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The term Einstein-Podolsky-Rosen steering refers to a quantum correlation intermediate between entanglement
and Bell nonlocality, which has been connected to another fundamental quantum property: measurement
incompatibility. In the finite-dimensional case, efficient computational methods to quantify steerability have
been developed. In the infinite-dimensional case, however, less theoretical tools are available. Here, we approach
the problem of steerability in the continuous variable case via a notion of state-channel correspondence, which
generalizes the well-known Choi-Jamiołkowski correspondence. Via our approach we are able to generalize the
connection between steering and incompatibility to the continuous variable case and to connect the steerability of
a state with the incompatibility breaking property of a quantum channel, with applications to noisy NOON states
and amplitude damping channels. Moreover, we apply our methods to the Gaussian steering setting, proving,
among other things, that canonical quadratures are sufficient for steering Gaussian states.
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I. INTRODUCTION

The phenomenon of Einstein-Podolsky-Rosen (EPR) steer-
ing combines two central features of quantum theory: en-
tanglement and incompatibility, namely, the impossibility of
determine precisely and simultaneously certain properties of a
physical system, e.g., position and momentum. In practice,
steering is a quantum effect by which one experimenter,
Alice, can remotely prepare (i.e., steer) an ensemble of
states for another experimenter, Bob, by performing local
measurement on her half of a bipartite system shared by them,
and communicating the results to Bob [1].

Due to the fact that steering is a form of quantum correlation
intermediate between entanglement and Bell nonlocality [2],
it has been proven useful to solve foundational problems
[3–7] and important for applications in quantum informa-
tion processing such as one-sided-device-independent (1SDI)
quantum information [8–10].

In the finite-dimensional case, several methods are available
to attack the steering problem. In particular, efficient methods
based on semidefinite programming [11] are able to detect and
quantify steerability of a given state and set of measurements
[3,12–14]. Notwithstanding the existence of several methods
(see, e.g., Refs. [1,15–19] and the review [14]), such a
systematic approach is missing in the continuous variable
case.

In this paper, we will develop a general tool for discussing
steering in the continuous variable case, which is based on
an extension of the Choi-Jamiołkowski state-channel duality
[20–22]. The Choi-Jamiołkowski correspondence associates a
state to each channel, but not all states can be mapped to a
channel in this way. We will extend this idea by showing that
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one can associate to each bipartite state a channel, such that
the steerability property of a state is equivalent to the property
of the corresponding channel being incompatibility breaking
[23], when all possible measurements are allowed for steering.
This result, in turn, extends to the continuous variable case the
result on equivalence between steering and joint-measurability
[24–26].

In addition to these conceptual results, we find that the
channel picture reduces seemingly different steering prob-
lems to a single one. For instance, we show that steer-
ability of noisy NOON-states (cf. Ref. [19]) corresponds
to the decoherence of incompatibility under an amplitude
damping channel (cf. [27,28]), and how to use steering
to investigate its Markovianity properties. Using incom-
patibility techniques we investigate both analytically and
numerically the noise tolerance of these states with two
quadrature measurements. Finally, we apply our methods
in the continuous variable Gaussian settings, showing that
steerability by a pair of canonical quadrature measurements
already ensures steerability by all Gaussian measurements,
and connecting this to Gaussian incompatibility breaking
channels [29]. We also show in passing how the method
yields an independent proof of the known Gaussian steering
criterion [1].

The paper is organized as follows: We begin by introducing
preliminary notions in Sec. II, including the general formalism
for measurements, joint measurability, steering, the formal
connection between hidden state models and positive-operator
valued measures (POVMs), and quantification of steering and
incompatibility. Section III contains our main results on the
role of state-channel duality in the connection between steering
and incompatibility. In Sec. IV we present all the above
mentioned applications, except for the Gaussian case, which is
treated separately in Sec. V. Technical proofs of four Lemmas
are given in Appendices A–D, and Appendix E contains the
derivation of the Gaussian LHS, which is not essential for
understanding the main results.
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II. PRELIMINARY NOTIONS

A. Measurements as POVMs

A POVM with a discrete outcome set � is a collec-
tion {Gλ}λ∈� of positive semidefinite operators such that∑

λ∈� Gλ = 1. Such operators represent the probability of
the outcome λ for a measurement on a state ρ via the rule
Prob(λ) = tr[ρMλ]. This notion is not sufficient for this paper,
since we also consider Gaussian measurements. A POVM with
a continuous outcome set is one for which � = Rn, i.e., the
Euclidean space. This space comes with the usual integration
measure dλ, and a POVM {Gλ}λ∈� consist of elements Gλ

that may be “infinitesimal,” so, in general, only the integrals∫
X

Gλdλ with X ⊂ � define proper operators. This definition
clarifies the name positive-operator valued measure [30], i.e., a
map from measurable sets to positive operators X �→ ∫

X
Gλdλ

with normalization
∫
�

Gλdλ = 1 and countable additivity on
disjoint sets. To illustrate this well-known technical issue
with a typical example relevant for the main text, consider
the position operator Q = ∫

R q|q〉〈q|dq. The corresponding
POVM has elements |q〉〈q|, which are not proper operators
as they map wave functions ψ into improper states ψ(q)|q〉.
The symbols |q〉〈q| only make up operators when integrated
into

∫
[a,b] |q〉〈q|dq, which projects ψ into the wave function

coinciding with ψ(q) for a � q � b and vanishing elsewhere.

B. Joint measurability

A collection of POVMs, indexed by measurement settings
x, will be denoted asM = {Ma|x}a,x and called a measurement
assemblage. In the discrete case, it is said to be jointly
measurable [30] if there is a POVM {Gλ}λ such that each Ma|x
can be obtained from Gλ via classical postprocessing, i.e.,
Ma|x = ∑

λ D(a|x,λ)Gλ for all x,a, where D(a|x,λ) � 0 and∑
a D(a|x,λ) = 1. For the continuous case, with Ax the set of

outcomes for the POVM Mx , one has joint measurability if

MX|x :=
∫

X

Ma|xda =
∫

�

D(X|x,λ)Gλdλ, (1)

where the postprocessing D(·|x,·) = Ax × � → [0,1] is
generally known as a weak Markov kernel [31]. An assemblage
not jointly measurable is called incompatible.

C. Quantum steering

Another main ingredient for our discussions is bipartite
quantum steering. Alice can prepare an ensemble of states
for Bob by performing a local measurement (x) on her
half of the bipartite state ρ and communicating the result
(a) to Bob. This is related to the measurement assem-
blage {Aa|x}a,x via �(a|x) := trA[(Aa|x ⊗ 1)ρ]/P (a|x), where
P (a|x) := tr[(Aa|x ⊗ 1)ρ] is the probability of the outcome
a for the setting x, and �(a|x) is the reduced state obtained
by Bob in this case. We call the collection {ρa|x}a,x , with
ρa|x := trA[(Aa|x ⊗ 1)ρ], a state assemblage. It satisfies the
nonsignalling rule ρB = ∑

a ρa|x for all x, with ρB := trA[ρ]
the reduced state for Bob. An assemblage {ρa|x}a,x is called
unsteerable if it admits a local hidden state (LHS) model [1],
i.e., a collection of positive operators {σλ}λ with tr[

∑
λ σλ] = 1

and ρa|x = ∑
λ D(a|x,λ) σλ for all a,x, where D(a|x,λ) � 0

and
∑

a D(a|x,λ) = 1. If a LHS model exists, Bob can

interpret each ρa|x as coming from some preexisting states
σλ, where only the classical probabilities are updated due to
the information obtained by Alice from her measurement.
In the continuous case the assemblage consists of operators
σx(X) := ∫

X
σa|xda, where X ⊂ Ax , and the unsteerable case

with LHS {σλ}λ is defined by∫
X

σa|xda =
∫

�

D(X|x,λ)σλdλ, (2)

where D(·|x,·) is a weak Markov kernel for each x. In the
steerable case we also say that the state ρ is steerable by the
the measurement assemblage {Aa|x}a,x .

Our main results (Theorems 1 and 2 below) can be
applied to reduce seemingly different steering problems to
a single one. To formulate this precisely, we need a few
extra notions. First, we say that states ρ1 and ρ2 are steering-
equivalent if they are steerable by the exact same measure-
ment assemblages {Aa|x}a,x . For a weaker version, suppose
instead that there is a quantum channel � (with Heisenberg
picture �∗), such that ρ1 is steerable by an assemblage
{Aa|x}a,x exactly when ρ2 is steerable by {�∗(Aa|x)}a,x .
Generalizing the notion in Ref. [26], we then call Ba|x :=
�∗(Aa|x) the steering-equivalent observables (for Aa|x). A
related (state-independent) notion is that of an incompatibility
breaking channel (IBC) [23], namely, a channel � such
that {�∗(Aa|x)}x,a is jointly measurable for any measurement
assemblage {Aa|x}x,a . For instance, entanglement breaking
channels [32] belong to this class. It is known [23] that when
such a channel is applied to one side of a maximally entangled
state, the resulting state is not steerable by any measurement
assemblage. Corollary 1(d) extends this to arbitrary states in
the broader context of state-channel duality (see below).

D. Hidden state models and measurements in terms of POVMs

We now review the fact that hidden state models and general
quantum observables can both be described by POVMs. Since
we are interested in the infinite-dimensional case with POVMs
having continuous outcome sets, some technical considera-
tions are unavoidable, and we discuss them briefly. These
technicalities are not essential for understanding the main text,
but they are needed to make the proofs mathematically sound.

The connection between hidden state models and POVMs is
fairly obvious when d < ∞ and � is discrete. Suppose now we
have a general family {σλ}λ∈� of positive operators on Bob’s
side of a bipartite setting. Here � is the set of hidden variables,
either discrete or continuous as above. The crucial difference to
POVMs is that each σλ is a proper trace class operator, i.e., not
“infinitesimal” even in the continuous case. The function λ �→
σλ must satisfy the technical condition of measurability in the
trace class norm, to allow the (Bochner) integrals

∫
f (λ)σλdλ

to exist with finite trace for every measurable scalar function f

on �. We also assume the normalization
∑

λ σλ = σ (discrete
case) and

∫
σλdλ = σ (continuous case), where σ is again a

fixed density operator. Then there exists a unique POVM G

with outcomes in �, satisfying

σ
1
2 Gλσ

1
2 = σλ. (3)

This is clear in the finite-dimensional case with finite outcome
set �—we just multiply with σ− 1

2 , which preserves positivity,
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and normalization translates into
∑

λ Gλ = 1. For d = ∞ we
need a technical density argument analogous to that used in
the proof of Lemma 1 below (see Appendix A). In the case
of continuous outcome set, Eq. (3) is again understood via the
corresponding integrals.

Suppose then that we start with a POVM {Gλ}λ∈�; the
question is how to get the states σλ. If � is discrete, this
is trivial: we define σλ := σ

1
2 Gλσ

1
2 . However, the case of

continuous outcome set � introduces a subtlety: we have
to show that the possibly infinitesimal POVM elements Gλ

yield trace class operators σλ. In general, this is nontrivial,
and follows from the Radon-Nikodym property of the trace
class (cf. p. 79 of Ref. [33]). In the relevant case of a position
operator (and more generally a Gaussian POVM), this is easier
to prove: σ

1
2 |q〉〈q|σ 1

2 maps ψ into 〈q|σ 1
2 ψ〉σ 1

2 |q〉, which is
indeed a proper wave function since σ

1
2 |q〉 = ∑

n

√
sn〈n|q〉|n〉

has finite norm
∑

n sn|〈n|q〉|2 < ∞ for all q due to
∑

n sn <

∞, assuming the basis functions are continuous (which is the
case for the number basis considered in the main text). Here,
σ = ∑

n sn|n〉〈n| is the eigendecomposition of σ .

E. Robustness quantification

Both incompatibility and steering can be quantified by the
amount of classical noise required to destroy these quantum
properties. There are different ways of setting up a precise
definition for this idea; here we only introduce the quantifiers
which turn out to be naturally compatible with our state-
channel duality.

We recall from Ref. [34] that Consistent Steering Robust-
ness (CSR) of a state assemblage is given by

CSR({σa|x}) = inf

{
t � 0|{πa|x} σ -consistent,

×
{

σa|x + tπa|x
1 + t

}
unsteerable

}
, (4)

where σ -consistence means
∑

a σa|x = ∑
a τa|x for all x.

Similarly, the Incompatibility Robustness (IR) [26] of a
measurement assemblage is given by

IR({Ma|x}) = inf

{
t � 0|Ma|x + tNa|x

1 + t
jointly measurable

}
.

(5)

We stress that these definitions, although typically interpreted
as SDPs in the finite-dimensional case, can also be stated in
infinite dimensions with possibly continuous outcomes for the
measurements. We note that in such a case they can only
be formulated as SDPs by first restricting to a subspace and
discretizing the outcomes, as in our numerical example in
Sec. IV B.

III. MAIN RESULT: STATE-CHANNEL
CORRESPONDENCE AND STEERING

Our key idea for attacking steering problems is
a state-channel duality valid in infinite dimensions. It
goes beyond the familiar Choi-Jamiołkowski (CJ) isomor-
phism, which maps channels T : L(HB) → L(HA) into
states ρ = (T ⊗ Id)(|
0〉〈
0|) on HA ⊗ HB , where |
0〉 =

1√
d

∑
n |nn〉 is the maximally entangled state on HB ⊗ HB

and dimHB = d < ∞. The CJ isomorphism is a one-to-one
map between channels and states ρ with completely mixed
HB marginals, i.e., σ = trA[ρ] = 1/d. It has been used in the
definition of channel steering [35] and the verification of the
quantumness of a channel [36]. Our extension is as follows.

Lemma 1. There is a 1-to-1 correspondence between bi-
partite states ρ sharing a full-rank marginal σ = trA[ρ], and
quantum channels T from Bob to Alice, such that

ρ = (T ⊗ Id)(|
σ 〉〈
σ |), (6)

where |
σ 〉 := ∑d
n=1

√
sn|nn〉 ∈ HB ⊗ HB is defined as the

purification of σ = ∑
n sn|n〉〈n|.

We postpone the detailed proof to Appendix A. However,
since one aim of the paper is to pay due attention to the
technicalities related to the infinite-dimensional case, we
briefly sketch the relevant points here in the main text: Given
a channel T, ρ is clearly a valid state with trA[ρ] = σ . Vice
versa, given ρ with marginal σ , the idea is to find a channel T,
such that

σ
1
2 T∗(A)σ

1
2 = trA[ρ(A ⊗ 1)]ᵀ, (7)

where the transpose is taken with respect to the basis {|n〉}.
Equation (7) can then be seen to be equivalent to Eq. (6) by
direct computation. To find T, one can invert σ

1
2 and solve for

T∗(A) provided that d < ∞. For d = ∞, one cannot directly
invert σ

1
2 , since it will be an unbounded operator. However, one

can still construct the Kraus operators {Mk}k for the channel
T∗ from the Kraus operators Rk of σ

1
2 T∗(·)σ 1

2 , obtained via
Eq. (7). This is achieved by extending Rkσ

− 1
2 to a bounded

operator on HB ; see Appendix A.
Using Lemma 1, we can prove the equivalence between

steering of a state assemblage and incompatibility of a
measurement assemblage [26] in full generality and from a
quantitative perspective [34,37].

Theorem 1. The state assemblage {σx(X)}X,x defined by
ρ and {Ax}x is steerable ⇔ the measurement assemblage
{T∗(Ax)}x is incompatible. Here, T ↔ ρ via Lemma 1, with
σ = trA[ρ] = σx(Ax). This correspondence is quantitative in
that the incompatibility robustness (IR) of {T∗(Ax)}x coincides
with the consistent steering robustness (CSR) of {σx(X)}X,x .

Proof. Using Lemma 1 with any fixed state σ , we have the
correspondences

{T∗(Aa|x)} �→ {ρa|x},
(8)

T �→ ρ = (T ⊗ Id)(|
σ 〉〈
σ |),
between the measurement assemblage Aa|x transformed, via
the Heisenberg-picture channel T∗ and the steering assemblage
obtained via measurements Aa|x on the state ρ. Note that the
measurements {Aa|x} stay fixed. Now, {T∗(Aa|x)} is jointly
measurable if and only if

T∗(Aa|x) =
∑

λ

D(a|x,λ)Gλ. (9)

By multiplying this with σ
1
2 on both sides, we obtain

ρ
ᵀ
a|x =

∑
λ

D(a|x,λ)σλ, (10)
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where the hidden states σλ correspond to Gλ via Eq. (3),
and ρ

ᵀ
a|x := σ

1
2 T∗(Aa|x)σ

1
2 = trA[ρ(Aa|x ⊗ 1)]ᵀ is the assem-

blage. As we have established above, all the correspondences
are one-to-one, and hence steerability of the setting (ρ,{Aa|x})
is equivalent to the incompatibility of {T∗(Aa|x)}.

To prove the equivalence of the quantifiers, we follow a
similar reasoning as the one in Ref. [37]: We need to prove
that for each noise term Na|x of the IR problem, i.e., a term
making the measurement assemblage jointly measurable for a
given t , we can find a noise term πa|x of the CSR problem, i.e.,
a term making the state assemblage unsteerable for the same
t , and vice versa. We use again the relation

πT
a|x = σ

1
2 Na|xσ

1
2 (11)

to obtain a a one-to-one mapping between σ -consistent
assemblages and arbitrary POVMs. In the finite-dimensional
case, we can argue as follows: Given a σ -consistent assem-
blage {πa|x}a,x , {Na|x}a,x defined as in Eq. (11) is a valid
measurement assemblage. Vice versa, given {Na|x}a,x a valid
measurement assemblage, we can construct the σ -consistent
assemblage {πa|x}a,x as

πT
a|x = trA[Na|x ⊗ 1|
σ 〉〈
σ |] = σ

1
2 Na|xσ

1
2 , (12)

where |
σ 〉 := ∑
n

√
sn|nn〉 is the purification of σ :=∑

n sn|n〉〈n|. Hence CSR({σa|x}) = IR({T∗(Aa|x)}). When the
Hilbert space is infinite-dimensional, with possibly continuous
outcomes for the POVMs, we again need the same argument as
in Sec. II D, since Na|x may not be a proper operator, while we
need πa|x to actually be in the trace class. This establishes the
correspondence Eq. (11) between POVMs and σ -consistent
assemblages in the same way as we obtained Eq. (3). Then
the equality CSR({σa|x}) = IR({T∗(Aa|x)}) clearly follows,
and so we can extend the equivalence of quantifiers to the
infinite-dimensional case. �

We remark that the above reasoning also provides the
connection with the steering equivalent observables defined
in the introduction. Given a state assemblage {ρa|x}a,x , with
a full rank reduced state σ := ∑

a ρa|x , its steering equivalent
(SE) observables [26] are given by

Ba|x := σ−1/2ρa|xσ−1/2 = T∗
ρ(Aa|x). (13)

We stress that we have here used Theorem 1 above to make a
connection between the notion in Ref. [26] and the one given
in the introduction in terms of channels. In particular, this
extends the former notion to the infinite-dimensional case.

Furthermore, it is easy to show that if we have only access to
the assemblage {ρa|x}a,x , and not to the bipartite state ρ, we can
always interpret Ba|x as the observables giving the assemblage
when measured on the purification |
σ 〉 := ∑

n

√
sn|nn〉 of

σ := ∑
n sn|n〉〈n|. Namely,

σ 1/2Ba|xσ 1/2 = trA[Ba|x ⊗ 1|
σ 〉〈
σ |]T. (14)

From Theorem 1 we know that {ρa|x}a,x is unsteerable ⇔
{Ba|x}a,x is jointly measurable. If we compare that with the
definition of the channel Tρ , we find that T∗

|
σ 〉〈
σ | (Ba|x) = Ba|x .
Hence, the observables Ba|x = T∗(Aa|x), when measured on
|
σ 〉, reproduce the state assemblage {σa|x}a,x . We record
this conclusion, along with some other direct implications of

Theorem 1, into the following Corollary, which generalizes
several existing results.

Corollary 1. (a) Two states ρ1,ρ2 are steering-equivalent
if the corresponding channels of Lemma 1 have T∗

1(·) =
UT∗

2(·)U ∗, where U is unitary. (b) A pure state |�〉 of full
Schmidt rank is steerable by assemblage {AX|x}X,x iff the latter
is incompatible. (c) A state ρ is steerable by measurements
{AX|x} iff the purification |
σ 〉 of Lemma 1 is steerable by the
steering-equivalent measurements {T∗(AX|x)}. (d) A state ρ is
unsteerable iff the channel T∗ is incompatibility breaking.

Proof. Part (a) follows directly from Theorem 1 and the
fact that incompatibility is preserved in unitary operations.
We demonstrate the use of (a) with NOON-states below.
Part (b) is the infinite-dimensional version of the result in
Refs. [24,25] and can be obtained by defining a Hilbert-
Schmidt operator R with 〈n|R|m〉 = 〈nm|�〉, where the basis
on Bob’s side is chosen as in Lemma 1. Since R and R∗
have full rank, U = Rσ− 1

2 is unitary and |�〉 = (U ⊗ 1)|
σ 〉,
so that T∗(A) = U ∗AU and hence preserves incompatibility.
Part (c) was proved above, while (d) is a direct consequence
of Theorem 1 on the theory of incompatibility breaking
channels. �

We stress the difference with respect to Ref. [23], where the
incompatibility breaking property of a given quantum channel
was related to the unsteerability property of specific bipartite
states derived from it. Here we have devised a way (via the
above state-channel duality) to do the converse: for any given
state ρ, we can find a quantum channel T that is incompatibility
breaking exactly when the state is steerable. This allows us to
treat any given steering problem as an IBC problem, which
might open up new possibilities for investigating steering.
In the following section, we illustrate this with different
applications.

IV. APPLICATIONS

A. Separable and pure states

Consider first separable states ρ = ∑
i piρ

i
A ⊗ ρi

B , which
are of course not steerable. We easily find the chan-
nel of Lemma 1 as T∗(A) = ∑

i tr[ρi
AA]Fi , where Fi =

piσ
− 1

2 (ρi
B)ᵀσ− 1

2 satisfies 0 � Fi � 1 and
∑

i Fi = 1, that is,
T is entanglement breaking [32].

At the other extreme, pure states of full Schmidt rank
correspond to unitary channels by Corollary 1(b). As an
infinite-dimensional example, the channel for the two-mode
coherent state |z〉 with z = reiθ is the phase shift T∗(A) =
eiθa†aAe−iθa†a if we identify the photon number bases of Alice
and Bob. Importantly, the problem of nonunique regularization
of maximally entangled states in d = ∞ is circumvented by
our method.

B. Noisy NOON states

Consider the “NOON state,”

|N00N〉 = 1√
2

(|0N〉 − eiNα|N0〉),

shared by Alice and Bob [38], with {|n〉} photon number basis
of 1-mode electromagnetic field. Via random photon loss, the
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state becomes

ρη = η|N00N〉〈N00N | + (1 − η)|00〉〈00|,
which is unsteerable for η = 0 and steerable for η = 1.
Hence, there is a threshold ηc (depending on the allowed
measurements) such that ρη is steerable iff η > ηc (cf. [19]
and the references therein, for previous results on the problem).
Using Lemma 1 we find the channel of ρη as

T∗(A) = σ− 1
2 trA[ρ(A ⊗ 1)]ᵀσ− 1

2

=
(

r2ANN + (1 − r2)A00 −rAN0e
−iNα

−rA0Ne+iNα A00

)
= U ∗�∗

r (A)U, (15)

where r = √
η/(2 − η), σ = trA(ρ) = (1 − η/2)|0〉〈0| +

η/2|N〉〈N |,

�∗
r (A) =

1∑
i=0

K∗
i,rAKi,r

=
(

A00 rA0N

rAN0 r2ANN + (1 − r2)A00

)
, (16)

is the amplitude damping channel [39] with Kraus operators

K0,r =
(

1 0
0 r

)
, K1,r =

(
0

√
1 − r2

0 0

)
, (17)

and

U := |0〉〈N | − eiNα|N〉〈0| =
(

0 1
−eiNα 0

)
(18)

is a unitary matrix. By Corollary 1(a), the unitary is irrelevant
for steering, and we will ignore it in what follows.

The problem, then, reduces to the question of how �r

breaks incompatibility. We introduce the following necessary
criterion for this:

Lemma 2. Let {Ax}nx=1 be any finite assemblage of qubit
measurements (with arbitrary outcome sets Ax). Then the
“damped measurements” �∗

r (Ax) are jointly measurable if

n∑
x=1

det
�∗

r (AXx |x)

〈0|AXx |x |0〉 � n − 1 for each Xx ⊂ Ax. (19)

A proof of this result is given in Appendix B.
Next, we proceed to introduce the relevant measure-

ments: we focus on the case of Alice attempting to steer
Bob using rotated quadratures Qθ = (eiθa† + e−iθ a)/

√
2.

They act in the infinite-dimensional Hilbert space, with
spectral projections (PVM) Qq|θ = eiθa†a|q〉〈q|e−iθa†a . As
our state lives in span {|0〉,|N〉}, only the 2 × 2 matrix
(Q̃q|θ )nm = 〈n|Qq|θ |m〉 = eiθ(n−m)〈n|q〉〈q|m〉 with n,m =
0,N contributes. Explicitly, this matrix reads

Q̃q|θ =
(

1 e−iNθh(q)
eiNθh(q) h(q)2

)
e−q2

√
π

, q ∈ R, (20)

where h(x) := HN (x)√
2N N!

with HN (x) a Hermite polynomial. Note

that indeed
∫
R Q̃q|θdq = 1 and Q̃q|θ � 0, so this is a valid

qubit POVM with continuous outcomes.

We assume that Alice only has one pair, i.e., an assemblage
{Q̃q|0,Q̃q|θ }q for fixed θ , and this pair is incompatible (despite
the truncation), if θ �= 0,π . Indeed, since these are rank-1
POVMs, they can only be compatible if Q̃q|θ = ∫

D(q|q ′)Q̃q|0
for some classical postprocessing D(q|q ′) [40], implying eiθ ∈
R, a contradiction. Hence, the pure NOON state (no damping,
r = 1) is steerable with these measurements.

The next step is then to compute the steering-equivalent
(SE) observables by applying the channel �r . With 0 < r < 1,
the SE observables become

T∗
r (Q̃q|θ ) =

(
1 re−iNθh(q)

reiNθh(q) r2h(q)2 + 1 − r2

)
e−q2

√
π

. (21)

The determinant of this kernel matrix is (1 − r2) e−2q2

π
so that the

joint measurability criterion of Lemma 2 reduces to r2 � 1/2.
From this we conclude that

rc � 1/
√

2,

corresponding to ηc � 2/3 (independently of θ and N ). The
value ηc ≈ 2/3 has previously been obtained numerically [19]
for N = 1; up to our knowledge, ours is the first fully analytical
proof of a lower bound on ηc.

We also remark that when η � 2/3, Eq. (B3) used in the
proof of Lemma 2 gives an explicit joint observable and hence
a local hidden state model preventing steering of ρη by the two
quadrature measurements.

Independently of Ref. [19], we show that our method can
provide also upper bounds on rc for N = 1. We do this by
binarizing the POVMs, and recalling that incompatibility of
binarizations is sufficient for that of the original POVMs, as
coarse-graining is an instance of post-processing. Choosing
the split at q = 0 (i.e., Alice only records if q > 0 or
not) gives the POVM with elements 1

2 (1 ± n · σ ), where
n = (2r

√
2/π )(cos θ, sin θ,0). Using an exact criterion [41]

we conclude that the binarizations are incompatible for r2 �
π (1 − sin θ )/(2 cos2 θ ). Notice that the bound depends on θ ;
with θ = π/2 (orthogonal quadratures) we get rc � √

π/2, or
ηc � 2π/(4 + π ) ≈ 0.88.

Since the split at q = 0 is the most incompatible binariza-
tion of quadratures [42], finer coarse-grainings are needed
to get better bounds. By dividing the real line in Nint =
2,4,6,8,10,12,14 parts, we obtain bounds via SDP methods,
cf. Fig. 1 for pairs with varying θ , and Table I for larger values
of Nint with θ = π/2. In particular, for Nint = 20 and θ = π/2,
we obtain the value ηc � 0.671, which is rather close to the
lower bound ηc � 2/3.

We obtained these numerical results by implementing the
SDP of the incompatibility robustness (IR) [see Eq. (5)],
searching for the values of ηc for which IR > 0. We used the
coarse-graining where R is divided into the intervals (−∞,

− c], [−c, − c + c/Nint], . . ., [−c/Nint,0], . . ., [0,c/Nint], . . .,

TABLE I. Minimal η such that the obtained Nint-valued observ-
ables become incompatible.

Nint 4 6 8 10 12 14 16 18 20

η 0.742 0.698 0.684 0.678 0.675 0.674 0.673 0.672 0.671
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FIG. 1. Critical noise bound for steering through the 1001-state
by a coarse-grained pair of quadrature measurements, as a function
of the separation angle θ , with coarse-grainings of different number
of intervals Nint. The case Nint = 2 can be reproduced analytically.
Below η = 2/3 the setting is unsteerable by joint measurability
criterion Eq. (19).

[c,∞), where c ≈ 1.4. The corresponding qubit observables
were obtained by integrating over the intervals Ik , i.e., QIk |θ =∫
Ik

Q̃q|θdq; such integrals can be explicitly written in terms of
error functions.

One can try the same approach in the different subspaces
with a higher number of photons. For instance, we investigated
the case of 0 or 6 photons, which turned out to be more
sensitive to noise, e.g., for the case of Nint = 16 one can reach
ηmin = 0.89. If one further increases the number of intervals,
the computation becomes too slow and practically impossible.

C. A dynamical example with non-Markovian noise

We now illustrate how the above steering problem for the
NOON state arises from a different context, and how our
techniques provide a solution in that case as well.

Consider a setup where physical noise arises on Alice’s
side due to coupling to a zero-temperature heat bath. Starting
from the 1001 state, the photon dissipates into the bath on
Alice’s side via a channel Et given by the amplitude damp-
ing master equation [43] dEt (ρ0)/dt = γ (t)[σ−Et (ρ0)σ+ −
1
2 {σ+σ−,Et (ρ0)}], where σ+ = |1〉〈0|, σ− = |0〉〈1|, and γ (t) =
−2Re d

dt
log G(t) with G(t) depending on the bath spectral

density. The state at time t is ρt = (Et ⊗ Id)(|1001〉〈1001|)
so by Eq. (6), its channel T = Tt equals Et up to a unitary.
Using the form of Et [27], we find T∗

t (A) = U ∗�∗
r(t)(A)U , as

in Eq. (15), where now r(t) = |G(t)|, and U is an irrelevant
unitary. Interestingly, in this scenario our state-channel duality
connects the steerability problem with the non-Markovian
properties of the bath (cf., e.g., Ref. [44]), previously asso-
ciated with temporal correlations [45] and decoherence of
incompatibility [27].

The result of the preceding subsection can now be directly
applied to characterize steering in the heat bath scenario:
for any time t , the state ρt is steerable by {Qq|0,Qq|π/2}
iff r(t) � rc. For the typical Lorentzian spectral density,
r(t) = e−λt/2| cosh(wλt/2) + sinh(wλt/2)/w| where λ is the
linewidth, and w = √

1 − 2u/λ with u the coupling strength
[27]. We can then evaluate r(t) � rc with the numerical value
rc ≈ 1/

√
2, to get the region of points (u,t) where the state is

steerable; cf. Fig. 2 and its caption.

FIG. 2. Steerability region for the dynamical setting (shaded
area). The parameter u is the coupling strength (in units of the spectral
linewidth λ of the bath) and t is time (in units of λ−1). The two revival
regions reflect the non-Markovian character of the evolution in the
strong coupling regime, which allows steerability to re-emerge at later
times.

V. GAUSSIAN CASE

In this section, we establish the correspondence between
steering of Gaussian states and incompatibility of Gaussian
measurements, via a Gaussian version of our general state-
channel duality. To do this we first need to establish the
required formalism and introduce the notation.

Starting with the basics, an optical system with N

modes is a continuous variable (CV) quantum system (see,
e.g., Ref. [46]) with the infinite-dimensional Hilbert space
H⊗N = ⊗N

j=1L
2(R) � L2(RN ). The associated phase space

is R2N , with canonical coordinates x = (q1,p1, . . . ,qN ,pN )T

in a fixed symplectic basis. The corresponding standard
quadrature operators are denoted by Qj and Pj ; they satisfy
[Qi,Pj ] = iδij1, [Qi,Qj ] = [Pi,Pj ] = 0 and we set R =
(Q1,P1, . . . ,QN,PN )T , so that [Ri,Rj ] = i
ij1 with 
 =
⊕N

j=1( 0 1
−1 0). We further denote

Qx = xT R;

these operators are called (generalized) quadratures. For a pair
of quadratures (Qx,Qy) the commutator is given by [Qx,Py] =
ixT 
y1, and any pair for which xT 
y = 1 is called canonical.

The Weyl operators W (x) = e−iQx satisfy the canonical
commutation relation (CCR),

W (x)W (y) = e−ixT 
yW (y)W (x), (22)

and we define displacement operators Dc := W (
T c) so
that D∗

c W (x)Dc = e−icT xW (x). A matrix S is symplectic if
ST 
S = 
; then by Stone-von Neumann theorem there is a
unitary US with U ∗

S W (x)US = W (Sx).

A. Gaussian states, measurements, channels,
and postprocessings

In the following, we first review the characteristic function
formalism for Gaussian quantum objects [46,47]; see also
Refs. [29,48]. We then use this to prove the Gaussian version
of the state-channel correspondence, after which we proceed to
establish the connection between steering and incompatibility.
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The characteristic function formalism treats Gaussian state,
channels, measurements, and postprocessings in the same
footing, is a transparent quantum analog of the corresponding
classical objects by way of a rigorous correspondence theory
[49], does not require the use of ancillas, circumvents the
technical problem of the POVM elements not always being
proper operators (see the discussion above), and is especially
convenient to use with concatenation, making explicit the
idea that a Gaussian channel applied to a Gaussian state
(Schrodinger picture) or measurement (Heisenberg picture)
produces a new Gaussian state and measurement, respectively.
We note that this approach differs from the alternative
(equivalent) one introduced by Giedke and Cirac [50], on
which Wiseman et al. based their derivation of the Gaussian
steering criterion [1].

A state on a CV system is Gaussian if its characteristic
function ρ̂(x) := tr[ρW (x)] is a Gaussian function:

ρ̂(x) = e− 1
4 xT Vρx−irT x, (23)

where Vρ is the covariance matrix (CM) [Vρ]ij = tr[ρ{Ri −
ri,Rj − rj }] with displacement vector rj = tr[ρRj ]. The CM
satisfies the uncertainty relation

Vρ + i
 � 0. (24)

Crucially, every real and symmetric matrix V satisfying
Eq. (24) is a CM of some Gaussian state ρ.

A measurement (POVM) Ma with outcomes a ∈ Rd is
Gaussian if its outcome distribution for any Gaussian state is a
Gaussian (i.e., normal) distribution. This is the case when the
operator-valued characteristic function M̂(p) := ∫

eipT aMa da
is of the form

M̂(p) = W (Kp)e− 1
4 pT Lp−imT p, (25)

where K is an N × d-matrix and L is an d × d-matrix
satisfying the positivity condition

CK,L := L − iKT 
K � 0, (26)

and m is a displacement vector. Importantly, every triple
(K,L,m) satisfying Eq. (26) defines a Gaussian measurement.

In the case d = 1 we have K = x, a column vector, while
L = 2ξ 2 and m = m are just numbers. Since shifts in outcomes
are irrelevant for steering, we consider m = 0 so that the
corresponding POVM Ma|x,ξ has characteristic function

M̂a|x,ξ (p) = e−ipQxe− 1
2 p2ξ 2

.

With ξ 2 = 0, we simply obtain the PVM with characteristic
function M̂(p) = e−ipQx , that is, the unitary group generated
by the quadrature operator Qx. Consistently with the notation
in previous section, we use Qa|x to denote the corresponding
PVM elements. Hence, Gaussian PVMs with d = 1 are just
quadrature measurements. In general, the product form of the
characteristic function implies that Ma|x,ξ has the convolution
form [48]:

Ma = Ma|x,ξ := 1

ξ
√

2π

∫
e− 1

2 (a−a′)2/ξ 2
Qa′|xda′.

Hence, any Gaussian POVM Ma with a ∈ R is, up to a
shift, a “noisy” quadrature. Interestingly, noise exceeding the
uncertainty limit renders quadratures jointly measurable:

Lemma 3. The noisy versions Mx,ξ and My,ξ ′ of two
quadratures Qx, Qy are jointly measurable if and only if

ξξ ′ � ‖[Qx,Py]‖/2,

in which case they have a Gaussian joint measurement.
This result generalizes a known joint measurability criterion

for position and momentum [51–53]; see Appendix C for a
proof. The crucial point here is the existence of joint Gaussian
measurement, which follows from the nontrivial averaging
argument of Ref. [53].

A quantum channel between two CV systems with respec-
tive degrees of freedom N and N ′ is Gaussian, if it maps
Gaussian states into Gaussian states. In the Heisenberg picture,
this entails

�∗[W (x)] = W (Mx)e− 1
4 xT Nx−icT x, (27)

where M is a real 2N × 2N ′-matrix, and N is a real 2N ′ × 2N ′-
matrix. Due to complete positivity, they satisfy

CM,N + i
 � 0, (28)

where (interestingly) CM,N is as in Eq. (26). Again, every
triple (M,N,c) with Eq. (28) defines a Gaussian channel via
Eq. (27). Unitary channels B �→ U ∗BU have N = 0 and M =
S symplectic, i.e., U = DcUS. Using Eqs. (23) and (27) we
get the general transformation rule for states in terms of CMs
and displacement vectors:

V �→ MT VM + N, r �→ MT r + c. (29)

Similarly, a Gaussian channel with matrices (M,N,c),
followed by a Gaussian measurement with matrices (K,L,m)
is clearly a Gaussian measurement as well, and we can easily
derive the associated matrices by combining Eqs. (25) and
(27); there the result is

(K,L,m) �→ (MK,L + KT NK,m + KT c). (30)

Using Eq. (30), we observe that (for c = 0) the channel
transforms a quadrature PVM Qx into the noisy POVM MMx,ξ

where now ξ 2 = xT Nx/2.
Finally, a Gaussian post-processing (classical channel) is

one which transforms every Gaussian probability distribution
into another one. These are determined by triples (M,N,c) as
in the above quantum case, except that only N � 0 is required
as complete positivity does not appear in the classical case.
One can show that the matrices are associated with linear
coordinate transformations, convolutions, and translations,
respectively [29]. Note that linear transformations include
the deterministic post-processings, which simply project on
a lower-dimensional subspace. A Gaussian measurement
(K,L,m), followed by a Gaussian postprocessing (M,N,c),
is again a Gaussian measurement, with parameters obtained
by the transformation rule

(K,L,m) �→ (KM,N + MT LM,c + MT m). (31)

B. State-channel correspondence and Gaussian steering

We are now ready to prove our main results on Gaussian
steering. We start with the Gaussian version of the state-
channel duality:
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Lemma 4. There is a 1-to-1 correspondence between bipar-
tite Gaussian states ρ sharing a marginal σ = trA[ρ] with CM
Vσ of full symplectic rank and displacement rσ , and Gaussian
channels T from Bob to Alice, such that Eq. (6) holds with |
〉
having CM and displacement

V
 =
(

Vσ ST ZS
ST ZS Vσ

)
, r
 = rσ ⊕ rσ .

Here S is a symplectic matrix diagonalising Vσ , and Z =
⊕N

i=1

√
ν2

i − 1 σz, with νi the symplectic eigenvalues of Vσ . The
correspondence between the parameters (V,r) and (M,N,c) of
ρ and T, respectively, is explicitly given by⎧⎨⎩V =

(
VA �T

� Vσ

)
,

r = rA ⊕ rB

↔
⎧⎨⎩M = (STZS)−1�

N = VA − MT Vσ M
c = rA − MT rσ

,

where the positivity conditions are equivalent: V + i
 � 0 iff
CM,N + i
 � 0.

The proof of this Lemma is given in Appendix D.
Interestingly, the equivalence of the inequalities is obtained via
Schur complements, which have recently found applications in
the investigation of quantum correlations [54]. Using Lemmas
3 and 4, we finally prove

Theorem 2. Let ρ be a bipartite Gaussian state with CM V
and displacement r, and (M,N,c) the matrices of the channel
T given by Lemma 4. The following are equivalent:

(i) ρ is steerable by the set of Gaussian measurements.
(ii) ρ is steerable by some canonical pair of quadratures.
(iii) V + i(0 ⊕ 
) is not positive semidefinite.
(iv) (M,N,c) do not define a valid Gaussian observable.
Proof. We first note that (ii) trivially implies (i). Next,

we repeat the calculation (D6) in the proof of Lemma 4
(see Appendix D) without 
A, which establishes that CM,N
is the Schur complement of Vσ + i
B in Vρ + i(0 ⊕ 
B).
This shows that (iii) and (iv) are equivalent. Furthermore,
using [29, Prop. 2] we conclude that T maps the set of all
Gaussian measurements into a set having a joint (Gaussian)
measurement, if CM,N � 0. Hence (i) implies (iv).

We are left with the proof of the main result, stating
that (iv) implies (ii). Assuming (iv) let x,y be vectors
such that (yT − ixT )CM,N(y + ix) < 0. Then by complete
positivity (yT − ixT )(CM,N + i
)(y + ix) � 0, which implies
r := xT 
y > 0 and

(Mx)T 
My > 1
2 (xT Nx + yT Ny). (32)

Clearly, we may replace x and y with r− 1
2 x and r− 1

2 y and
(32) still holds. Then the pair Qx = xT R and Py = yT R of
quadratures is canonical since xT 
y = 1. It is easy to check
using the transformation rule Eq. (30) that the channel T,
having parameters (M,N,c), transforms the associated PVMs
into the POVMs MMx,ξ and MMy,ξ ′ (up to irrelevant shifts
in outcomes), where ξ 2 = xT Nx/2 and ξ ′2 = yT Ny/2. By
Eq. (32) we have 2ξξ ′ � ξ 2 + ξ ′2 < (Mx)T 
My so from
Lemma 3 we conclude that the POVMs are not jointly
measurable. This means we have found a canonical pair
(Qx,Qy) of quadratures such that T(Qx) and T(Qy) are not
jointly measurable, so according to Theorem 1, the state
ρ is steerable by this pair. Hence, (ii) holds. The proof is
complete. �

We remark that the equivalence between (i) and (iii) was
originally proven in Ref. [1]. Here we use Lemma 3 to show
that quadratures are enough [(ii)]; this comes closest to the
original notion of steering of an EPR-state via position and
momentum as discussed by Schrödinger [55]. Note that the
above proof shows explicitly how one can construct quadrature
pairs for which steering is possible when the conditions of the
theorem hold.

Furthermore, an interpretation emerges from (iv): the
Gaussian POVM determined by the channel parameters
(M,N,c) is exactly the joint observable for the assemblage
{T∗(Aa) : Aa Gaussian} that rules out steering in (i) by Th. 1.
To explain this in detail, we follow the argument in Ref. [29,
Prop. 2] mentioned in the above proof: we first note that an
arbitrary Gaussian measurement (K,L,m) on Alice’s side is
transformed by the channel (M,N,c) into one with parameters
(K′,L′,m′) = (MK,L + KT NK,m + KT c) by Eq. (30). To
show that such POVMs are all jointly measurable, we only
need to reinterpret the channel parameters (M,N,c) as the
joint measurement Gλ. Indeed, with (K,L,m) taken as post-
processing parameters, Eq. (31) becomes identical to Eq. (30),
showing how (K′,L′,m′) is postprocessed from Gλ. We stress
that the nontrivial part is in the positivity requirements, which
are not in general identical. Indeed, the reinterpretation is
possible only when (iv) does not hold, i.e., CM,N � 0, which
is not true for general channels.

For the sake of completeness, and to further demonstrate
that the existing formulation of Gaussian steering [1] follows
from our theory, we also show how one can easily derive the
Gaussian LHS model given in Ref. [1] from the above results.
Since this is not essential for understanding our main results,
the derivation is given in Appendix E.

Finally, in addition to its impact on Gaussian steering,
Theorem 2 yields

Corollary 2. A Gaussian channel which maps each canon-
ical quadrature pair into a jointly measurable pair, is Gaussian
incompatibility breaking in the sense of Ref. [29].

This considerably strengthens the theory in Ref. [29], by
showing that canonical pairs are sufficient, and that a Gaussian
joint observable always exists for the jointly measurable
Gaussian POVMs. The latter is a nontrivial and a fairly
fundamental result which requires Lemma 3.

VI. CONCLUSIONS

Steering is a genuine quantum phenomenon, with important
applications both in quantum information processing and foun-
dations of quantum mechanics. Notwithstanding the growing
interest in it in the past few years [14], limited results and tools
are available in the continuous variable case. We introduced
a state-channel correspondence that allows us to discuss the
steering problem in a completely general context. In particular,
we extend many of the results previously known only in the
finite-dimensional case, such as the mathematical equivalence
of steering and joint-measurability problems [26] and the
equivalence of steering and joint-measurability for the case of
full Schmidt rank states [24,25]. Moreover, via state-channel
duality we are able to connect steerability properties of noisy
NOON states with Markovianity properties of the correspond-
ing channel and to provide an analytical lower bound to
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the steerability noise threshold for any N . Finally, we apply
our methods to the Gaussian setting, introducing a channel
characterization of steerability and proving that canonical
quadratures are enough for steering. An interesting future di-
rection would be to extensively investigate the capability of the
state-channel duality to provide steering, joint measurability,
and incompatibility breaking criteria in the continuous variable
case for states, observables, and channels, respectively.
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APPENDIX A: PROOF OF THE GENERAL
STATE-CHANNEL DUALITY (LEMMA 1)

Let |
σ 〉 and σ be as in Lemma 1. Given any quantum
channel T, the state

ρ = (T ⊗ Id)(|
σ 〉〈
σ |) (A1)

clearly has the property trA[ρ] = σ , so we have managed to
produce more general states than ones obtained by the Choi-
Jamiołkowski correspondence. We now need to prove that the
new correspondence is one-to-one onto the set of states with
trA[ρ] = σ . Given such as state, we first compute

tr[ρ(A ⊗ B)] = 〈
σ |T∗(A) ⊗ B|
σ 〉
=

∑
nm

√
snsm〈nn|T∗(A) ⊗ B|mm〉

=
∑
nm

√
snsm〈n|T∗(A)|m〉〈n|B|m〉

=
∑
nm

〈n|√σT∗(A)
√

σ |m〉〈n|B|m〉

= tr[
√

σT∗(A)
√

σBᵀ], (A2)

where Bᵀ is the transpose of B in the fixed basis. Hence,

σ
1
2 T∗(A)σ

1
2 = trA[ρ(A ⊗ 1)]ᵀ. (A3)

From this we see immediately that distinct channels cor-
respond to distinct states, since the matrix elements of
the state are clearly uniquely determined by those of the
channel: 〈nm|ρ|n′m′〉 = tr[

√
σT∗(|n′〉〈n|)√σ (|m′〉〈m|)ᵀ] =√

sm

√
sm′ 〈m′|T∗(|n′〉〈n|)|m〉, where we have now also fixed

a basis {|n〉} on Alice’s side.
What remains to be shown is that for any state ρ with

trA[ρ] = σ there exists a channel T such that Eq. (A1) [or,
equivalently, Eq. (A3)] holds. If d < ∞ we can invert σ− 1

2 in
Eq. (A3) to solve for T∗(A); however, we still need to show
that this defines a channel, i.e., a CPTP map. We therefore
proceed by writing the state ρ as

ρ =
∑

k

|ψk〉〈ψk| =
∑
k,n,m

n′,m′

〈nm|ψk〉〈ψk|n′m′〉 |nm〉〈n′m′|,

(A4)

so that, for all bounded operators A and B (for Alice and Bob,
respectively), we get

tr[ρ(A ⊗ B)] =
∑

k

tr[R∗
kARkB

ᵀ], (A5)

where R : HB → HA is the Hilbert-Schmidt operator de-
fined by 〈n|Rkm〉 = 〈nm|ψk〉. Hence, trA[ρ(A ⊗ 1)]ᵀ =∑

k R∗
kARk . In particular, σ = σᵀ = ∑

k R∗
kRk .

Next, we need a little of functional analysis, so as to allow
the proof to go through also for d = ∞, in which case the
inverse of any full rank state is unbounded and requires some
care. Let R be the dense range of σ , containing all the basis
vectors. Then, R = ran σ

1
2 , σ

1
2 is injective, and for any |ψ〉 ∈

R we have∥∥Rkσ
− 1

2 ψ
∥∥2 �

∑
k

〈
σ− 1

2 ψ
∣∣R∗

kRkσ
− 1

2 ψ
〉 = ‖ψ‖2,

which implies that each Rkσ
− 1

2 extends to a bounded operator
Mk : HB → HA, for which Mkσ

1
2 = Rk .

Since
∑

k M∗
k Mk = 1, the operators Mk set up a Kraus

decomposition of a channel: we define

T(T ) :=
∑

k

MkT M∗
k (A6)

for all (trace class) operators T . This is by construction com-
pletely positive, and it is trace-preserving since

∑
k M∗

k Mk =
1. In the infinite-dimensional case the series converges, e.g.,
in the weak topology. Plugging this channel in Eq. (A3)
immediately gives

σ
1
2 T∗(A)σ

1
2 =

∑
k

(
Mkσ

1
2
)∗

AMkσ
1
2 =

∑
k

R∗
kARk

= trA[ρ(A ⊗ 1)]ᵀ, (A7)

so that Eq. (A3), and hence also Eq. (A1) holds, that is, the
channel gives back the original state ρ. This proves that the
correspondence is one-to-one, and completes the proof.

APPENDIX B: A JOINT MEASURABILITY CRITERION
FOR QUBIT POVMS WITH ARBITRARY OUTCOMES

(LEMMA 2)

In contrast, to most existing criteria, this one applies to qubit
POVMs with continuous outcome sets. In the main text, it was
shown to be useful for finding noise bounds for quadrature
measurements restricted to two-dimensional photon number
eigenspaces.

More generally, we prove that an assemblage of n qubit
observables {Bb|i}ni=1 is jointly measurable if

�(b1, . . . ,bn) :=
∑

i

ri(bi) − n + 1 � 0, (B1)

where ri(b) := det Mi(b), Mi(b) := Bb|i/pi(b), and pi(b) =
〈0|Bb|i |0〉. Indeed,

Mi(b) =
(

1 fi(b)
fi(b) ri(b) + |fi(b)|2

)
(B2)

for some complex valued functions fi . The normalization
forces

∫
fi(b)pi(x)dx = 0 and

∫
(|fi(b)|2 + ri(b))pi(b)db = 1.
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We define Gb1,...,bn
via

Gb1,...,bn∏n
i=1 pi(bi)

=
(

1
∑

i fi(bi)∑
i fi(bi) | ∑i fi(bi)|2 + �(b1, . . . ,bn)

)
. (B3)

Using the constraints we see that it is normalized, and that

Bb|i = Mi(b)pi(b) =
∫

δb,bi
Gb1,...,bn

db1 · · · dbn. (B4)

The critical constraint is Gb1,...,bn
� 0 now follows from

det Gb1,...,bn
= �(b1, . . . ,bn)

n∏
i=1

pi(bi)
2 � 0, (B5)

which is ensured by the assumption. This means that the Bi

have a joint observable with deterministic response functions,
so they are jointly measurable.

By taking Ba|i = �∗
r (Aa|i), where �r is the amplitude

damping channel defined in the main text, the assumption
Eq. (B1) becomes Eq. (19) of the main text, once we notice
that 〈0|�∗

r (Aa|i)|0〉 = 〈0|Aa|i |0〉; see Eq. (16). This completes
the proof.

APPENDIX C: PROOF OF THE JOINT MEASURABILITY
CRITERION FOR CONVOLUTED QUADRATURES

(LEMMA 3)

This lemma was critical for the characterization of Gaussian
steering. To prove it we let r = xT 
y, so that [Qx,Qy] = ir1.
If r = 0, then Qx and Qy commute and the claim is trivial since
they stay jointly measurable after convolution. We suppose
r > 0, and look at the scaled quadrature Qy/r = yT R/r =
Qy/r . By using the connection Qy = ∫

a Qa|yda between the
operator Qy and the corresponding PVM Qa|y, we see that
Qa|y/r = rQra|y. A direct computation then shows that scaling
of the noisy POVM gives Ma|y/r,ξ ′/r = rMra|y,ξ ′ . Since scaling
is a postprocessing and hence does not affect joint measurabil-
ity, the original pair (Mx,ξ ,My,ξ ′ ) is jointly measurable if and
only if (Mx,ξ ,My/r,ξ ′/r ) is. But the corresponding quadrature
pair (Qx,Qy/r ) is canonical, as

[Qx,Qy/r ] = [xT R,yT R/r] = i(xT 
y/r)1 = i1,

and hence unitarily equivalent to the pair (Q0,Qπ/2) via a
symplectic transformation, where Qθ = (eiθa† + e−iθ a)/

√
2

are the rotated quadratures of a single-mode system. The same
unitary then transforms the convoluted pair (Mx,ξ ,My/r,ξ ′/r )
into the pair (M0,ξ ,Mπ/2,ξ ′/r ), where

Ma|θ,ξ := 1√
2πξ

∫
e− 1

2 (a−a′)2/ξ 2
Qa′|θ ,

and hence it suffices to show that the joint measurability of
(M0,ξ ,Mπ/2,ξ ′/r ) is equivalent to the inequality ξ (ξ ′/r) � 1/2,
and that the joint observable, when exists, can be chosen
Gaussian.

To prove this, we use known results on joint measurability
of “unsharp” position and momentum [51,52], which is
exactly what our convoluted quadratures are. In particular,
if (M0,ξ ,Mπ/2,ξ ′/r ) are jointly measurable, they must have

a joint observable of the Weyl-covariant form Ga1,a2 =
W (a1,a2)ρ0W (a1,a2)∗/(2π ), where ρ0 is a state with

tr[ρ0Qa1|0] = e− 1
2 a2

1/ξ 2

√
2πξ

, tr[ρ0Qa2|π/2] = e− 1
2 a2

2/(ξ ′/r)2

√
2π (ξ ′/r)

.

(C1)

This implies that ξ and ξ ′/r are the standard deviations of Q0

and Qπ/2 in the state ρ0, hence satisfying ξ (ξ ′/r) � 1/2 by the
Heisenberg uncertainty principle. Conversely, if the inequality
holds, we can define ρ0 = |ψ0〉〈ψ0| in the coordinate repre-
sentation as ψ0(a) = (2c/π )

1
4 e−(c+iw)a2

with ξ 2 = 1/(4c) and
ξ ′2/r2 = (c2 + d2)/d; then a direct computation shows that
the corresponding Ga1,a2 is a joint observable for M0,ξ and
Mπ/2,ξ ′/r . This observable is Gaussian since ρ0 is a Gaussian
state [48].

Finally, since all the above unitary equivalences were done
via symplectic transformations, the original POVMs have a
Gaussian joint observable as well. This completes the proof.

APPENDIX D: PROOF OF THE GAUSSIAN
STATE-CHANNEL DUALITY (LEMMA 4)

The difference to the general case (considered above) is that
to preserve Gaussianity, we need to do the diagonalization of
the reference state σ “symplectically” (see, e.g., Ref. [56]):
Let Vσ be the CM of σ and rσ the displacement. By
Williamson’s theorem [57] there is a symplectic matrix S
such that Vσ = ST DS with D = ⊕N

k=1νk12, where νk are
the symplectic eigenvalues of Vσ , and we assume νi > 1
(full symplectic rank). This is not restrictive as any νi = 1
corresponds to a vacuum mode, which we may factor out from
the system. Then U = Drσ

US diagonalizes σ in the photon
number basis |n〉 = |n1, . . . ,nN 〉:

U ∗σU =
∑

n

pn|n〉〈n|, pn =
N∏

k=1

2

1 + νk

(
νk − 1

νk + 1

)nk

.

(D1)

Moreover, the purification
∑

n
√

pn|n〉 ⊗ |n〉 has the CM(
D Z
Z D

)
with Z =

N⊕
i=1

√
ν2

i − 1 σz. (D2)

The eigenbasis {U |n〉} of σ is the one we use to construct the
steering channels following the general scheme (see Lemma
1). Hence, we form the purification


σ =
∑

n

√
pnU |n〉 ⊗ U |n〉, (D3)

which by Eq. (29) has displacement vector rσ ⊕ rσ and CM,

V
σ
= (ST ⊕ ST )

(
D Z
Z D

)
(S ⊕ S) =

(
Vσ ST ZS

ST ZS Vσ

)
,

(D4)

as stated in the Lemma. Again by Eq. (29), the application of
a Gaussian channel � with matrices (M,N,c) yields the state
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ρ := (� ⊗ Id)(|
σ 〉〈
σ |) with CM,

V = (MT ⊕ I)

(
Vσ ST ZS

ST ZS Vσ

)
(M ⊕ I) + N ⊕ 0

=
(

MTVσ M + N MT ST ZS
ST ZSM Vσ

)
, (D5)

and displacement r = (MT rσ + c) ⊕ rσ . Now Vρ + i
 � 0
if and only if C � 0 where C is the Schur complement of the
block Vσ + i
B in Vρ + i
. But

C = MT Vσ M + N + i
A

− MT ST ZS(Vσ + i
B)−1ST ZSM

= N + i
A + MT ST (D − Z(D + i
B)−1Z)SM

= CM,N + i
A, (D6)

where we have used D − Z(D + i
)−1Z = 
, which is
straightforward to verify. This shows that CM,N + i
A � 0
is equivalent to Vρ being a valid CM. Now for any given
Gaussian state ρ with CM and displacement vector

V =
(

VA �T

� Vσ

)
, r = rA ⊕ rσ , (D7)

we can define

(M,N,c) = ((ST ZS)−1�, VA − MT Vσ M, rA − MT rσ ),

(D8)

which then satisfies Eq. (D5), so that CM,N + i
A � 0 by
the above equivalence, showing that (M,N,c) determines
a Gaussian channel � with ρ = (� ⊗ Id)(|
σ 〉〈
σ |). This
completes the proof.

APPENDIX E: THE DERIVATION OF THE LHS FROM THE
JOINT GAUSSIAN MEASUREMENT

Here we show that our joint Gaussian POVM (discussed
in the main text) is consistent with the LHS of Ref. [1].
According to the general discussion in Sec. II D, joint POVM

Gλ and the LHS σλ are related by σλ = σ
1
2 Gλσ

1
2 = trA[Gλ ⊗

1|
σ 〉〈
σ |]. Now σλ has finite trace, and σ̃λ := σλ/tr[σλ] is an
actual state; we show that it is Gaussian by computing the char-
acteristic function ̂̃σλ(x) := tr[W (x)σ̃λ] = fx(λ)/f0(λ), where
fx(λ) := tr[W (x)σλ] = tr[Gλ ⊗ W (x)|
σ 〉〈
σ |]. For simplic-
ity we assume c = 0. Due to Eq. (25), the function fx is
determined via its Fourier transform, in terms of the channel
parameters (M,N,c). For simplicity, we will assume c = 0,
and compute

f̂x(p) =
∫

eipT λ tr[Gλ ⊗ W (x)|
σ 〉〈
σ |] dλ

= tr[Ĝ(p) ⊗ W (x)|
σ 〉〈
σ |]
= tr[W (Mp) ⊗ W (x)|
σ 〉〈
σ |]e− 1

4 pT Np. (E1)

Now by definition, the first factor in the last expression is the
characteristic function of the state 
σ , evaluated at Mp ⊕ x;
hence, by Eqs. (23) and (D5) we get

f̂x(p) = e− 1
4 ((Mp)T ⊕xT )V
σ (Mp⊕x)e− 1

4 pT Np

= e− 1
4 (pT ⊕xT )V(p⊕x) = e− 1

4 (pT VAp+2pT �T x+xT Vσ x)

= e− 1
4 (p−μx)T VA(p−μx) e− 1

4 xT (Vσ −�V−1
A �T )x, (E2)

where μx = −V−1
A �T x, and we have used the notation

Eq. (D7). Taking the inverse Fourier transform, we obtain

fx(λ) = Ce−λT V−1
A λ−iλT μx e− 1

4 xT (Vσ −�V−1
A �T )x, (E3)

where C depends only on VA. Hence, ̂̃σλ(x) = fx(λ)/f0(λ) =
e− 1

4 xT (Vσ −�V−1
A �T )x+i(�V−1

A λ)T x, so by Eq. (23), σ̃λ is Gaussian
with CM and displacement

Vλ = Vσ − �V−1
A �T , rλ = −�V−1

A λ. (E4)

Furthermore, each σ̃λ occurs in the LHS decomposition
with Gaussian probability pλ = tr[σλ] = f0(λ) ∝ e−λT V−1

A λ.
By changing the hidden variable λ to rλ we recover exactly
the LHS of Ref. [1].
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