bob is placed in an untrusted third party; that
is, under the asymmetric case, the CV-MDI QKD protocol has
the farthest security transmission distance. The CV-MDI QKD
protocol of the asymmetric structure with the finite-size effect
can safely transmit about 86 km under the ideal reconciliation
efficiency and optimal modulation variance conditions at 1010

block size. When the reconciliation efficiency is 96.9%, under
the above conditions, the maximum transmission distance of
the protocol is about 75 km.

It can be seen that, as with the CV-QKD one-way protocol,
in the CV-MDI QKD protocol, the fewer signals exchanged,
the more obvious is the finite-size effect, and the faster the
secret-key rate and security transmission distance drop. The
overall results show that the practical implementation of CV-
MDI QKD should not neglect the influence of the finite-size
effect.

Note that we mainly focus on the impact of the finite-size
effect on the CV-MDI QKD protocol under arbitrary collective
attack. Recently, the composable security of the CV-MDI
QKD protocol against coherent attacks in a practical finite-size
scenario has been proved rigorously [35,36].

Note added. An independent work [37] has been posted
on arXiv. This work also studies the impact of the finite-size
effect of the CV-MDI QKD protocol.
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APPENDIX DISCUSSION OF
PRACTICAL DETECTION

We now consider the finite-size effect related to the
detection setup. Since the third party Charlie uses two
homodyne detectors to measure the quantum state for the Bell
measurement in the practical system, the impact of the practical
detectors on the CV-MDI QKD protocol should be considered.
Although the security of the CV-MDI QKD protocol is not
limited by the detector, its performance is constrained by
the performance of the detector. To research the effect of the
practical detection on the protocol in the case of the finite-size
effect, we mainly consider the ideal coordination efficiency
(β = 1) situation. Now, the EB version of the CV-MDI QKD
protocol in a practical detection scheme is shown in Fig. 2.
An imperfect homodyne detection is represented by a beam
splitter and thermal noise, wherein the transmittance of the
beam splitter is the detection efficiency η, the relationship
between the variance of the thermal state v and detector
electronic noise variance vel is v = 1 + vel/(1 − η). For the
CV-MDI QKD protocol considering the practical detector, it
is also necessary to estimate the covariance matrix between
Alice and Bob. The estimated parameters are the variance of
Alice, Bob, Charlie, Alice and Charlie’s covariance, and Bob
and Charlie’s covariance:

〈
x2

1

〉 = V1 − 1 = VA,
〈
x2

2

〉 = V2 − 1 = VB, (A1)〈
y2

1

〉 = 〈
y2

2

〉 = η
[

1
2T1(V1 + χ1) + 1

2T2(V2 + χ2)
]

+ 1 − η + vel = 1
2η(T1VA + T2VB)

+ 1
2η(T1ε1 + T2ε2) + 1 + vel, (A2)

〈x1y1〉 = √
η

√
T1

2
(V1 − 1) =

√
ηT1

2
VA,

(A3)

〈x2y2〉 = √
η

√
T2

2
(V2 − 1) =

√
ηT2

2
VB,

FIG. 9. Secret-key rate for CV-MDI QKD protocol in asymmetric
case with finite-size effect. The CV-MDI QKD protocol with perfect
reconciliation efficiency β = 1 and imperfect homodyne detectors
η = 96%, υel = 0.015. The block lengths from left to right curves
correspond to N = 106, 107, 108, 109, 1010, and the asymptotic
regime. Here we use the ideal modulation variance VA = VB = 105,
and excess noises ε1 = ε2 = 0.002 [16].
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〈y1y2〉 = η
[

1
2T1(V1 + χ1) − 1

2T2(V2 + χ2)
]

= 1
2η(T1VA − T2VB) + 1

2η(T1ε1 − T2ε2). (A4)

The parameter estimations below are calculated in the same
way as the calculation without considering the detections, but
the statistical fluctuations of η and vel are taken into account.
Correspondingly, the equivalent excess noise is written as [24]

ε′=1+T1χ1 + T2χ2 − T2

T1
+ 2χ3

T1
, (A5)

where χ3 = 1−η

η
+ vel

η
, and the optimized displacement opera-

tion amplification coefficient is g = √
2/(ηT2)

√
VB/(VB + 2).

Figure 9 gives the impact of the finite-size effect on the
CV-MDI QKD protocol considering the practical detection.
Compared with the results of Fig. 5, we found that imperfect
detectors have a significant effect on the secret-key rate and
the security transmission distance. For instance, when the
block length is 1010, the security transmission distance is the
farthest, only 17 km. Conceivably, the results will be even more
pessimistic in terms of practical reconciliation efficiency.
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