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For a digital quantum simulator (DQS) imitating a target system, we ask the following question: Under what
conditions is the simulator dynamics similar to that of the target in the presence of coupling to a bath? In
this paper, we derive conditions for close simulation for three different physical regimes, replacing previous
heuristic arguments on the subject with rigorous statements. In fact, we find that the conventional wisdom that the
simulation cycle time should always be short for good simulation need not always hold up. Numerical simulations
of two specific examples strengthen the evidence for our analysis and we go beyond to explore broader regimes.
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I. INTRODUCTION

Quantum simulators have attracted a lot of interest, both
theoretical and experimental [1–4]. Theoretical understanding
of the potential of quantum simulators in addressing prob-
lems beyond the reach of classical computations remains
incomplete, but quantum simulators present much nearer-term
experimental goals than full-fledged quantum computers.
There are two general classes of quantum simulators: analog
[5] and digital [2]. Analog simulators are devices whose
Hamiltonians can be engineered to imitate a target model
continuously in time; digital quantum simulators (DQS), on the
other hand, stroboscopically approximate the time evolution
of the target system by applying a discrete sequence of gates.
The latter is the subject of this article.

Different physical systems and architectures have been
considered as platforms for quantum simulation, with different
targets in mind. Theoretical proposals using Rydberg atoms
[6,7] and experimental demonstrations with trapped ions
[8–10] have explored the simulation of both closed quantum
systems as well as open systems with Markovian dynamics.
The possibility of simulating non-Markovian dynamics with
DQS was suggested in Ref. [11]. Another desirable target
is to simulate many-body Hamiltonians that provide natural
tolerance to noise. An example is the four-body Kitaev toric
code model [12], with a degenerate ground space in which
stored information is protected from leakage into the excitation
space by an energy gap that is large compared to the energy
scale of the noise. Such models provide the foundations
for schemes for quantum memory [13–15], adiabatic quan-
tum computation [16,17], fault-tolerant quantum computation
[18–21], and topological quantum computation [12,22].

Our work focuses on this last goal of simulating many-body
Hamiltonians for natural noise tolerance. Because of the many-
body nature, the desired Hamiltonians are usually difficult to
realize exactly in the laboratory. Instead, digital simulation is
used to achieve an effective Hamiltonian resembling the target.
Keeping in mind that the target Hamiltonian is chosen for
its tolerance to the noise from the environment, the criterion
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for close and useful simulation between the DQS and the
target has to include a comparison of not just the system-
only Hamiltonian but also the noise seen by the simulator and
the target. One might imagine that a simulator can achieve
close simulation of the target Hamiltonian, but the noise as
seen by the simulator, due to the gate sequences, becomes
different from the one against which the target provides natural
resilience. A close simulation of the target Hamiltonian of this
sort can hardly be considered to have achieved its original goal
of protection against noise.

We thus address the question: Under what physical condi-
tions do we have close simulation of the target Hamiltonian
and dynamics in the presence of the bath, which is the
source of noise? Conventional wisdom [23–25] tells us that,
heuristically, fast gates and short simulation cycles should
suffice. Here, we do a careful analysis and derive the precise
conditions for close simulation. It turns out that the short
simulation cycle alone is neither necessary nor sufficient.
Surprisingly, one can find circumstances that demand a longer
cycle for better simulation.

The structure of this paper is as follows. In Sec. II,
we introduce basic concepts and formulate the problem.
In Sec. III, we quantify the simulation error analytically
under different physical regimes and derive the conditions for
good simulation. Section IV numerically addresses specific
examples—that of a toric-code vertex, and of a five-qubit
code—to examine regimes inaccessible to the analysis of
Sec. III. We close with a summary and discussion of our results
in Sec. V. To help the reader with the notation used throughout
the article, Appendix D gathers a glossary of the symbols used.

II. TARGET VERSUS SIMULATOR DYNAMICS

Consider a controllable system S evolving jointly with
a bath B—the source of noise for S—according to the
Hamiltonian

H = HS + HB + αHSB. (1)

HS is the natural (in contrast with the modified versions below)
system-only Hamiltonian, HB is the bath-only Hamiltonian,
and HSB is the system-bath interaction, accompanied by a
bookkeeping parameter α. The system-bath interaction is
assumed to be weak, a precondition for S to be useful for
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FIG. 1. A periodic pulse sequence, with cycle time T . Each pulse
sequence comprises a set of M pulses that altogether take time τg to
complete. The ith pulse, of strength Hgi

− HS, starts at time ti and
lasts for duration τi . Together with the natural Hamiltonian HS, the
pulse implements the gate gi ≡ e−iHgi

τi .

quantum information processing tasks, enforced by regarding
α � 1.

A. Simulating a target system Hamiltonian

For the moment, let us forget about the bath and focus on
the system. The idea of a quantum simulator is to modify
the natural dynamics of the system to one that follows a
target system Hamiltonian Htar, which we assume to be
time independent. In a DQS, one achieves stroboscopic
simulation by applying a periodic sequence of short pulses
on S, each pulse implementing a particular unitary gate
operation. Assuming that the natural system Hamiltonian
HS is time independent, the DQS evolves according to a
piecewise-constant (system-only) simulator Hamiltonian,

Hsim(t) =
∑

i

[�(t − ti) − �(t − (ti + τi))] Hgi
. (2)

Here, �( · ) is the Heaviside step function, ti is the starting time
of the ith pulse with strength Hgi

− HS, and τi is the duration
of the pulse, taken to be τp for all i for simplicity. A sequence
with M gates is illustrated in Fig. 1.

Each cycle of the periodic pulse sequence takes total time T ,
so Hsim(t + T ) = Hsim(t). That the DQS simulates the target
is encapsulated by the simulation condition,

Usim((N+1)T ,NT ) � Utar((N+1)T ,NT )∀N∈Z+
0 . (3)

Here, Uμ(t ′,t), for μ ≡ tar or sim, is the unitary evolution
operator,

Uμ(t ′,t) ≡ T+ exp

(
−i

∫ t ′

t

ds Hμ(s)

)
, (4)

for the target or the simulator. We use units where h̄ = 1. If
Usim((N + 1)T ,NT ) = Utar((N + 1)T ,NT ) for all N ∈ Z+

0 ,
we say that the simulator is exact. Note that the periodicity
of Hsim means that the simulator is exact if and only if the
simulation condition is satisfied with an equality for N = 0.
More typically, the simulator is not exact and there is a
nonvanishing design error (see below for a precise definition).

Bath

Simulator
Target 
system

Bath

FIG. 2. The simulator and the target system interact with the bath
in the same manner.

A good DQS behaves like the target stroboscopically, at the
completion of every cycle of the pulse sequence, but there is
no requirement for close simulation at other times. For close
simulation, the cycle time T should be short compared to the
time scales of the target system, so that the features of the target
are faithfully reproduced in the simulator [26]. The time scales
of the target are determined by the set of transition frequencies
{ω : ω = ε − ε′}, where ε and ε′ are eigenfrequencies of Htar.
Close simulation hence requires

ωmax T � 1, (5)

where ωmax ≡ max |ω|, the largest (absolute value of the)
transition frequency of the target system, and we will assume
this throughout the article.

Condition (5) anyway underlies the Trotter-Suzuki-type
decomposition often used in the simulator gate-sequence
design. Consider a target Hamiltonian of the form Htar =∑L

�=1 h�, a sum of generally noncommuting terms. A concrete
example would be a square lattice with qubits located on
the edges, and h� are local four-body vertex or plaquette
operators; the toric code would have commuting h�s, but
one could imagine other examples. A simple design of Hsim

is to employ a Trotter-Suzuki decomposition to approximate
Utar(T ,0) = e−iHtarT :

e−iHtarT � e−ihLT . . . e−ih2T e−ih1T + O

⎛⎝(∑
�

‖h�‖T
)2

⎞⎠.

(6)

The error O(·) can be pushed to higher order with more
complicated decompositions [27], but all demand satisfaction
of condition (5) for good approximation.

B. Dynamics in the presence of the bath

The goal in many quantum simulation scenarios is to
have Htar provide passive resilience against the noise due to
the unavoidable bath coupling [17,23,24]. The target Htar is
usually designed for the natural noise seen by S for the given
HSB, e.g., by choosing an Htar with a ground-state manifold
protected by an energy gap that is large compared to the energy
scale set by the HSB coupling. For this to work, the implicit
assumption is that the simulator, upon interaction with the
bath, behaves similarly to the open target system, i.e., that the
dynamics of the simulator under the joint Hamiltonian (see
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Fig. 2)

H (sim) = Hsim(t) + HB + αHSB (7)

resemble that of the target system under

H (tar) = Htar + HB + αHSB. (8)

While HB and HSB are themselves unchanged—in fact,
unchangeable—by the simulator pulse sequences, the dynam-
ics of the system depend on the interplay among Hsim, HB, and
HSB, and their relative time scales. There is hence no a priori
reason to expect a close simulation of Htar by Hsim to guarantee
a close simulation of the system dynamics in the presence of
the bath. Because of the stroboscopic nature of the DQS, one
expects any noise process that occurs on a time scale faster
than the period T to notice a difference between Htar and Hsim,
but that need not be the only condition for close simulation;
the details are rather more intricate, as we shall see.

C. The simulation error

We are interested only in the dynamics of the target
and simulator systems, not that of the bath. The relevant
quantity is then the quantum channel that takes the system
from the initial time t = 0 to some time t > 0, i.e., the
joint evolution according to H (μ), for time t from the initial
joint system-bath state, followed by a partial trace on the
bath. The stroboscopic nature of the simulation suggests a
comparison of target and simulator at times t = NT with N a
non-negative integer. Specifically, we look at the (completely
positive, trace-preserving) channel on the system only after
time t = NT ,

E (μ)
N ( · ) ≡ TrB{U (μ)(NT,0)( · ⊗ ρB)U (μ)(NT,0)†}, (9)

for μ ≡ tar,sim. Here, U (μ)(t ′,t) is the unitary evolution
operator for H (μ),

U (μ)(t ′,t) ≡ T+ exp

(
−i

∫ t ′

t

ds H (μ)(s)

)
, (10)

for the joint target-bath or simulator-bath time evolution. T+ is
the time-ordering operator. For the various unitary evolution
operators, we will use the shorthand of U (t) ≡ U (t,0) for
evolution from the initial time t = 0. Here, we have taken the
initial system and bath state to be a product state, a good
approximation in typical quantum information processing
situations.

We define the simulation error after N cycles to be the
difference between the target and simulator channels,

ErrN ≡ ∥∥E (tar)
N − E (sim)

N

∥∥. (11)

Here, ‖ · ‖ is a unitarily invariant norm. One can better
understand this simulation error by going into the interaction
picture defined by H

(μ)
0 ≡ Hμ + HB, with the associated

unitary evolution operator

U
(μ)
0 (t ′,t) = Uμ(t ′,t) ⊗ UB(t ′,t), (12)

where Uμ(t ′,t) is the system-only operator as defined in Eq. (4)
and UB(t ′,t) ≡ e−iHB (t ′−t), assuming a time-independent HB .
One can then write U (μ) as

U (μ)(t ′,t) = U
(μ)
0 (t ′,t)U (μ)

I (t ′,t), (13)

with U
(μ)
I being the interaction-picture evolution operator,

U
(μ)
I (t ′,t) = T+ exp

(
−i

∫ t ′

t

ds H
(μ)
SB (s)

)
, (14)

for H
(μ)
SB (s) ≡ U

(μ)
0 (s)†HSBU

(μ)
0 (s). Then, E (μ)

N can be rewritten
as

E (μ)
N ( · )

= TrB{Uμ(nT )U (μ)
I (NT )( · ⊗ ρB)U (μ)

I (NT )†Uμ(NT )†}.
(15)

Under the unitarily-invariant norm, the simulation error is

ErrN = ∥∥E (tar)
N,I − Uerr,N ◦ E (sim)

N,I

∥∥ (16)

where

E (μ)
N,I ( · ) ≡ TrB

{
U

(μ)
I (NT )( · ⊗ ρB)U (μ)

I (NT )†
}
, (17)

and

Uerr,N (·)≡ [Utar(NT )†Usim(NT )](·)[Utar(NT )†Usim(NT )]
†

(18)

captures the design error after N cycles: Its deviation from the
identity channel is due solely to the chosen pulse sequence. An
exact simulator has no design error, i.e., Uerr,N = 1 the identity
map, and its simulation error is simply the difference between
E (tar)

N,I and E (sim)
N,I , arising only from the system-bath coupling.

D. Notation

Before we proceed further, we collect here a few general
remarks to help the reader with the notation used throughout
the text. For a real number a, �a� denotes the “floor” of a, i.e.,
the largest integer less than or equal to a. A slashed symbol
refers to the fractional part of the quantity, e.g., /a ≡ a − �a� ∈
[0,1). For a real number y, [y]+ ≡ y �(y), where �(y) is the
step function, i.e., �(y) is 1 if y � 0, and is 0 if y < 0.

We measure time in units of the stroboscopic period T , and
frequencies in units of 1/T . A tilde atop a function refers to the
dimensionless version of that function (as defined in the text),
e.g., f̃k�(·) is the dimensionless version of fk�(·). The letters s

and t (and their primed versions) are time quantities; the letters
a, b, and c are the dimensionless (i.e., measured in units of T )
counterparts, e.g., a = s/T . ω and ν are frequencies; ε ≡ ωT

and x ≡ νT are their dimensionless versions.
Quantities with a superscript (μ) [e.g., H (sim) or U (tar)(t)]

contain contributions from the system-bath coupling HSB;
those with a subscript μ [e.g., Hsim or Utar(t)] contain only
the system Hamiltonian Htar or Hsim, and HSB does not enter.

A glossary is provided in Appendix D to help the reader
with the various symbols used in the text.

III. ANALYTICAL ESTIMATES

Since we are concerned with the simulation error due to
the presence of the system-bath coupling, for simplicity, we
assume an exact simulator, so that the design error plays
no role. In practice, any simulation scheme will have some
nonzero design error, but such an error can be reduced
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by better—if more elaborate—choice of simulation pulse
sequences. We thus focus only on the difference ErrN =
‖E (tar)

N,I − E (sim)
N,I ‖ that arises from the unavoidable system-bath

coupling.
The weak system-bath coupling justifies an analysis pertur-

bative in α. We expand U
(μ)
I (t) to second order in α:

U
(μ)
I (t) � 1 − iα

∫ t

0
dsH

(μ)
SB (s)

−α2
∫ t

0
ds

∫ s

0
ds ′H (μ)

SB (s)H (μ)
SB (s ′). (19)

Let us write HSB = ∑
k Ak ⊗ Bk , where Ak acts on the system

and Bk on the bath, both Hermitian operators. We regard Aks
as dimensionless operators, while Bks carry the dimension
of frequency (setting h̄ = 1). Aks are taken to be operators
with norm of order 1. Define A

(μ)
k (t) ≡ Uμ(t)†AkUμ(t) and

Bk(t) ≡ UB(t)†BkUB(t), the interaction-picture operators, so
that H

(μ)
SB (t) = ∑

k A
(μ)
k (t) ⊗ Bk(t). Let 〈B〉 ≡ Tr{BρB}, for

any bath-only operator B, and ρB is the initial bath state. We
denote the two-point bath correlation functions as

fk�(t,s) ≡ 〈Bk(t) B�(s)〉, (20)

with dimensions of (frequency)2. Observe that fk�(t,s)∗ =
f�k(s,t). We make the often-applicable assumption that ρB

is a stationary state of HB, i.e., [HB,ρB] = 0, and that
〈Bk(t)〉 = 0 ∀k,t . Stationarity means that fk�(t,s) = fk�(t −
s,0) ≡ fk�(t − s) and fk�(t)∗ = f�k(−t).

In Appendix A, we show that the difference E (tar)
N,I − E (sim)

N,I ,
to lowest order in α, is a sum of three maps,

E (tar)
N,I − E (sim)

N,I = α2(�1 + �2 + �3), (21)

where

�1( · ) =
∑
k�

∫ N

0
db {[�k�(b) + �k�(b)]( · )Ã(tar)

k (b)

+ Ã
(sim)
k (b) ( · )[�k�(b) + �k�(b)]†},

�2( · ) = −
∑
k�

∫ N

0
db

[
Ã

(tar)
k (b)�k�(b)+�k�(b)†Ã(sim)

k (b)
]
(·),

�3( · ) = [�2( · )]†. (22)

Here, we have switched to dimensionless quantities for a
cleaner analysis: Ã

(μ)
k (a) ≡ A

(μ)
k (aT ), and

�k�(b) ≡
∫ b

0
da f̃k�(b − a)

[
Ã

(tar)
� (a) − Ã

(sim)
� (a)

]
,

�k�(b) ≡
∫ N

b

da f̃k�(b − a)
[
Ã

(tar)
� (a) − Ã

(sim)
� (a)

]
, (23)

with f̃k�(a) ≡ T 2fk�(s ≡ aT ), the dimensionless correlation
function. The integration variables a and b are to be thought
of as dimensionless time quantities. Observe that �k� and �k�

differ only in their integration limits.
For our analysis below, it is useful to express the correlation

function f̃ in terms of its Fourier transform J̃ , which we refer

to as the spectral function,

f̃k�(a) ≡
∫ ∞

−∞
dx J̃k�(x) e−ixa. (24)

J̃k�(x) is assumed to be significant for x around some central
value x̄ (not necessarily the mean), within a width xc (�0);
i.e., J̃k�(x) is negligible for |x − x̄| � xc, for any k,�. In
terms of the original dimensional quantities, x̄ = ν̄T for the
central frequency ν̄, and xc = νcT for the cutoff frequency
νc of Jk�(ν), the dimensional spectral function, defined by
fk�(s) ≡ ∫ ∞

−∞ dνJk�(ν)e−iνs . J̃k�(x) and Jk�(ν) are related as
J̃k�(x ≡ νT ) = T Jk�(ν). A prototypical example is a spectral
function of the form

J̃ (x) ∝ (x − x̄)we−|x−x̄|/xc . (25)

In many physical situations, x̄ = 0, so that one has a (dimen-
sionless) frequency distribution that increases from x = 0 to
around |x| = xc, and thereafter an exponential decay sets in.
xc characterizes the width of J̃ (x), or equivalently, νc ≡ xc/T

measures the frequency width of the dimensional J (ν). Its
inverse gives the time width of f (s), often referred to as the
bath correlation time τB ≡ 1/νc.

If the target and simulator are identical at all times, not
just at stroboscopic times t = NT , we would have Ã

(tar)
� (a) =

Ã
(sim)
� (a) for all a, and �k� and �k� would vanish, as would

the difference E (tar)
N,I − E (sim)

N,I . The crux hence lies in bounding
the difference between �k� and �k� when t �= NT .

The perturbative treatment yields ErrN ∼ α2 for an exact
simulator, which is small if the system-bath coupling is
weak, as is necessary for a useful physical implementation
of a simulator. A stronger simulation criterion, however, is
desirable: that a simulator with a shorter stroboscopic cycle
time T compared to other time scales of the problem should
have a smaller ErrN . Since T is a controllable parameter in
the simulator, this presents the possibility of tuning the open-
system simulation error to be as small as desired, independent
of the size of α. In the following subsections, we examine the
conditions under which this behavior holds. Specifically, we
look for situations that guarantee that 1

α2 ErrN is small.

A. Single-gate exact simulator

We first consider a simple exact simulator S1, with

Hsim(t) =
{
Htar

T
τg

,t ∈ [NT,NT + τg]
0 ,t ∈ (NT + τg,(N + 1)T )

, (26)

for N ∈ Z+
0 . S1 has one (M = 1) gate pulse per cycle time

T , of strength HtarT/τg , that lasts for time τg � T . Its unitary
evolution operator is such that Usim(NT ) = Utar(NT ) for all
N ∈ Z+

0 . S1 is exact as Hsim is simply Htar with a larger
strength so that it need only be applied for a shorter time,
but Usim(t) �= Utar(t) for all t �= NT . Such a simulator, though
unrealistic—if one could apply Htar directly, there is no need
for the simulator—allows us to zoom in on the effects of the
stroboscopic nature of the simulation, without having to worry
about the precise pulse sequence used.

For time s, the unitary evolution operator for S1 is

Usim(s) = e−iHtar(�s/T �+1)T e
iHtarT [1− 1

τg
(s−�s/T �T )]

+ . (27)
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We write Htar in its eigendecomposition: Htar = ∑
ε εPε,

where εs are the eigenvalues of Htar, and Pεs are the
projectors onto the ε eigenspaces. Then, the interaction-picture
A operators are

A
(μ)
� (s) =

∑
ω

e−iωT (�s/T �+1)e
iωT [1− 1

τμ
(s−�s/T �T )]

+A�(ω),

(28)

with Ak(ω) ≡ ∑
ε′−ε=ω PεAkPε′ , τtar ≡ T , and τsim ≡ τg .

Switching to dimensionless quantities, we have

Ã
(μ)
� (a) =

∑
ε

e−iε(�a�+1)e
iε[1− T

τμ
/a]

+Ã�(ε), (29)

where a ≡ s/T = �a� + /a, ε ≡ ωT [� 1; see Eq. (5)],
and Ã�(ε) = A�(ω = ε/T ). Note that τtar/T = 1, and we
let R ≡ τg/T = τsim/T � 1. Putting all these into �k�(b),
straightforward algebra yields

�k�(b) =
∑

ε

Ã�(ε)

[ p−1∑
q=0

e−iε(q+1)Ik�;q(b; 1)

+ e−iε(p+1)Ik�;p(b; /b )

]
, (30)

where p ≡ �b�, /b = b − p ∈ [0,T ), and

Ik�;q(b; c) ≡
∫ c

0
da f̃k�(b − q − a)[eiε(1−a) − eiε[1−a/R]+] .

(31)

Here, when p = 0 so that
∑p−1

q=0 seems to go from 0 to −1,
that sum is understood to be zero, so that only the second term
within the brackets in Eq. (30) is present. Similarly, we have

�k�(b) =
∑

ε

Ã�(ε)

[ N−1∑
q=p

e−iε(q+1)Ik�;q(b; 1)

− e−iε(p+1)Ik�;p(b; /b )

]
. (32)

Putting in the spectral function in place of f̃ , Eq. (31) becomes

Ik�;q(b; c) =
∫ ∞

−∞
dx J̃k�(x)e−ix(b−q)D(c; x), (33)

where

D(c; x) ≡
∫ c

0
da eixa[eiε(1−a) − eiε[1−a/R]+ ]. (34)

Here, we assume that the x and a integrals are interchangeable,
given regularity properties of Jkl .

As we will evaluate the integral Ik�;q above for c � 1, it
depends on f̃kl(a) only for a ∈ [0,1], i.e., within a single
stroboscopic time period [0,T ], for which there is no a priori
reason for Ik�;q to be small. Consequently, the � functions
generally need not be small. Thus even for S1, the dynamics
of the simulator and target need not be close to each other.

Below, we examine the � functions in different parameter
regimes. For analytical estimates, it is simpler to consider that
R = τg/T is in two extreme regimes: R → 0 or R → 1. The

former corresponds to the common situation where the gate-
pulse time is the shortest time scale in the problem; the latter
can be thought of as a stroboscopic simulation scheme where
the gate pulse is done as frequently as possible. For our single-
gate exact simulator S1, since Hsim is but a rescaled version
of Htar, the R → 1 regime gives Hsim = Htar and D(c; x)—
and consequently the � functions—vanishes. Thus, only the
regime of R → 0 is nontrivial for S1. In the remainder of the
paper, whenever S1 occurs, R is taken to approach 0, in which
case D(c; x)|R→0 ≡ D0(c; x) can be worked out exactly:

D0(c; x) = i[ε(1−eixc) − x(1−eiε) + eixcx(1−eiε(1−c))]

x(x − ε)
.

(35)

We consider three parameter regimes amenable to analytical
estimates (we look outside of these regimes in the numerical
analysis of Sec. IV):

regime I : |x̄|,xc � εmax � 1;

regime II : εmax � |x̄|,xc � 1;

regime III : εmax � 1 � |x̄|,xc.

Here, εmax ≡ max |ε| = ωmaxT , where ωmax is the largest
transition frequency for the target system. |x̄|,xc � εmax

(regime I) or � 1 (regime II) means that all relevant values
of x are such that |x| � εmax or � 1. Similarly, |x̄|,xc � 1
(regime III) tells us that |x| � 1 is the domain of interest.
Appendix B shows that D0(c; x) in these three regimes can be
approximated as

D0(c; x) �
{
iεc

(
1 − c

2

)
for regimes I & II

− ε
x

[1 − (1 − c)eixc] for regime III
.

(36)

In the following subsections, we calculate the simulation error
1
α2 ErrN for the different regimes and discuss the physical
implications.

1. Regimes I and II

In regimes I and II, the �i(·)s can be approximated as (see
Appendix C)

�1(·) � i
2N2

∑
k�

f̃k�(0)
∑
εε′

(ε + ε′)Ã�(ε)(·)Ãk(ε′), (37)

�2(·) � − i
4N2

∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)(·)f̃k�(0)(ε+ε′),

�3(·) = [�2(·)]†. (38)

The Ã operators, by definition, have norm of order unity. We
thus see that, in regimes I and II, 1

α2 ErrN = ‖�1 + �2 + �3‖
is approximately (up to a constant factor that depends on
the choice of the norm and corrections higher order in small
quantities)

1
α2 ErrN ∼ N2εmaxf̃ (0) = (NT )2(ωmaxT )f (0), (39)

where f̃ (0) ≡ maxk� |f̃ (0)| ≡ T 2f (0), and the O(N ) terms
are treated as subdominant. Here, we have assumed that N is
such that Nεmax,N |x̄|,Nxc � 1.
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The requirement that Eq. (39) is small, together with the
regime conditions of |x̄|,xc � εmax � 1 (regime I) or εmax �
|x̄|,xc � 1 (regime II), gives the criteria under which the open-
system dynamics of the simulator S1 and that of the target are
stroboscopically close to each other for (at least) N cycles. That
the error ErrN grows with N2 [or time (NT )2] comes from the
second-order perturbation theory. It is plausible that a different
approach to the analysis might yield a different dependence
on N , but we do not expect that dependence to disappear: The
simulation error will accumulate as time passes.

Regime I, with xc � εmax � 1, when translated to dimen-
sional quantities, entails the condition νc = 1/τB � ωmax �
1/T . This requires ω−1

max � τB as well as T � τB. The
requirement of ω−1

max � τB puts a restriction on the target
Hamiltonian: The intrinsic target time scales must be much
shorter than the bath correlation time τB. This is typically the
regime of non-Markovian dynamics on the system [28]. The
requirement of T � τB suggests that the coarse graining in
time according to T , introduced by the stroboscopic simulation
cycles, is not “visible” to the bath—it sees only the effective
stroboscopic dynamics and has no time to respond to fast
changes in S1 occurring within time T . The bath thus sees
the simulator dynamics as close to that of the target, and the
open-system simulation error is small [23].

For regime II, with εmax � |x̄|,xc � 1, one has instead
ωmax � νc = 1/τB � T , so that ω−1

max � τB and T � τB. In
this case, the target time scales are much longer than the
correlation time of the bath, as is typical for Markovian
dynamics [28]. Even so, as long as T is much smaller than
τB, the bath is still unable to react to the fast changes of S1.
However, τB is typically small in most situations, so T must be
extremely short in order for this regime to apply, which may
be unattainable in practice.

In Eq. (39), NT should be regarded as the total simulation
time t . If we keep t fixed (i.e., changing N as T changes such
that t is constant), then the simulation error scales linearly
with T , provided, of course, that the conditions for regimes
I and II remain valid as T changes for the above analysis to
hold. Note that ωmax and f (0) are quantities having to do with
the target Hamiltonian and with the bath; both do not change
as T changes. Thus, if T is shortened, the simulation error
decreases.

2. Regime III

For regime III, J̃ (x) is significant only when |x| is large,
and the �is can be examined in this limit. In addition, the
assumption of xc � 1 for regime III says that the width of
f̃k�(a), aB ≡ 1/xc = τB/T , is much less than 1, so f̃k�(a)
is negligible whenever |a| > 1. Then Ik�;q(b; c) is negligible
except when q = �b� or �b� ± 1. With these approximations,
we show in Appendix C that �1 is insignificant compared to
�2 and �3 and that �2 is given by

�2( · ) � i

2
N

∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)( · )(ε + ε′)
∫ 0

−∞
daf̃k�(a; xc);

(40)

�3( · ) = �2( · )† yields the approximation for �3. The linear
N dependence of �2 and �3 here, instead of the quadratic

dependence for regimes I and II, can be understood as follows:
The two factors of N in regimes I and II came from, first, the
integral over b from 0 to N , and second, the sum over q from
0 to N in the �is. In regime III, as argued above, the sum
over q is reduced to a sum over the three possible values of
�b�, �b� + 1, and �b� − 1, independent of N . The remaining
integral over b from 0 and N gives the factor of N in Eq. (40).

Since aB � 1, we estimate
1
α2 ErrN ∼ NεmaxaB sup

a∈R
|f̃ (a)|

= (NT )(ωmaxT )(τB/T )T sup
s∈R

|f (s)|. (41)

The requirement that Eq. (41) is small, together with the regime
III conditions of εmax � 1 � |x̄|,xc, gives criteria for the close
simulation of the target. Regime III assumes εmax � xc, or,
equivalently, ω−1

max � τB. This is also the regime of Markovian
system dynamics in the weak-coupling limit. Furthermore, we
have 1/xc � 1, which means T � τB. Unlike regimes I and II,
here, S1 can be stroboscopically close to the target even when
T is much larger than the correlation time of the bath, as long
as Eq. (41) is small. This is a surprising result, and contrary to
the requirement of T � τB standard in past quantum simulator
discussions: Even if the bath has sufficient time to respond to
a slow change in S1, good simulation is still possible.

Note that Eq. (41) is written in a form that makes explicit the
dependence of the simulation error on T , the controllable and
variable parameter. All other physical parameters are taken to
be fixed quantities given by the physical system. In addition,
the sup |f (s)| factor contains a dependence on τB that is
not explicitly written, e.g., for the spectral function of the
form Eq. (25), sups∈R |f (s)| ∝ τ−w−1

B . Because of this hidden
dependence, Eq. (41) does not imply, for example, that the
simulation error vanishes when τB → 0.

Here, NT should again be regarded as the total simulation
time t . If we consider t fixed, the simulation error in regime III,
as in regimes I and II, scales linearly with T . Thus, as before,
one can reduce the simulation error by decreasing T .

Note that the analysis above gives sufficient conditions for
close simulation. There is no a priori assumption of Markovian
dynamics, a feature often imposed in past discussion of this
question.

B. Zero-temperature oscillator bath

We now examine an analytically tractable system-bath
model, which serves as an additional check on the conditions
of the last subsection. Consider a system coupled to a
bath of harmonic oscillators (a bosonic bath), with the bath
Hamiltonian

HB =
∑
m

ωmb†mbm, (42)

and the system-bath coupling

HSB =
∑

k

Ak ⊗ Bk, with Bk ≡
∑
m

(gkmbm + g∗
kmb†m).

(43)
Here, we simply use Bk in place of αBk . bm and b

†
m are

annihilation and creation operators for mode m, satisfying the
bosonic commutation relations of [bm,bn] = 0 = [b†m,b

†
n] and
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[bm,b
†
n] = δmn. gkm is the system-bath coupling constant for

mode m, for the system operator Ak .
Suppose the bath is initially in the HB-thermal state

ρB = e−βHB/Z, where β is the inverse temperature, and
Z ≡ Tr(e−βHB ) is the partition function. The bath correlation
function is then

fk�(s) = TrB{Bk(s)B�ρB}
=

∑
m

g∗
kmg�m{[1 + N (ωm)]e−iωms + N (ωm)eiωms}

=
∫ ∞

−∞
dν Jk�(ν){[1 + N (ν)]e−iνs + N (ν)eiνs}.

(44)

Here, N (ωm) = TrB(b†mbmρB) is the average particle-number
for mode m. For the thermal bath state, N (ωm) =
1/(eβωm − 1). In addition, we have done the standard replace-
ment of the discrete sum

∑
m g∗

kmg�m{·} by the continuous
integral

∫ ∞
−∞ dνJk�(ν){·}, where Jk�(ν) is the spectral density

of the bath. A commonly used form for the spectral density is

Jk�(ν) =
{
ηk� νw e−ν/νc;k� for ν � 0
0 for ν < 0

, (45)

where νc;k� is the cutoff frequency. For simplicity, we set
νc;k� = νc (xc;k� = xc), and ηk� = ηδk�, for all k,�, where δk�

is the Kronecker δ, and η is a real constant. Note that η here
plays the role of the small bookkeeping parameter α of the
earlier analysis. J is often referred to as Ohmic when w = 1,
sub-Ohmic when w < 1, and super-Ohmic when w > 1.

Consider the case of zero temperature, for which the bath
state is ρB = |0〉〈0|, and N (ν) = 0. In this case, Jk�(ν) is the
Fourier transformation of fk�(s), i.e., Jk�(ν) = Jk�(ν), or

J̃k�(x) = T Jk�

(
ν = x

T

)
=

{
η̃ δk� xwe−x/xc , x � 0
0, x < 0

,

(46)

for the dimensionless version, where η̃ ≡ ηT 1−w and xc ≡
νcT .

Let us estimate the size of �is for the situation of the zero-
temperature Ohmic bath for the different parameter regimes.
Note that the Ohmic bath cannot be considered in regime III,
for which the domain of interest is |x| � 1 as the Ohmic bath J̃

has significant support near x = 0. We thus content ourselves
with only regimes I and II.

For �1, starting from Eq. (C6), in the limit of regimes I and
II, we have

�1( · ) � N2
∑
k�

∑
εε′

[
Ã�(ε)(·)Ãk(ε′)

∫ ∞

−∞
dxJ̃k�(x)D0(1; x)

+ Ãk(ε′)(·)Ã�(−ε)
∫ ∞

−∞
dxJ̃k�(x)∗D0(1; x)∗

]
. (47)

Now, putting in J̃ for the Ohmic bath, and from the definition
of D0 [Eq. (34)], we have∫ ∞

−∞
dxJ̃k�(x)D0(1; x) = δk� η̃ x2

c

∫ 1

0
da

eiε(1−a) − 1

(1 − iaxc)2

� δk� η̃ x2
c

∫ 1

0
da

iε(1 − a)

(1 − iaxc)2

= δkl η̃ ε [−xc + i ln(1 − ixc)]. (48)

In regimes I and II, we can expand ln(1 − ixc) to second order
in xc and approximate the above integral by i

2δk�η̃εx2
c . Then,

�1( · ) � N2
∑
k�

∑
εε′

Ã�(ε)(·)Ãk(ε′) i
2δk� η̃ x2

c (ε + ε′),

(49)

which we observe to be exactly the expression in Eq. (37) for
�1(·), upon noting that f̃k�(0) = ∫ ∞

−∞ dxJ̃k�(x) = δk�η̃x2
c for

the zero-temperature Ohmic bath.
For �2(·), Eq. (C7) gives, in the regimes of I and II,

�2( · ) � −N
∑
k�

∑
εε′

[
Ãk(ε′)Ã�(ε)

∫ ∞

−∞
dxJ̃k�(x)D0(1; x)

N − 1

2
+ Ã�(ε)Ãk(ε′)

∫ ∞

−∞
dxJ̃k�(x)∗D0(1; −x)

N + 1

2

+ Ãk(ε′)Ã�(ε)
∫ ∞

−∞
dxJ̃k�(x)

∫ 1

0
db′D0(b′; x)e−i(x+ε′)b′ − Ã�(ε)Ãk(ε′)

∫ ∞

−∞
dxJ̃k�(x)∗

∫ 1

0
db′D0(b′; −x)e−ixb′

]
(·). (50)

As in Eq. (48), we have
∫ ∞
−∞ dxJ̃k�(x)D0(1; ±x) � δk� η̃ ε [∓xc + i ln(1 ∓ ixc)] � i

2δk� η̃ ε x2
c . Note that J̃k�(x)∗ = J̃k�(x). In

addition, we need the following integral,∫ ∞

−∞
dxJ̃k�(x)

∫ 1

0
db′D0(b′; x)e−i(x+ε′)b′ = δk�η̃

∫ 1

0
db′e−iε′b′

∫ b′

0
da[eiε(1−a) − 1]

∫ ∞

0
dx xe−x/xc eix(a−b′)

� δk�η̃
ε

2xc

[xc(2i + xc) − 2 ln(1 + ixc)] � δk� η̃
iε x2

c

3
, (51)

since eiε(1−a) − 1 � iε(1 − a) and e−iε′b′ � 1. Similarly,
∫ ∞
−∞dxJ̃k�(x)∗

∫ 1
0 db′D0(b′; −x)e−ixb′ � δk�η̃

iεx2
c

3 . Consequently,

�2( · ) � −iNδk�η̃x2
c

∑
k�

∑
εε′

[
Ãk(ε′)Ã�(ε)ε

N − 1

4
+ Ã�(ε)Ãk(ε′)ε

N + 1

4
+ Ãk(ε′)Ã�(ε)

ε

3
− Ã�(ε)Ãk(ε′)

ε

3

]
(·)

= −iNδk�η̃x2
c

∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)

[
N

4
(ε + ε′) + 1

12
(ε − ε′)

]
(·), (52)

which is exactly Eq. (38) upon retaining only the O(N2) term.
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C. Multi-gate exact simulator

Practically, one expects to use multiple gates—not just a
single gate as in S1—per simulation cycle to achieve good
simulation of the target Hamiltonian. As before, we assume
that the M-gate simulator, SM , is exact, so that gM . . . g2g1 =
exp(−iHtarT ). Here, the gate gm is assumed to be applied
instantaneously at time tm. The last gate in the simulation
cycle gM occurs at time tM ≡ τg + t1, after which no gates are
applied until the next cycle begins (see Fig. 1). The sequence
of M gates is thus completed in time τg , and we define RM ≡
τg/T to denote the fraction of T taken for the M gates to
be applied in each cycle. (Note: R1 is exactly the R quantity
for S1 of Sec. III A; there, we took R1 → 0 for instantaneous
gates.)

As in the case of S1, we want to bound the N -cycle
simulation error 1

α2 ErrN , comparing SM to the target under
different parameter regimes. It is convenient to split ErrN into

two pieces,

ErrN = ∥∥E (tar)
N,I − E (SM )

N,I

∥∥ ≡ ErrN (tar,SM )

�
∥∥E (tar)

N,I − E (S1)
N,I

∥∥︸ ︷︷ ︸
ErrN (tar,S1)

+ ∥∥E (S1)
N,I − E (SM )

N,I

∥∥︸ ︷︷ ︸
ErrN (S1,SM )

. (53)

ErrN (tar,S1) is the simulation error between S1 and the
target, which we already analyzed in Sec. III A; the second
piece ErrN (S1,SM ) compares S1 to SM , which we bound
below. By splitting the simulation error between SM and
the target into these two pieces, we analyze the errors due
to the stroboscopicity [captured by ErrN (tar,S1)] and the
multiple gates [captured by ErrN (S1,SM )] separately. The S1

considered here—artificially inserted to help bound ErrN—has
a single gate, generated by a Hamiltonian ∝ Htar, that lasts for
time no longer than τg = tM (in the limit we are considering
here, that single gate is in fact instantaneous). This means that
we have

US1 (NT + t,NT ) = USM
(NT + t,NT ) = Utar((N + 1)T ,NT ) = e−iHtarT . (54)

for t ∈ [τg,T ], or, equivalently, that

US1((N+1)T ,NT + t)=USM
((N+1)T ,NT + t)=1.

(55)

Comparing SM to S1, we have, from Eq. (23),

�k�(b) ≡ �
(S1,SM )
k� (b)

=
∫ b

0
daf̃k�(b − a)

[
Ã

(S1)
� (a) − Ã

(SM )
� (a)

]
=

�b�−1∑
q=0

∫ RM

0
daf̃k�(b−(q+a))

[
Ã

(S1)
� (q+a)−Ã

(SM)
� (q+a)

] +
∫ min{/b,RM}

0
daf̃k�(/b−a)

[
Ã

(S1)
� (�b�+a)−Ã

(SM)
� (�b�+a)

]
,

(56)

where we have used Eq. (54), with Ã
(·)
� (a) =

U·(aT )†A�U·(aT ), to infer that Ã
(S1)
� ((q + a)T ) −

Ã
(SM )
� ((q + a)T ) = 0 for q a non-negative integer and

a ∈ [RM,1], so that the upper limits of the a integrals
read as given above. The expressions in the brackets [. . .],
unlike in the comparison of S1 and the target, are generally
complicated. However, they can be straightforwardly bounded
as, for any a,∥∥Ã

(S1)
� (a) − Ã

(SM )
� (a)

∥∥
�

∥∥Ã
(S1)
� (a)

∥∥ + ∥∥Ã
(SM )
� (a)

∥∥ = 2‖A�‖, (57)

for a unitarily invariant norm. Thus, we have∥∥�
(S1,SM )
k� (b)

∥∥ � 2 sup
a∈[0,b]

|f̃k�(a)|(�b� + 1)RM‖A�‖. (58)

A similar analysis gives the bound for �k�(b):∥∥�
(S1,SM )
k� (b)

∥∥ � 2 sup
a∈[0,b]

|f̃k�(a)|(N − �b� + 1)RM‖A�‖.

(59)

Using these bounds on �k�(b) and �k�(b) in Eq. (22), we have
1
α2 ErrN (S1,SM )

� 8
∑
k�

‖Ak‖[2 sup
a∈[0,N]

|f̃k�(a)|RM‖A�‖]
∫ N

0
db(�b� + 1)

= 8N (N + 1)RM

∑
k�

sup
a∈[0,N]

|f̃k�(a)|‖Ak‖‖A�‖. (60)

Hence,
1
α2 ErrN (S1,SM ) ∼ N2RM sup

a�0
|f̃ (a)|

= (NT )2(τg/T ) sup
s�0

|f (s)|. (61)

The difference between S1 and SM vanishes as RM → 0, as
can be expected: That there are M gates rather than one, in a
time shorter than any time scales of the problem, cannot be
physically relevant.

If we regard NT as the simulation time t to be kept fixed,
the bound in Eq. (61) suggests that the 1

α2 ErrN (S1,SM ) piece
of the simulation error follows an inverse relation to T , if we
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TABLE I. Summary of the simulation errors under the different regimes. Stated above are the bounds for SM , up to an overall constant. To
recover the bounds for S1 from Sec. III A, set RM=1 = 0. C is the constant C ≡ ∑

εε′ 1, giving the relative factor between ErrN (tar,S1) and
Err(S1,SM ) coming from the ε and ε ′ sums in Eqs. (39) and (41), absent from Eq. (61).

Regime Conditions Bound on the simulation error 1
α2 ErrN Equations

I |x̄|,xc � εmax � 1 N 2[Cεmaxf̃ (0) + 8RM supa�0 |f̃ (a)|] (39) and (61)
II εmax � |x̄|,xc � 1 = (NT )2[C(ωmaxT )f (0) + 8(τg/T ) sups�0 |f (s)|]
III εmax � 1 � |x̄|,xc N 2

[
C 1

N
εmaxaB supa∈R |f̃ (a)| + 8RM supa�0 |f̃ (a)|] (41) and (61)

= (NT )2
[
C 1

N
(ωmaxT )(τB/T ) sups∈R |f (s)| + 8(τg/T ) sups�0 |f (s)|]

also hold τg constant. This seems to indicate the possibility
of reducing the simulation error by increasing T . However, a
larger T means, at least in regimes I–III, larger 1

α2 ErrN (tar,S1).
In the end, it is a balance between both pieces that will
determine whether increasing or decreasing T will reduce the
total simulation error. In Sec. IV below, we see a specific
example where the balance is such that a larger T gives a
smaller overall simulation error.

Table I gathers the bounds for the simulation error under
the different regimes analyzed in Secs. III A and III C.

IV. NUMERICAL EXAMPLES

To verify our analytical estimations of the previous section
and to explore the simulation efficacy beyond the regimes of
I–III, in this section, we look at numerical studies of two target
models. Specifically, we numerically calculate, as a function
of time, the density matrix of the simulator exposed to open-
system dynamics, and compare it with that of the target system.

A. A toric-code vertex

For feasible numerical computation in reasonable time,
we consider a small system of four qubits, with the target
Hamiltonian

Htar = −ω

2
X1X2X3X4, (62)

where Xi is the Pauli X operator acting on qubit i. The energy
spectrum of this system is simple: There are two degenerate
energy eigenspaces with eigenvalues {ω/2, − ω/2}, and there
is a single transition frequency ω. The ground space of
Htar possesses a definite eigenvalue (of +1) of the operator
X1X2X3X4, such that a Z error on any one of the four
qubits can be detected as a change in sign—since a single
Z anticommutes with X1X2X3X4—in the eigenvalue of the
system state. That single Z error excites the system from the
ground state into the excited-state manifold, is energetically
unfavorable given the ω gap, and hence is naturally suppressed.

The four qubits interacting under Htar can be thought of
as a single-vertex piece of the Kitaev toric-code model [12].
The toric code is important in the context of fault-tolerant
quantum computation [29,30], given its natural tolerance to
local errors, its scalable structure, its high noise threshold,
and its instrinsic resilience against thermal noise [13,28–30].
Recent experimental progress in this direction (for example,
see Ref. [31]) has further intensified interest in the model. The
single-vertex example we study here, despite its small size, can
still have relevance if the coupling to the bath is local and that

the correlation length decays rapidly. Moreover, such codes
are expected to provide good noise protection at large system
sizes, so if a small system already demonstrates resilience
to noise, one expects even better performance as the system
scales up.

Htar is a four-body Hamiltonian—the full toric-code model
also comprises four-body terms (see Fig. 3)—which is typ-
ically difficult to engineer in the laboratory. Instead, one
approach to achieve a toric-code interaction is to make use
of DQS and decompose the desired target Hamiltonian into a
sequence of gates [6,24,25]. For our four-qubit situation, a set
of five two-qubit gates suffices to implement the DQS:

g1 = exp

(
i
π

4
Y3X4

)
,

g2 = exp

(
i
π

4
Z3Y2

)
,

g3 = exp

(
iϕX1Z2

)
, (63)

g4 = exp

(
−i

π

4
Z3Y2

)
= g−1

2 ,

FIG. 3. A small piece of the square lattice in the toric-code model
of Ref. [12]. Qubits (circles) sit on the edges of the lattice; qubits
around each plaquette of the lattice (in cyan) are acted upon by the
local four-body ZZZZ terms of the toric-code model; the qubits
around each lattice vertex (in yellow) are acted upon by the XXXX

terms. The qubits labeled 1 to 4 around the vertex are the four qubits
in our Htar model of Eq. (62).
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g5 = exp

(
−i

π

4
Y3X4

)
= g−1

1 .

Here, Xi,Yi , and Zi are the Pauli operators acting on the ith
qubit. Observe that

g5g4g3g2g1 = exp(iϕX1X2X3X4) = e−iHtarT , (64)

with T ≡ 2ϕ/ω being the simulation cycle period. The
gate sequence g5 . . . g2g1 ≡ Usim(T ,0) equals Utar(T ,0), and
repeated sequences, implemented with cycle time T , achieve
exact simulation of the target Hamiltonian Htar. The five
gates are applied one after another in sequence, each as an
instantaneous pulse, separated equally in time and taking
a total time τg = RT (R ≡ R5 for our five-gate DQS) to
complete. Such a set of gates may, in practice, also be difficult
to implement, but here we are only concerned with using it as
a platform for studying the fidelity of multigate simulation in
the presence of a bath.

We suppose that the system (target or simulator) is coupled
to an oscillator bath (as in Sec. III B) with an Ohmic spectral
density. Each qubit is assumed to interact with an independent
oscillator bath, as would be the situation if the distance between
pairs of qubits is large compared to the correlation length of
the bath and the bath degrees of freedom coupled to different
qubits do not interact. Since Htar protects against Z errors in
the system, we take Ak = Zk , so that

HSB =
4∑

k=1

Zk ⊗ Bk,

with Bk =
∑
m

(gk,mb
†
k,m + g∗

k,mbk,m), (65)

where bk,m (b†k,m) is the annihilation (creation) operator for the
mth mode of the oscillator bath that interacts with qubit k. The
Ohmic spectral density is [see Eq. (45)]

Jk�(ν) = δk� η ν e−ν/νc , (66)

where the Kronecker δk� encapsulates the independent bath
assumption. Correspondingly, the bath correlation function
satisfies fk�(s) = δk�fk(s), where fk(s) ≡ fkk(s).

We calculate the density matrix for both the target
and the simulator using the second-order (in αHSB) time-
convolutionless master equation (TCL-2) for the open-system
dynamics [28],

d

dt
ρS(t)

=
∑

k

∫ t

0
ds[fk(t − s) − fk(s − t)]A(μ)

k (s)
[
ρS(t),A(μ)

k (t)
]

(67)

for μ = tar,sim. TCL-2 is a non-Markovian master equation,
valid in the weak-coupling limit (i.e., small α). We solve
Eq. (67) using a fourth-order Runge-Kutta method [32] for the
density matrices ρS(t) of the target and the DQS, for the initial
(t = 0) GHZ-type state 1√

2
(|0000〉 + |1111〉) in the ground

space (code space). Here, |0〉 and |1〉 are the eigenstates of
Z, with eigenvalues +1 and −1, respectively. The numerical
results are observed to depend only very weakly on which state

from the ground space is chosen as the initial state, so the above
state suffices to illustrate the point. Being an approximate
equation, TCL-2 does not in general guarantee a positive,
unit trace ρS(t), especially for long-time evolution, but we
see no such defects within the time period of our numerical
calculations.

1. xc = νcT = T/τB � ε = ωT � 1

We first study the regime (with x̄ = 0) where xc � ε,
i.e., ωτB � 1 so that the target system time scale (∼1/ω)
is much smaller than that of the bath. Figure 4 shows the
stroboscopic dynamics of the target and the DQS. We vary the
two parameters within the control of the simulator design: the
total sequence time τg [Fig. 4(A)] and the simulation cycle
time T [Fig. 4(B)].

In Fig. 4(A), we set ε = 0.1 and xc = ε/5 = 0.02. For
weak coupling between the system and the bath, we set
η̃ = 0.02 (= η in the Ohmic case where w = 1). We consider
a nonzero temperature to observe the effects of thermal
noise by putting β̃ ≡ β/T = 40. Note that T here is the
simulation cycle time, not the temperature; k, the Boltzmann
constant is set to 1 so that the inverse temperature β has
dimensions of frequency (with h̄ also set to 1). Observe
that the ratio of the temperature to the target system energy
scale, given by 1/(ωβ) = 1/(εβ̃) = 0.25, is small compared
to 1, so we are in a somewhat low-temperature regime. The
parameter R = τg/T is varied over 0.01,0.1, and 0.4. These
fixed or varying dimensionless parameter values should be
understood as follows: The physical parameters ω,νc,η, and β

are determined by the system and the bath under consideration,
so fixing the values of ε,xc,̃η, and β̃ means that T is fixed;
consequently, varying R is equivalent to varying τg .

At zero-temperature, εf̃ (0) = εη̃x2
c = 8 × 10−7, so that,

naively, Eq. (39) gives N � 1000 for small simulation error;
we might expect the low-temperature case to be similar.
However, note that Nε ∼ 100 and Nxc ∼ 20 for N ∼ 1000,
neither of which are small. Thus, we are not in the regime of
our analyses of Secs. III A and III C, where we assumed also
that Nεmax and Nxc � 1. In fact, we leave that regime once
N � 10, very early on in the numerical simulation below.

Figure 4(A) plots the dynamics of the target and the DQS
in steps of T . One observes that the ground-space population
[see Fig. 4(A)(i)] for the target system oscillates early on, but
reaches a steady level close to 1 in the long-time regime. This
behavior is indicative of typical non-Markovian dynamics.
That the ground-space population remains always close to 1
demonstrates the ability of the system to suppress the leakage
effects of the environmental coupling out of the ground space:
The long-time ratio between the transition rate into the code
space and the rate out of the code space is eβω = e4 � 54.

For small values of R (R = 0.01 and 0.1), the state of
the simulator remains close to that of the target system [see
Fig. 4(A)(ii)], and the behavior in terms of the ground-space
population is similar. When R gets larger, one starts to see
deviation of the DQS from the target, as is clearly visible from
the R = 0.4 case in Fig. 4(A). One thus has better simulation
for smaller R, and this extends our conclusions of Sec. III C
to beyond the analytically accessible regimes.
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FIG. 4. Dynamics of the toric-code vertex target and simulator, in the regime where xc � ε, or, equivalently, where ωτB � 1. The left
column [plots marked (A)] gives the situation where all parameters but R = τg/T are fixed (to be regarded as varying τg for fixed T ;
see main text). The right column [plots marked (B)] gives the case where all parameters but the simulation cycle time T are fixed. Plots
marked (i) give the ground-space population; those marked (ii) give the trace distances between the target and simulator states; those marked
(iii) are the trace distances between the time t state ρ(t) and the initial state, for the target and the simulator. Parameters for plots A:
ε = 0.1,xc = ε/5 = 0.02,̃η = 0.02, and β̃ = 40. Parameters for plots B: ω = 20 kHz, νc = 4 kHz, β = 0.2 ms, η = 0.02, and τg = 50 ns. The
blue dashed line is for the target. In plot A(ii), the R = 0.01 line essentially lie on the horizontal axis, for the plotted vertical scale; in plot B(ii),
the T = 5μs line is also nearly on the horizontal axis.

An interesting feature noticeable in Fig. 4(A)(i) is that
larger R actually gives larger ground-space population. As
there is no reason to suspect that the numerical errors are
larger for larger R, the plots suggest that, as far as keeping the
system in the code space is concerned, the larger-R simulators
seem to perform better. However, Fig. 4(A)(iii) indicates that
larger R values result in greater in-code-space operations, i.e.,
logical errors, on the system state, which are harmful as far
as preservation of the logical information is concerned. Such
operations are neither detectable nor correctable by the code.
Hence, if the intention is solely to keep the population in the
ground space, larger R works better, but not if one also wants
to preserve the particular state of the system.

In Fig. 4(B), we are varying T itself, which we have been
using as the time unit for our dimensionless variables. Thus,
the results are reported for specific fixed values of physical
parameters ω,νc,η, and β, as well as a given τg value, while T

is varied. We plot the dynamics in time steps of δt = 5 μs (the
largest T value), and vary T from 125 ns to 5 μs. In Sec. III C,
we saw that the simulation error for the M-gate simulator
SM had two contributions, one that goes as 1/T [from
ErrN (S1,SM )], the other as T [from ErrN (tar,S1)]. There,
we could not come to a definitive conclusion about the overall
behavior of the simulation error as a T changes, as the relative
weights of the two contributions depend on the problem. Here,
for our toric-code vertex example, Fig. 4(B) shows that the
overall simulation error decreases as T increases, indicating

that the 1/T term wins. This is contrary to conventional
wisdom where one expects more rapid repetition of the
simulator sequence to give better performance. Here, to better
mimic the dynamics of the target, one should instead wait for
a period of time between consecutive gate sequences, so that
T is larger, at least as long as T remains small enough such
that ε = ωT � 1 for good simulation [condition (5)].

2. ε = ωT � xc = νcT = T/τB

Let us examine a different parameter regime, where ε � xc,
or, equivalently, ωτB � 1, i.e., the target system time scale is
much larger than that of the bath. This is often referred to as the
Markovian regime in the weak-coupling limit. First, we focus
on the case where xc ∼ 1, where the analytical estimation
was difficult and lacking. Figure 5 shows the stroboscopic
dynamics for three different xc values: xc = 0.5,1, and 2. All
other parameters are kept fixed: ε = 0.005, η̃ = 5 × 10−4,
and β̃ = 2000. Note that 1/(εβ̃) = 0.1, so we are in the
low-temperature range. In all three cases, the simulation errors
are small: Observe that the trace distance between the target
and simulator states are no larger than ∼10−3 in the time
shown. The error is noticeably larger for larger xc, and given the
growing trend, one expects the simulation error to eventually
become significant, but only at long times (large N ).

Next, one can study the effects of changing τg and T .
Figure 6 shows the dynamics of the target and the simulator in
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FIG. 5. The dynamics of the target and the DQS, with varying
xc = νcT = T/τB ∼ 1 values. The other parameters are kept fixed:
ε = 0.005,̃η = 5 × 10−4, β̃ = 2000, and R = 0.01. The plots are
labeled by xc/ε = 100,200, and 400, corresponding to xc = 0.5,1,
and 2, respectively.

the regime of ε � xc, i.e., ωτB � 1, for different τg [Fig. 6(A)]
and T [Fig. 6(B)] values. The plots of Fig. 6(B) show what
one might typically expect [unlike the situation in Fig. 4(B)]:
that the simulation error increases as T increases.

B. The five-qubit code

The toric-code vertex model of the previous subsection can
only suppress Z errors in one qubit (or X errors if one uses
Z operators in Htar). Here, we consider the five-qubit code
[33], the smallest-sized code capable of correcting an arbitrary
error on any one of the qubits. The target Hamiltonian in this
case is

Htar = −γ

4∑
j=1

Sj , (68)

where Sj are the stabilizer generators of the five-qubit code,

S1 = X1Z2Z3X4,

S2 = X2Z3Z4X5,
(69)

S3 = X1X3Z4Z5,

S4 = Z1X2X4Z5.

The two-dimensional ground space of Htar forms the qubit
codespace, with the logical X and Z operators chosen to be
X1X2X3X4X5 and Z1Z2Z3Z4Z5, respectively. Any single-
qubit error will cause a transition from the ground space to
the higher-energy excited space, and correspondingly, such an
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FIG. 6. Dynamics of the toric-code vertex target and the simulator, in the regime where xc � ε, or, equivalently, where ωτB � 1. The left
column [plots marked (A)] gives the situation where all parameters but R = τg/T are fixed. The right column [plots marked (B)] gives the case
where all parameters but the simulation cycle time T and τg (with R = τg/T held constant) are fixed. Plots marked (i) give the ground-space
population; those marked (ii) are the trace distance between the target and simulator states; those marked (iii) are the trace distance between
the time t state ρ(t) and the initial state, for the target and the simulator. Parameters for plots A: ε = 4 × 10−4, xc = 8 � ε, η̃ = 5 × 10−4, and
β̃ = 2500. Parameters for plots B: R is fixed to be 0.01, ω = 1 kHz, νc = 400 kHz, β = 1 ms, η = 5 × 10−4, and δt = 2 μs.
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TABLE II. The gate sequence for simulation of the five-qubit code, with e−iHtarT = g20g19 . . . g2g1. Here, ϕ = γ T .

S1 = X1Z2Z3X4 S2 = X2Z3Z4X5 S3 = X1X3Z4Z5 S4 = Z1X2X4Z5

g1 = exp
(
i π

4 X1X2

)
g6 = exp

(
i π

4 Z3Y5

)
g11 = exp

(
i π

4 X1Y3

)
g16 = exp

(
i π

4 X4X5

)
g2 = exp

(
i π

4 Y2X3

)
g7 = exp

(
i π

4 Z4Z5

)
g12 = exp

(
i π

4 Z3X4

)
g17 = exp

(
i π

4 Y2Y5

)
g3 = exp (iϕY3X4) g8 = exp (iϕX2Y5) g13 = exp (iϕY4Z5) g18 = exp (iϕZ1Z2)
g4 = g−1

2 g9 = g−1
7 g14 = g−1

12 g19 = g−1
17

g5 = g−1
1 g10 = g−1

6 g15 = g−1
11 g20 = g−1

16

error will be energetically unfavorable and suppressed in this
model.

As in the case of the toric-code vertex, one can build an
exact DQS of this Htar from a set of two-qubit gates. The
specific set of gates—twenty gates in all—we use is given
in Table II. Note that these gates are not chosen with any
particular implementation in mind and are used here solely for
the purpose of examining the dependence of the simulation
error on various physical parameters.

We again study this five-qubit code situation using nu-
merical solution of the TCL-2 master equation, for the same
noise as for our toric-code vertex example, i.e., an Ohmic
oscillator-bath noise described by Eqs. (65) and (66). The
initial state is taken to be the logical 0 state of the code,

|0̄〉 = 1√
8

(1 + S1) (1 + S2) (1 + S3) (1 + S4) |00000〉. (70)

As in the previous example, we see little variation numerically
for different initial states; this choice hence suffices for illus-
tration. Note that the five-qubit code is capable of protecting
against arbitrary single-qubit errors, even though the noise
coming from HSB has only Pauli Z operators.

Rather than examine a variety of situations as we did for
the toric-code vertex example, we focus here on the regime
where xc � ε � 1 and on the effect of different values of R

for DQSs. As we will see below, the behavior of the five-qubit
code is somewhat different from that of the toric-code vertex
with similar parameters. As in Fig. 4(A), we set ε = 0.1,
xc = 0.02, η̃ = 0.02, and β̃ = 40. Figure 7(A) shows the
stroboscopic dynamics of the target and the simulator, with
points plotted every time step T . As R increases (i.e., τg

increases with T fixed), the simulation error, as captured
by the trace distance between the target and simulator states
[see Fig. 7(A)(ii)], increases, much like what was observed in
Fig. 4(A), reaffirming our earlier conclusions.
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FIG. 7. Dynamics of the five-qubit code target and the simulator, in the regime where xc � ε, or, equivalently, where ωτB � 1. (This is
similar to Fig. 4, but for the five-qubit code, rather than the toric-code vertex.) The left column [plots marked (A)] gives the situation where all
parameters but R = τg/T are fixed; the right column [plots marked (B)] gives the case where all parameters but the simulation cycle time T

are fixed. Plots marked (i) give the ground-space population; those marked (ii) are the trace distance between the target and simulator states;
those marked (iii) are the trace distance between the time t state ρ(t) and the initial state, for the target and the simulator. Parameters for plots
A: ε = 0.1, xc = 0.2, η̃ = 0.02, and β̃ = 40; R = τg/T is varied over the values 0.01,0.1,0.4, and 0.7 (to be regarded as varying τg for fixed
T ). Parameters for plots B: ω = 20 kHz, νc = 4 kHz, β = 0.2 ms, η = 0.02, τg = 50 ns, and δt = 5 μs.
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What is unexpected, and dissimilar from the toric-code
vertex example, is that the error does not grow with time
but stabilizes to some value at long times. What is even more
surprising are the plots of Fig. 7(A)(iii): The deviation of the
simulator state from its initial state is smaller for larger R,
even though the larger-R DQS does a poorer job of imitating
the target. We do not know the source of this effect and it may
deserve further exploration, but it is beyond the scope of our
current discussion.

For completeness, we also present the case of varying T

with all other physical parameters held fixed; see Fig. 7(B).
As for the toric-code vertex, Fig. 7(B) provides evidence that
a larger T leads to smaller simulation errors.

V. SUMMARY AND DISCUSSION

We compared, analytically and numerically, the strobo-
scopic dynamics of a DQS and its target system in the presence
of a bath. It is clear that the simulator and target dynamics are
similar under a combination of conditions, as summarized
in Table I for limiting physical regimes. The common belief
that T should always be short for good simuation is neither
sufficient—for example, one also needs f (0) to also be small
for S1 in regimes I and II—nor necessary—our example of
the toric-code vertex demonstrates a situation where larger
T incurs a smaller error. Under the conditions where the
DQS and target are similar, the simulation pulse sequences
successfully suppress the errors in the system, providing
effective robustness to noise from the bath.

In our work, we have assumed that the applied gates for the
DQS are instantaneous. This is a good approximation for many
experimental architectures currently in play. It is interesting to
note that the periodic sequences of fast gate pulses for DQS are
reminiscent of the technique of dynamical decoupling (DD)
[34–37]. DD aims for a vanishing effective Hamiltonian on the
system (to the order of the DD sequence). This can been viewed
as a special case of DQS, with a zero target Hamiltonian. In
DD, the usual requirements are that the pulses are fast and the
cycle time is short. One wonders if there is also a situation in

which a larger cycle time gives better results, as has been seen
to be possible in our work.

Going forward, one can ask for a more careful, but no doubt
more complicated, analysis where the simulator gates pulses
are not instantaneous. This introduces one more time scale
into the problem, which should enter the simulation error. The
design error, set to be zero in our work so as to focus on the
impact of the environment, is also realistically nonzero, and
one could take it into account in the calculation. This includes
the gate-pulse errors, which can be regarded as a special type
of design error.

In addition, one could also go away from the static target
Hamiltonian we have restricted ourselves to here and look
into slowly varying target Hamiltonians. Again this adds one
more time scale to the problem, but it is a worthy subject for
further studies, as it goes toward schemes of Hamiltonian-
based quantum computation [17,19–21,38,39].

Another potential application of our results is in the
preparation of the system in the equilibrium state of a
complicated many-body target Hamiltonian. The existing
quantum algorithm of Gibbs preparation relies on quantum
phase estimation [40]. Instead, one could imagine coupling
the DQS to a thermal bath at temperature 1/β, that of the
Gibbs state we want to prepare. If one can fulfill the condition
to “cheat the bath” into seeing the target Hamiltonian as
the effective Hamiltonian for the system, then the bath will
thermalize the system to the equilibrium state of the target
many-body Hamiltonian (provided it is in the Markovian
regime, and the quantum semigroup has the ergodic property
[28,41]). This method may be considered as a noise-assisted
state preparation. Our work provides the conditions under
which this approach would be successful.
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APPENDIX A: DERIVATION OF E (tar)
N,I − E (sim)

N,I

We begin with the approximation of U
(μ)
I (t) (μ = tar,sim) to second order in α [Eq. (19) in the main text]:

U
(μ)
I (t) � 1 − iα

∫ t

0
dsH

(μ)
SB (s) − α2

∫ t

0
ds

∫ s

0
ds ′H (μ)

SB (s)H (μ)
SB (s ′). (A1)

We first gather the relevant relations from the main text: HSB = ∑
k Ak ⊗ Bk , where Ak acts on the system and Bk on the

bath; A
(μ)
k (t) ≡ Uμ(t)†AkUμ(t) and Bk(t) ≡ UB(t)†BkUB(t), the interaction-picture operators; 〈B〉 ≡ Tr(BρB), for any bath-only

operator B and ρB the initial bath state; ρB is a stationary state of HB, i.e., [HB,ρB] = 0, and 〈Bk(t)〉 = 0∀k,t ; the two-point bath
correlation function fk�(t,s) ≡ 〈Bk(t) B�(s)〉, for which fk�(t,s)∗ = f�k(s,t); stationarity means that fk�(t,s) = fk�(t − s,0) ≡
fk�(t − s), and thus fk�(t)∗ = f�k(−t).

Using these, straightforward algebra yields

E (μ)
N,I ( · ) = TrB

(
U

(μ)
I (NT )( · ⊗ ρB)U (μ)

I (NT )†
) = 1 + α2

∑
k�

{∫ NT

0
dt

∫ NT

0
ds fk�(t − s)A(μ)

� (s)( · )A(μ)
k (t)

−
∫ NT

0
dt

∫ t

0
ds fk�(t − s)A(μ)

k (t)A(μ)
� (s)( · ) −

∫ NT

0
dt

∫ t

0
ds ( · )A(μ)

� (s)A(μ)
k (t) fk�(t − s)∗

}
. (A2)
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E (tar)
N,I − E (sim)

N,I is a sum of three maps, each of order α2,

E (tar)
N,I − E (sim)

N,I = α2(�1 + �2 + �3), (A3)

where �i(·) is the difference between μ = tar and μ = sim of the ith nonidentity terms of Eq. (A2). For example, �2(·) is given
by

�2( · ) = −
∑
k�

∫ NT

0
dt

∫ t

0
ds fk�(t − s)

[
A

(tar)
k (t)A(tar)

� (s) − A
(sim)
k (t)A(sim)

� (s)
]
( · )

= −
∑
k�

∫ NT

0
dt

∫ t

0
ds fk�(t − s)

{
A

(tar)
k (t)

[
A

(tar)
� (s) − A

(sim)
� (s)

] + [
A

(tar)
k (t) − A

(sim)
k (t)

]
A

(sim)
� (s)

}
( · )

= −
∑
k�

{∫ NT

0
dt

∫ t

0
ds fk�(t−s)A(tar)

k (t)
[
A

(tar)
� (s)−A

(sim)
� (s)

] +
∫ NT

0
ds

∫ s

0
dt f�k(s−t)

[
A

(tar)
� (s)−A

(sim)
� (s)

]
A

(sim)
k (t)

}
( · )

= −
∑
k�

{∫ NT

0
dt

∫ t

0
ds fk�(t−s)A(tar)

k (t)
[
A

(tar)
� (s)−A

(sim)
� (s)

] +
∫ NT

0
dt

∫ NT

t

ds fk�(t−s)∗
[
A

(tar)
� (s)−A

(sim)
� (s)

]
A

(sim)
k (t)

}
( · ).

(A4)

In the last line, we have used the fact that
∫ NT

0 ds
∫ s

0 dt F (t,s) = ∫ NT

0 dt
∫ NT

t
ds F (t,s) for any function F , and that f�k(x) =

fk�(−x)∗. We switch to dimensionless quantities, with integration variables a ≡ s/T and b ≡ t/T . Then, one can write �2(·) as

�2( · ) = −
∑
k�

∫ N

0
db Ã

(tar)
k (b)

{∫ b

0
da f̃k�(b − a)

[
Ã

(tar)
� (a) − Ã

(sim)
� (a)

]}
( · )

−
∑
k�

∫ N

0
db

{∫ N

b

da f̃k�(b − a)∗
[
Ã

(tar)
� (a) − Ã

(sim)
� (a)

]}
Ã

(sim)
k (b)( · ) . (A5)

Defining, as in the main text,

�k�(b) ≡
∫ b

0
da f̃k�(b − a)

[
Ã

(tar)
� (a) − Ã

(sim)
� (a)

]
,

�k�(b) ≡
∫ N

b

da f̃k�(b − a)
[
Ã

(tar)
� (a) − Ã

(sim)
� (a)

]
, (A6)

we have

�2(·) = −
∑
k�

∫ N

0
db

[
Ã

(tar)
k (b)�k�(b) +�k�(b)†Ã(sim)

k (b)
]
(·) (A7)

as desired. The expression for �1 can be found in a similar manner. That �3(·) = [�2(·)]† is apparent from Eq. (A2).

APPENDIX B: D0(c; x) FOR THE SINGLE-GATE EXACT SIMULATOR

We first gather a few basic relations we will use repeatedly to approximate various terms in our expressions when |x|,εmax � 1.
In what follows, we assume that N is not large, such that N |x| and Nεmax remain � 1. Here, z is a variable taken to be small,
i.e., |z|,N |z| � 1:

eiz − 1 = iz + 1
2 (iz)2 + O(z3),

eiz − 1

iz
= 1 + 1

2 (iz) + O(z2),

1 − eizN

1 − eiz
= N

[
1 + i

2
(N − 1)z + O(z2)

]
. (B1)

We begin with Eq. (35), repeated here for the reader’s convenience:

D0(c; x) = i[ε(1 − eixc) − x(1 − eiε) + eixcx(1 − eiε(1−c))]

x(x − ε)
. (B2)

Consider first the situation where |x̄|,xc � 1, such that the spectral function is significant only for |x| � 1. In addition, we have
the simulation assumption that |ε| � 1, and note that c ∈ (0,1]. In this limit, to linear order in both ε and x, the numerator of
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D0(c; x) takes the approximate form

−εxc

{[
− ixc

2
+ O(x2)

]
+

[
iε

(
1 − c

2

)
+ O(ε2)

]
− ix(1 − c)

[
1 + iε(1 − c)

2
+ O(ε2)

][
1 + ixc

2
+ O(x2)

]}
. (B3)

If |x| � εmax (regime I), keeping only the leading terms, the numerator becomes −εxc[iε(1 − c
2 )]. Together with the denominator,

given by −εx[1 + O(x/ε)], we have

D0(c; x) � iεc

(
1 − c

2

)
(regime I), (B4)

independent of x. If instead, we have εmax � |x| (regime II), the numerator is � −εxc[− ixc
2 − ix(1 − c)] = iεx2c(1 − c

2 ).
Together with the denominator, which is now x2[1 + O(ε/x)], we have again,

D0(c; x) � iεc

(
1 − c

2

)
(regime II), (B5)

the same expression as in regime I. For regime III, where the spectral function is significant only for |x| � 1, the numerator of
D0(c; x) is � iεx[1 − (1 − c)eixc + O(ε)]. This, with the denominator, which is i

x2 [1 + O(ε/x)], we have

D0(c; x) � − ε

x
[1 − (1 − c)eixc] (regime III). (B6)

APPENDIX C: �i ( · )s FOR THE SINGLE-GATE EXACT SIMULATOR

Here, we find expressions for the �i( · )s for the single-gate exact simulator S1, in the limit of R = τg/T → 0. For �1(·), we
need the sum

�k�(b) + �k�(b) =
∑

ε

Ã�(ε)
N−1∑
q=0

e−iε(q+1)Ik�;q(b; 1), (C1)

with Ik�;q(b; 1) = ∫ ∞
−∞ dxJk�(x)e−ix(b−q)D0(1; x). Note that D0(1; c) contains a dependence on ε [see Eq. (35)] that we are not

writing explicitly, to not overburden the notation. We repeat here the expressions for the dimensionless interaction-picture A

operators, in the limit of R → 0,

Ã
(tar)
� (b) =

∑
ε

Ã�(ε)e−iεb

and Ã
(sim)
� (b) =

∑
ε

Ã�(ε)e−iε(�b�+1), (C2)

and note that Ã�(ε)† = Ã�(−ε). Then, �1( · ) is given by

�1( · ) =
∑
k�

∑
εε′

Ã�(ε)( · )Ãk(ε′)
N−1∑
q=0

e−iε(q+1)
∫ N

0
db

∫ ∞

−∞
dx J̃k�(x)e−ix(b−q)D0(1; x)e−iε′b

+
∑
k�

∑
εε′

Ãk(ε′)( · )Ã�(−ε)
N−1∑
q=0

eiε(q+1)
∫ N

0
db

∫ ∞

−∞
dx J̃k�(x)∗eix(b−q)D0(1; x)∗e−iε′(�b�+1). (C3)

The b integrals can be done first (assuming regularity properties of Jk�(x) for the integration order to not matter):∫ N

0
db e−ixbe−iε′b = 1 − e−i(x+ε′)N

i(x + ε′)
;

∫ N

0
db eixbe−iε′(�b�+1) = e−iε′

(eix − 1)

ix

1 − ei(x−ε′)N

1 − ei(x−ε′) . (C4)

The sum over q can also be done, with the q sum in the first line of �1 as

N−1∑
q=0

ei(x−ε)q = 1 − ei(x−ε)N

1 − ei(x−ε)
, (C5)

the sum of an N -term geometric series. The q sum in the second line of �1 is the complex conjugate of the above sum. Now,
�1(·) reads as

�1( · ) =
∑
k�

∑
εε′

Ã�(ε)( · )Ãk(ε′)e−iε

∫ ∞

−∞
dx J̃k�(x)D0(1; x)

1 − e−i(x+ε′)N

i(x + ε′)
1 − ei(x−ε)N

1 − ei(x−ε)

+
∑
k�

∑
εε′

Ãk(ε′)( · )Ã�(−ε)eiε

∫ ∞

−∞
dx J̃k�(x)∗D0(1; x)∗

e−iε′
(eix − 1)

ix

1 − ei(x−ε′)N

1 − ei(x−ε′)

1 − e−i(x−ε)N

1 − e−i(x−ε)
. (C6)
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For �2(·), putting the expressions for �kl and �̄kl into Eq. (A7), we have

�2(·) = −
∑
k�

∑
εε′

Ãk(ε′)Ãl(ε) (·) e−iε

∫ ∞

−∞
dx J̃kl(x)D0(1; x)

1 − e−i(x+ε′)

i(x + ε′)(1 − ei(x−ε))

[
1 − e−i(x+ε′)N

1 − e−i(x+ε′) − 1 − e−i(ε+ε′)N

1 − e−i(ε+ε′)

]

−
∑
kl

∑
εε′

Ãl(ε)Ãk(ε′) (·) e−i(ε+ε′)
∫ ∞

−∞
dx Jkl(x)∗D0(1; −x)

eix − 1

ix(1 − e−i(x+ε))

[
1 − e−i(ε+ε′)N

1 − e−i(ε+ε′) − 1 − ei(x−ε′)N

1 − ei(x−ε′) e−i(x+ε)N

]

−
∑
kl

∑
εε′

Ãk(ε′)Ãl(ε) (·) e−iε 1 − e−i(ε+ε′)N

1 − e−i(ε+ε′)

∫ ∞

−∞
dxJkl(x)

∫ 1

0
db′D0(b′; x)e−i(x+ε′)b′

+
∑
kl

∑
εε′

Ãl(ε)Ãk(ε′) (·) e−i(ε+ε′) 1 − e−i(ε+ε′)N

1 − e−i(ε+ε′)

∫ ∞

−∞
dxJkl(x)∗

∫ 1

0
db′D0(b′; −x) eixb′

. (C7)

For |ε|,|ε′|,|x| � 1, and for N considered as O(1) so that (x − ε)N,(x ± ε′)N � 1, we can approximate the various
exponential terms, to linear order in ε, ε′ and x, using Eq. (B1). For regime II, say, where |ε|,|ε′ � |x| � 1, we then have

�1( · ) �
∑
k�

∑
εε′

Ã�(ε)( · )Ãk(ε′)
∫ ∞

−∞
dx J̃k�(x)

iεN2

2
+

∑
k�

∑
εε′

Ãk(ε′)( · )Ã�(−ε)
∫ ∞

−∞
dx J̃k�(x)∗

−iεN2

2

=
∑
k�

∑
εε′

Ã�(ε)(·)Ãk(ε′)f̃k�(0)
iεN2

2
+

∑
k�

∑
εε′

Ã�(ε)(·)Ãk(ε′)f̃�k(0)∗
iε′N2

2

= iN2

2

∑
k�

f̃k�(0)
∑
εε′

(ε + ε′)Ã�(ε)(·)Ãk(ε′), (C8)

where in the last line, we have used the fact that f̃�k(a)∗ = f̃k�(−a), and replaced D0(1; x) by the approximate expression of
Eq. (B5). A similar analysis for regime I yields the same approximate expression for �1(·).

For �2 in regimes I and II, again, the various exponential expressions in Eq. (C7) can be estimated using Eq. (B1), and one
ends up with

�2( · ) � −
∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)( · )f̃k�(0)
i

4
εN (N − 1) −

∑
k�

∑
εε′

Ã�(ε)Ãk(ε′)( · )f̃k�(0)∗
i

4
εN (N + 1)

−
∑
k�

∑
εε′

Ãk(ε′)Ãl(ε) ( · ) f̃kl(0)
i

3
εN +

∑
k�

∑
εε′

Ã�(ε)Ãk(ε′) ( · )f̃k�(0)∗
i

3
εN

= − i

12
N

∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)( · )f̃k�(0)[3N (ε + ε′) + (ε − ε′)]. (C9)

For large N , the first term in the brackets above dominates the second one, so that �2 ∼ N2. �3( · ) = [�2( · )]† yields the
approximate expression for �3.

In regime III, where |ε|,|ε′| � 1 � |x|,xc, the argument in the main text (see the opening paragraph of Sec. III A 2) tells us
that the q sums in �k�(b) and �k�(b) contain, as significant terms, only those for which q = �b�,�b� ± 1. One then has, for
p ≡ �b� such that b = p + /b,

�k�(b) �
∑

ε

Ã�(ε)e−iεp[�(p − 1)Ik�;p−1(b; 1) + e−iεIk�;p(b; /b)]

�k�(b) �
∑

ε

Ã�(ε)e−iεp[�(N − 2 − p)e−i2εIk�;p+1(b; 1) + e−iεIk�;p(b; 1) − e−iεIk�;p(b; /b)]. (C10)

�(·), as in the main text, is the step function, with the added definition that �(0) = 1.
�1 in this regime can then be estimated, after some straightforward algebra, to be

�1(·) � N
∑
kl

∑
εε′

(−ε)[Ã�(ε)(·)Ãk(ε′) + Ãk(ε′)(·)Ã�(ε)]
∫ ∞

−∞
dxJ̃k�(x)

1 − eix

ix2

[
1 + 2(N − 1)

N
cos x

]
. (C11)

Here, we have set e−iεb,e−iε′b � 1, and D0(1; x) � −ε/x [Eq. (B6)].
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Likewise, one can estimate �2 in regime III as

�2( · ) �
∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)( · )ε
∫ ∞

−∞
dxJ̃k�(x)

1

x

{
1

ix
[(1 − e−ix) + (N − 1)(1 − e−i2x)] − N

2

}

+
∑
k�

∑
εε′

Ã�(−ε)Ãk(ε′)( · )ε
∫ ∞

−∞
dxJ̃k�(x)∗

1

x

{
1

ix
(N − 1)e−ix(1 − e−ix) + N

2

}

� −1

2
N

∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)( · )ε
∫ ∞

−∞
dxJ̃k�(x)

1

x
− 1

2
N

∑
k�

∑
εε′

Ã�(ε)Ãk(ε′)( · )ε
∫ ∞

−∞
dxJ̃k�(x)∗

1

x
. (C12)

In the last (approximate) equality, we have dropped the 1/x terms within the curly braces, since they are small in regime III
(|x| � 1 here), compared to the order-1 N/2 terms. Now, the two integrals can be rewritten as∫ ∞

−∞
dx

J̃k�(x)

x
= −i

∫ 0

−∞
daf̃k�(a) + iπJ̃k�(0),∫ ∞

−∞
dx

J̃k�(x)∗

x
= −i

∫ 0

−∞
daf̃k�(−a)∗ + iπJ̃k�(0)∗. (C13)

In regime III, J̃k�(0) can be taken to be zero—J̃ is significant in regime III only for large |x| values. Hence, we finally have

�2( · ) � i

2
N

∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)( · )ε
∫ 0

−∞
daf̃k�(a) + i

2
N

∑
k�

∑
εε′

Ã�(ε)Ãk(ε′)( · )ε
∫ 0

−∞
daf̃k�(−a)∗

= i

2
N

∑
k�

∑
εε′

Ãk(ε′)Ã�(ε)( · )(ε + ε′)
∫ 0

−∞
daf̃k�(a). (C14)

Lastly, as usual, �3( · ) = �2( · )† gives us the approximate expression for �3.
Note that �1 involves terms of order 1/x2 in the integrand, which are of the same order as those we dropped in computing �2

[see comment right after Eq. (C12)]. Hence, in regime III, �1 can be considered negligible compared to �2 and �3.

APPENDIX D: GLOSSARY

We gather here a list of symbols and notation that will be helpful for the reader to navigate the main text. Throughout the text,
we choose units such that h̄ = 1 and k = 1 (the Boltzmann’s constant):

T is the stroboscopic simulation cycle time, used as the basic unit of time and inverse frequency (or energy) in our analysis.
ω is a transition frequency of the target system; ωmax ≡ max |ω| is the largest transition frequency.
1
ω

gives a time scale of the target system; 1
ωmax

gives the smallest time scale of the target.
νc is the cutoff frequency of the bath spectral function.
τB = 1

νc
is the bath correlation time scale.

β is the inverse temperature; β̃ = β

T
is its dimensionless version.

η is the system-bath coupling constant for the oscillator bath, appearing in the spectral density; η̃ = ηT 1−w is its
dimensionless version, with w the frequency power in the spectral density.

ε = ωT = stroboscopic simulation time scale
time scale of the target .

xc = νcT = T
τB

= stroboscopic simulation time scale
time scale of the bath .

aB ≡ 1/xc = τB/T .
time scale of the bath

time scale of the target = τB
1/ω

= ωτB = ω
νc

= ε
xc

.
thermal energy

energy scale for the target system = 1/β

ω
= 1

βω
= 1

β̃ε
.

τg is the time taken to complete the M-gate sequence for the DQS.
RM = τg/T is the ratio of the M-gate sequence time τg to the simulation cycle time T . When the value of M is clear, we

often drop the subscript M and simply write R.
SM is a DQS that uses an M-gate sequence for the digital simulation of the target Hamiltonian.
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