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Detecting metrologically useful asymmetry and entanglement by a few local measurements
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Important properties of a quantum system are not directly measurable, but they can be disclosed by how fast
the system changes under controlled perturbations. In particular, asymmetry and entanglement can be verified
by reconstructing the state of a quantum system. Yet, this usually requires experimental and computational
resources which increase exponentially with the system size. Here we show how to detect metrologically useful
asymmetry and entanglement by a limited number of measurements. This is achieved by studying how they affect
the speed of evolution of a system under a unitary transformation. We show that the speed of multiqubit systems
can be evaluated by measuring a set of local observables, providing exponential advantage with respect to state
tomography. Indeed, the presented method requires neither the knowledge of the state and the parameter-encoding
Hamiltonian nor global measurements performed on all the constituent subsystems. We implement the detection
scheme in an all-optical experiment.
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I. INTRODUCTION

Quantum coherence and entanglement can generate non-
classical speedup in information processing [1]. Yet, their
experimental verification is challenging. Being not directly
observable, their detection usually implies reconstructing
the full state of the system, which requires a number of
measurements growing exponentially with the system size [2].
Also, verifying their presence is necessary, but not sufficient
to guarantee a computational advantage.

Here we show how to detect useful coherence and en-
tanglement in systems of arbitrary dimension by a limited
sequence of measurements. We propose an experimentally
friendly measure of the speed of a quantum system, i.e., how
fast its state changes under a generic channel, which for n-qubit
systems is a function of a linearly scaling [O(n)] number
of observables. The speed of a quantum system determines
its computational power [3–6]. Quantum speed limits of
open systems also provide information about the environment
structure [7–9], helping develop efficient control strategies
[10–13], and investigate phase transitions of condensed matter
systems [14,15]. We prove a quantitative link between our
speed measure, when undertaking a unitary dynamics, and
metrological quantum resources. In Sec. II, we relate speed to
asymmetry, i.e., the coherence with respect to a Hamiltonian
eigenbasis. Asymmetry underpins the usefulness of a probe
to phase estimation and reference frame alignment [16–19].
Moreover, a superlinear scaling of the speed of multipartite
systems certifies an advantage in metrology powered by
entanglement, as discussed in Sec. III. We show how to
detect asymmetry and entanglement by comparing the speed
of two copies of a system, while performing a phase encoding
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dynamics on only one copy. An important advantage of
the method is that a priori knowledge of the input state
and the Hamiltonian is not required. We demonstrate the
scheme in an all-optical experiment, described in Sec. IV.
An asymmetry lower bound and an entanglement witness are
extracted from the speed of a two-qubit system in dynamics
generated by additive spin Hamiltonians, without brute force
state reconstruction. In Sec. V, we provide for the interested
reader a brief review of information geometry concepts and
the complete proofs of the theoretical results. We draw our
conclusions in Sec. VI.

II. RELATING ASYMMETRY TO OBSERVABLES

The sensitivity of a quantum system to a quantum operation
described by a parametrized channel �t [1], where t is the time,
is determined by how fast its state ρt := �t (ρ0) evolves. We
quantify the system speed over an interval 0 � t � τ by the
average rate of change of the state, which is given by mean
values of quantum operators 〈·〉ρt

= Tr(·ρt ):

sτ (ρt ) := ||ρτ − ρ0||2
τ

= (〈ρτ 〉ρτ
+ 〈ρ0〉ρ0 − 2〈ρτ 〉ρ0 )1/2

τ
, (1)

where the Euclidean distance is employed. Measuring the
swap operator on two system copies is sufficient to quan-
tify state overlaps, 〈σ 〉ρ = 〈V 〉ρ⊗σ ,V (|φ1〉 ⊗ |φ2〉) = |φ2〉 ⊗
|φ1〉,∀|φ1,2〉. The global swap is the product of local
swaps, VS = ⊗n

i=1VSi
. Then, for n-qubit systems S ≡ {Si},i =

1, . . . ,n, a state overlap 〈σS〉ρS
is obtained by evaluating O(n)

observables, one for each pair of subsystem Si copies [20–22].
Each local swap can be recast in terms of projections on the
Bell singlet VSi

= Id2 − 2�
ψ−
Si

,�
ψ−
Si

= |ψ−〉〈ψ−|Si
,|ψ−〉 =

1/
√

2(|01〉 − |10〉), a standard routine of quantum information
processing, e.g., in bosonic lattices. Bell state projections
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are implemented by n beam splitters interfering each pair
of Si copies, and coincidence detection on the correlated
pairs. Hence the speed of an n-qubit system is evaluated
by networks whose size scales linearly with the number of
subsystems, employing O(n) two-qubit gates and detectors.
Note that tomography demands to prepare O(22n) system
copies and perform a measurement on each of them [2]. It
is also possible to extract the swap value by single qubit
interferometry [23–25]. The two copies of the system are
correlated with an ancillary qubit by a controlled-swap gate.

The mean value of the swap is then encoded in the ancilla
polarization. Yet, the implementation of a controlled-swap gate
is currently a serious challenge [26].

Crucial properties of quantum systems can be determined
by measuring the speed defined in Eq. (1), without further data.
Performing a quantum computation UtρU

†
t ,Ut = e−iH t , relies

on the coherence in the Hamiltonian H eigenbasis, a property
called [U (1)] asymmetry [16–19]. In fact, incoherent states
in such a basis do not evolve. Asymmetry is operationally
defined as the system ability to break a symmetry generated
by the Hamiltonian. Asymmetry measures are defined as
nonincreasing functions in symmetry-preserving dynamics,
which are modeled by transformations � commuting with
the Hamiltonian evolution, [�,Ut ] = 0.

Experimentally measuring coherence, and in particular
asymmetry, is hard [27,28]. One cannot discriminate with
certainty coherent states from incoherent mixtures, without full
state reconstruction. We show how to evaluate the asymmetry
of a system by its speed (full details and proofs in Sec. V).
To quantify the sensitivity of a probe state ρ = ∑

i λi |i〉〈i|
to the unitary transformation Ut , we employ the symmetric
logarithmic derivative quantum Fisher information (SLDF), a
widely employed quantity in quantum metrology and quantum
information [29]:

IF (ρ,H ) = 1/2
∑
i,j

(λi − λj )2

λi + λj

|〈i|H |j 〉|2. (2)

Note that the SLDF is one of the many quantum extensions
of the classical Fisher information [30]. Indeed, the SLDF
is an ensemble asymmetry monotone, i.e., an asymmetry
measure, being contractive on average under commuting oper-
ations [31]:

IF (ρ,H ) �
∑

μ

pμIF (�μ(ρ),H ),

∀{pμ,�μ} :
∑

μ

pμ = 1, [�μ,Ut ] = 0. (3)

We observe that this implies that every quantum Fisher
information is an asymmetry ensemble monotone; see Sec. V.

Reconstructing both state and Hamiltonian is required to
compute the SLDF. Yet, few algebra steps show that it is
lower bounded by the squared speed over an interval τ of the
evolution UtρU

†
t :

Sτ (ρ,H ) := sτ (ρ)2/2 = 〈ρ〉ρ − 〈UτρU †
τ 〉ρ

τ 2
,

(4)
Sτ (ρ,H ) � IF (ρ,H ), ∀ρ,τ,H,

where we drop the time label, as the speed is constant. It
is then possible to bound asymmetry with respect to an
arbitrary Hamiltonian by evaluating the purity 〈ρ〉ρ and the
overlap 〈UτρU †

τ 〉ρ . A nonvanishing speed reliably witnesses
asymmetry, sτ (ρ) > 0 ⇐⇒ IF (ρ,H ) > 0,∀τ . The Hamil-
tonian variance is an upper bound to asymmetry, up to
a constant, IF (ρ,H ) � V(ρ,H ) = 〈H 2〉ρ − 〈H 〉2

ρ,∀ρ,H . Yet
the variance is generally not a reliable indicator of asymmetry,
as it is arbitrarily large for incoherent mixed states. The chain
of inequalities is saturated for pure states, in the zero time limit,
lim
τ→0

Sτ (ρψ,H ) = IF (ρψ,H ) = V(ρψ,H ), ρψ = |ψ〉〈ψ |.
In fact, the quantum Fisher information quantifies the

instantaneous response to a perturbation [11,30].

III. WITNESSING METROLOGICALLY
USEFUL ENTANGLEMENT

We extend the analysis to multipartite systems, proving
that nonlinear speed scaling witnesses useful entanglement.
Consider a phase estimation protocol, a building block of
quantum computation and metrology schemes [1,3,11]. A
phase shift Uτ,i = e−ihi τ is applied in parallel to each site
of an n-qubit probe. The generator is an additive Hamiltonian
Hn = ∑n

i=1 hi, hi = I1,...,i−1 ⊗ σi ⊗ Ii+1,...,n, where σ is an
arbitrary spin-1/2 operator. The goal is to estimate the
parameter τ by an estimator τest, extracted from measurements
on the perturbed system. The quantum Cramér-Rao bound
establishes that asymmetry, measured by the SLDF, bounds
the estimation precision, expressed via the estimator variance,
V(ρ,τest) � [νIF (ρ,Hn)]−1,∀ρ,Hn, where ν is the number of
trials, and the estimation is assumed unbiased, 〈τest〉ρ = τ .
Separable states achieve at best IF (ρ,Hn) = O(n), while
entanglement asymptotically enables up to a quadratic im-
provement,IF (ρ,Hn) = O(n2),n → ∞. Specifically, with the
adopted normalization, the relation IF (ρ,Hn) > n/4, i.e.,
superlinear asymmetry with respect to an additive observable,
witnesses entanglement [32]. Given Eq. (4), entanglement-
enhanced precision in estimating a phase shift τ is verified if

Sτ (ρ,Hn) > n/4. (5)

The overlap detection network for n-qubit systems and
additive Hamiltonians is depicted in Fig. 1. Evaluating the
SLDF is an appealing strategy to verify an advantage given by
entanglement, rather than just detecting quantum correlations
[22,33–38]. The SLDF of thermal states can be extracted
by measuring the system dynamic susceptibility [39], while
lower bounds are obtained by two-time detections of a global
observable [40,41]. Also, collective observables can witness
entanglement in highly symmetric states [42]. Our proposal
has two peculiar advantages. First, it is applicable to any probe
state ρ without a priori information and assumptions, e.g.,
invariance under permutation of the subsystems. Second, only
local pairwise interactions and detections are needed. This
means that distant laboratories can verify quantum speedup
due to entanglement in a shared system S by local operations
and classical communication [1], providing each laboratory
with two copies of a subsystem Si . Note that quadratic speed

042327-2



DETECTING METROLOGICALLY USEFUL ASYMMETRY AND . . . PHYSICAL REVIEW A 96, 042327 (2017)

S1
ρ

S1
ρ

S2
ρ

S2
ρ

Sn
ρ

Sn
ρ

τ,1U
UBS

UBS

UBS

τ,2U

τ,nU

FIG. 1. Overlap detection. The network evaluates the overlap
〈e−iHnτ ρ2

Se
iHnτ 〉ρ1

S
, Hn = ∑n

i=1 hi, in an n-qubit system S ≡ {Si}.
Each pair of subsystem Si copies, in the state ρ1

Si
⊗ ρ2

Si
, enters

a two-arm channel (blue and green). The unitaries Uτ,i = e−ihi τ

are applied to the second copy of each pair. Leaving both copies
unperturbed, the network measures the state purity. The measurement
apparatus (red) interferes each pair of subsystem copies by O(n) beam
splitter gates UBS [20]. The overlap, and therefore the speed function
in Eq. (4), is extracted by O(n) local detections.

scaling certifies the probe optimization,Sτ (ρ,Hn) = O(n2) ⇒
IF (ρ,Hn) = O(n2).

IV. EXPERIMENTAL ASYMMETRY
AND ENTANGLEMENT DETECTION

A. Implementation

We experimentally extract a lower bound to metrologically
useful asymmetry and entanglement of a two-qubit system
AB in an optical setup, by measuring its speed during a
unitary evolution. While employing state tomography would
require fifteen measurements, we verify that the proposed
protocol needs six. The system is prepared in a mixture of
Bell states, ρp,AB = p|φ+〉〈φ+| + (1 − p)|φ−〉〈φ−|, |φ±〉 =
1/

√
2(|00〉 ± |11〉), p ∈ [0,1]. We implement transformations

generated by the Hamiltonians H2 = ∑
i=A,B hi, h = σx,y,z,

where σx,y,z are the spin-1/2 Pauli matrices, for equally stepped
values of the mixing parameter, p = 0,0.1,0.2, . . . ,0.9,1, over
an interval τ = π/6. The squared speed function Sπ/6(ρp,H2)
is evaluated from purity and overlap measurements.

Each run of the experiment implements the scheme in
Fig. 2. We prepare two copies (Copy 1,2) of a maximally
entangled two-qubit state |φ+〉 = 1/

√
2(HH + VV), where

H,V label horizontal and vertical photon polarizations,
from three spontaneous parametric down-conversion sources
(SPDC Source 1,2,3). They are generated by ultrafast 90 mW
pump pulses from a mode-locked Ti:sapphire laser, with a
central wavelength of 780 nm, a pulse duration of 140 fs,
and a repetition rate of 76 MHz. Copy 1 (photons 1,2)

FIG. 2. Experimental setup. We prepare two copies of a Bell
state |φ+〉 by a laser-emitted ultraviolet pulse split into three beams
pumping SPDC sources. The scheme guarantees that both copies are
emitted by different sources. Conversely, in a two source setting, the
fourfold coincidences in the BSMs could be generated by two photon
pairs emitted from a single source, invalidating the experiment. The
four terms of the mixture are obtained by rotating QWP1,2. Purity
and overlap measurements are implemented via BSM schemes. A
multichannel unit counts the sixfold coincidences (one detector fire
in each output mode).

is obtained from Source 1, by employing a sandwichlike
beta-barium borate (BBO) crystal [43]. Copy 2 is prepared
from Source 2,3. Two photon pairs (photons 3–6) are
generated via single BBO crystals (beamlike type-II phase
matching). By detecting photons 5,6, a product state encoded
in photons 3,4 is triggered. Photons 3–4 polarizations
are rotated via half-wave plates (HWPs). They are then
interfered by a polarizing beam splitter (PBS) for parity
check measurements. We then simulate the preparation of the
state ρ1

p ⊗ ρ2
p = p2�

φ+φ+
12 + p(1 − p)(�φ+φ−

12 + �
φ−φ+
12 ) +

(1 − p)2�
φ−φ−
12 , �

φ±φ±
12 = |φ±〉〈φ±|A1B1 ⊗ |φ±〉〈φ±|A2B2 .

Classical mixing is obtained by applying quarter-wave plates
(QWP1,QWP2) to each system copy. A 90◦ rotated QWP
swaps the Bell states, |φ±〉 → |φ∓〉, generating a π phase shift
between H,V polarizations. The four terms of the mixture are
obtained in separate runs by engineering the rotation sequences
(QWP1,QWP2) = {(0◦,0◦),(0◦,90◦),(90◦,0◦),(90◦,90◦)},
with a duration proportional to {p2,p(1 − p),p(1 − p),(1 −
p)2}, respectively. The collected data from the four cases are
then identical to the ones obtained from direct preparation of
the mixture.

We quantify the speed by measuring the purity 〈V12〉ρ1
p⊗ρ2

p

and the overlap 〈V12〉ρ1
p⊗Uπ/6ρ2

pU
†
π/6

. The unitary gate Uπ/6 =
Uπ/6,A2 ⊗ Uπ/6,B2 ,Uπ/6,A2(B2) = e−ihA2(B2)π/6 is applied to the
second system copy by a sequence of one HWP sandwiched
by two QWPs. The sequences of gates implementing each
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TABLE I. Angles of the wave plates implementing the unitary
gates.

Angles I UX UY UZ

θ1
π

4
π

2
π

4
π

4

θ2
π

4 − π

24
5π

24
5π

24

θ3
π

4
π

2
π

6
π

4

Hamiltonian are obtained as follows. Single qubit unitary gates
implement SU(2) group transformations. We parametrize the
rotations by the Euler angles (ξ,η,ζ ):

u(ξ,η,ζ ) := exp

(
−i

1

2
ξσy

)
exp

(
−i

1

2
ησx

)

× exp

(
−i

1

2
ζσy

)
, (6)

where σx,y,z are the Pauli matrices. One can engineer arbi-
trary single qubit gates by a θ -rotated HWP implementing
the transformation Hθ , sandwiched by two rotated QWPs
(transformations Qθ ):

u(ξ,η,ζ ) = Qθ3Hθ2Qθ1 , (7)

where θ1,2,3 are the rotation angles to apply to each plate [44].
In particular, any unitary transformation is prepared by a gate
sequence of the form

θ1 = π/4 − ζ/2 mod π,

θ2 = −π/4 + (ξ + η − ζ )/4 mod π,

θ3 = π/4 + ξ/2 mod π. (8)

The phase shift angles characterizing the Hamiltonian evolu-
tions studied in our experiment are shown in Table I.

The mean value of the swap operator is extracted by
local and bilocal projections on the Bell singlet: V12 =
I12 − 2�

ψ−
1 ⊗ I2 − 2I1 ⊗ �

ψ−
2 + 4�

ψ−ψ−
12 . That is, three pro-

jections are required for evaluating purity and overlap,
respectively. Note that for n qubits O(2n) projections are
required, still having exponential advantage with respect to
full tomography. The projections are obtained via Bell state
measurement (BSM) schemes applied to each subsystem pair.
The BSMs consist of PBSs, HWPs, and photon detectors. We
place a 45◦ HWP in the input ports of the PBS corresponding
to the A1,B1 subsystems to deterministically project into the
Bell singlet [45]. All the photons pass through single mode

fibers for spatial mode selection. For spectral mode selection,
photons 1–4 (5,6) pass through 3 nm (8 nm) bandwidth filters.

The theoretical values to be extracted are given in Table II.
The experimental results are reported in Fig. 3. For each Hamil-
tonian, we reconstruct the speed function Sπ/6(ρp,H2) from
purity and overlap measurements, and compare it against the
values obtained by state tomography of the two system copies.
By Eq. (5), entanglement is detected by superlinear speed
scaling Sπ/6(ρp,H2) � 1/2. We observe that speed values
above the threshold detect entanglement yielding nonclassical
precision in phase estimation, not just nonseparability of the
density matrix (the state ρp is entangled for p �= 1/2).

B. Diagnostic of the experimental setup

1. Error sources

We discuss the efficiency of the experimental setup. The
four photons interfering into the BSMs form a closed-loop
network (Fig. 2). This poses the problem to rule out the case
of BSMs measuring two photon pairs emitted by a single SPDC
source [46]. We guarantee to generate the two system copies
from different sources by preparing Copy 2 from two photon
pair sources by postselection. Single source double down
conversion can also occur because of high-order emission
noise, which has been minimized by setting a low pump
power. The coincidences have been counted by a multichannel
unit, with a 50 h rate for about 6 h in each experiment run.
Here the main error source is the imperfection of the three
Hang-Ou-Mandel interferometers (one for the PBS and each
BSM), which have a visibility of 0.91. This is due to the
temporal distinguishability between the interfering photons,
determined by the pulse duration. The 3 nm and 8 nm
narrow-band filters were placed in front of each detector to
increase the photon overlap.

2. Tomography of the input Bell state copies

We perform full state reconstruction of the two copies
(Copy 1,2) of the Bell states φ±

1,2 obtained by SPDC sources.
The fidelity of the input states are respectively 0.9889 (φ+

1 ),
0.9901 (φ−

1 ), 0.9279 (φ+
2 ), and 0.9319 (φ−

2 ). We recall that
Copy 1 (subsystems A1B1) is generated by the sandwichlike
Source 1 (photons 1,2), while Copy 2 (A2B2) is triggered by
Sources 2,3 via parity check gate and postselection applied to
two product states (photons 3–6). The counting rate for the
Copy 1 photon pair is 32 000 s, while for the four photons of
Copy 2 is 110 s. We use the maximum likelihood estimation

TABLE II. Theoretical values. The table reports the theoretical values of the SLDF, which is the smallest quantum Fisher information
(multiplying it by a constant turns it into the biggest one; see Sec. V), the lower bound Sτ (ρp,H2) [Eq. (4)], and the related entanglement
witness conditions [Eq. (5)], for the Bell state mixture ρp and the spin Hamiltonians H2.

h σx σy σz

IF (ρp,H2) p (1 − p) (1 − 2p)2

Sτ (ρp,H2) (p sin τ/4τ )2 [(1 − p) sin τ/4τ ]2 [(1 − 2p) sin τ/4τ ]2

IF (ρp,H2) > 0.5 p > 0.5 p < 0.5 p < 0.147,p > 0.853

Sπ/6(ρp,H2) > 0.5 p > 0.741 p < 0.259 p < 0.129,p > 0.870
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FIG. 3. Experimental results. We evaluate the speed of a two-qubit system in the state ρp = p|φ+〉〈φ+| + (1 − p)|φ−〉〈φ−|, for unitary
evolutions UτρpU †

τ ,Uτ = e−iH2τ , H2 = σx,y,z A ⊗ IB + IA ⊗ σx,y,z B, over an interval τ = π/6. In (a)–(c), the blue continuous line is the
theoretical speed function Sπ/6(ρp,H2), which we aim at reconstructing, while the blue points are the experimental values extracted from purity
and overlap measurements, for p = 0,0.1,0.2, . . . ,0.9,1. The error bars are determined by Monte Carlo simulation with Poisson-distributed
error (1000 samples for each point). For comparison, the two green dashed lines depict the speed function computed from the reconstructed
states of copy 1,2 (the density matrices are reported in the main text), respectively. Superlinear scaling due to entanglement is detected for
values above the horizontal, black dotted line.

method to reconstruct the related density matrices, which read

φ+
1 =

⎛
⎜⎜⎜⎝

0.5146 + 0.0000i −0.0158 + 0.0031i 0.0058 + 0.0029i 0.4923 + 0.0071i

−0.0158 − 0.0031i 0.0039 + 0.0000i −0.0003 − 0.0026i −0.0173 − 0.0021i

0.0058 − 0.0029i −0.0003 + 0.0026i 0.0029 + 0.0000i 0.0029 − 0.0043i

0.4923 − 0.0071i −0.0173 + 0.0021i 0.0029 + 0.0043i 0.4787 + 0.0000i

⎞
⎟⎟⎟⎠,

φ−
1 =

⎛
⎜⎜⎜⎝

0.5072 + 0.0000i −0.0065 + 0.0008i −0.0052 + 0.0028i −0.4931 − 0.0090i

−0.0065 − 0.0008i 0.0030 + 0.0000i 0.0007 + 0.0021i 0.0065 + 0.0016i

−0.0052 − 0.0028i 0.0007 − 0.0021i 0.0029 + 0.0000i 0.0056 + 0.0034i

−0.4931 + 0.0090i 0.0065 − 0.0016i 0.0056 − 0.0034i 0.4869 + 0.0000i

⎞
⎟⎟⎟⎠,

φ+
2 =

⎛
⎜⎜⎜⎝

0.4881 + 0.0000i −0.0108 + 0.0041i 0.0063 + 0.0091i 0.4486 + 0.0509i

−0.0108 − 0.0041i 0.0216 + 0.0000i −0.0029 − 0.0066i −0.0140 − 0.0068i

0.0063 − 0.0091i −0.0029 + 0.0066i 0.0198 + 0.0000i 0.0044 − 0.0073i

0.4486 − 0.0509i −0.0140 + 0.0068i 0.0044 + 0.0073i 0.4706 + 0.0000i

⎞
⎟⎟⎟⎠,

φ−
2 =

⎛
⎜⎜⎜⎝

0.4911 + 0.0000i 0.0041 − 0.0184i 0.0058 + 0.0075i −0.4502 − 0.0462i

0.0041 + 0.0184i 0.0155 + 0.0000i 0.0005 + 0.0080i 0.0041 − 0.0089i

0.0058 − 0.0075i 0.0005 − 0.0080i 0.0209 + 0.0000i −0.0085 + 0.0182i

−0.4502 + 0.0462i 0.0041 + 0.0089i −0.0085 − 0.0182i 0.4724 + 0.0000i

⎞
⎟⎟⎟⎠.

3. Tomography of the Bell state measurements

We analyze the efficiency of the measurement apparata. A BSM consists of Hang-Ou-Mandel (HOM) interferometers and
coincidence counts. The BSM is only partially deterministic, discriminating two of the four Bell states (|φ±〉 or |ψ±〉) at a time.
The interferometry visibility in our setting is 0.91. Two BSM (1,2) are required to evaluate purity and overlap by measurements
on two system copies. This requires the indistinguishability of the four interfering photons 1–4, including their arriving time,
spatial mode, and frequency. As explained, our three source scheme ensures that, postselecting sixfold coincidences, each detected
photon pair is emitted by a different source. We test our measurement hardware by performing BSM tomography. The probe states
are chosen of the form |{H,V,D,A,R,L}〉⊗ |{H,V,D,A,R,L}〉, where the labels identify the following photon polarizations:
horizontal (H), vertical (V), diagonal [D = (H + V)/

√
2], antidiagonal [A = (H − V)/

√
2], right circular [R = (H + iV)/

√
2],

and left circular [L = (H − iV)/
√

2]. The measurement results for all the possible outcomes are recorded accordingly. An iterative
maximum likelihood estimation algorithm yields the estimation of what projection is performed in each run [47]. The average
fidelities of BSM1 and BSM2 are 0.9389 ± 0.0030 and 0.9360 ± 0.0034, being the standard deviation calculated from 100 runs,
by assuming Poisson statistics. The estimated Bell state projections �1(2)

x = |x〉〈x|A1(B1)A2(B2),x = φ±,ψ±, reconstructed from
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BSM1 (detecting on subsystems A1A2) and BSM2 (detecting on B1B2), are given by

�
φ+
1 =

⎛
⎜⎜⎜⎝

0.5142 0.0096 − 0.0102i 0.0043 − 0.0055i 0.4443 − 0.0088i

0.0096 + 0.0102i 0.0024 −0.0005 + 0.0007i −0.0037 + 0.0018i

0.0043 + 0.0055i −0.0005 − 0.0007i 0.0052 0.0003 + 0.0110i

0.4443 + 0.0088i −0.0037 − 0.0018i 0.0003 − 0.0110i 0.4863

⎞
⎟⎟⎟⎠,

�
φ−
1 =

⎛
⎜⎜⎜⎝

0.4816 −0.0088 + 0.0057i −0.0081 + 0.0039i −0.4481 + 0.0048i

−0.0088 − 0.0057i 0.0031 0.0013 + 0.0019i 0.0136 − 0.0096i

−0.0081 − 0.0039i 0.0013 − 0.0019i 0.0018 −0.0001 − 0.0055i

−0.4481 − 0.0048i 0.0136 + 0.0096i −0.0001 + 0.0055i 0.5033

⎞
⎟⎟⎟⎠,

�
ψ+
1 =

⎛
⎜⎜⎜⎝

0.0014 −0.0000 − 0.0083i 0.0100 − 0.0010i 0.0006 + 0.0006i

−0.0000 + 0.0083i 0.4954 0.4382 − 0.0059i −0.0136 + 0.0147i

0.0100 + 0.0010i 0.4382 + 0.0059i 0.5059 −0.0057 + 0.0143i

0.0006 − 0.0006i −0.0136 − 0.0147i −0.0057 − 0.0143i 0.0014

⎞
⎟⎟⎟⎠,

�
ψ−
1 =

⎛
⎜⎜⎜⎝

0.0027 −0.0008 + 0.0128i −0.0062 + 0.0026i 0.0032 + 0.0033i

−0.0008 − 0.0128i 0.4991 −0.4390 + 0.0033i 0.0038 − 0.0068i

−0.0062 − 0.0026i −0.4390 − 0.0033i 0.4871 0.0054 − 0.0198i

0.0032 − 0.0033i 0.0038 + 0.0068i 0.0054 + 0.0198i 0.0090

⎞
⎟⎟⎟⎠,

�
φ+
2 =

⎛
⎜⎜⎜⎝

0.4893 0.0043 − 0.0223i 0.0064 − 0.0182i 0.4397 − 0.0667i

0.0043 + 0.0223i 0.0017 0.0008 − 0.0004i 0.0003 + 0.0159i

0.0064 + 0.0182i 0.0008 + 0.0004i 0.0012 0.0123 + 0.0107i

0.4397 + 0.0667i 0.0003 − 0.0159i 0.0123 − 0.0107i 0.4942

⎞
⎟⎟⎟⎠,

�
φ−
2 =

⎛
⎜⎜⎜⎝

0.5036 0.0050 − 0.0021i −0.0015 + 0.0040i −0.4413 + 0.0636i

0.0050 + 0.0021i 0.0023 −0.0011 + 0.0008i 0.0091 − 0.0072i

−0.0015 − 0.0040i −0.0011 − 0.0008i 0.0011 −0.0069 + 0.0007i

−0.4413 − 0.0636i 0.0091 + 0.0072i −0.0069 − 0.0007i 0.4987

⎞
⎟⎟⎟⎠,

�
ψ+
2 =

⎛
⎜⎜⎜⎝

0.0032 −0.0098 + 0.0070i −0.0140 + 0.0192i 0.0018 + 0.0016i

−0.0098 − 0.0070i 0.4919 0.4375 + 0.0446i −0.0101 − 0.0085i

−0.0140 − 0.0192i 0.4375 − 0.0446i 0.5012 −0.0059 − 0.0061i

0.0018 − 0.0016i −0.0101 + 0.0085i −0.0059 + 0.0061i 0.0050

⎞
⎟⎟⎟⎠,

�
ψ−
2 =

⎛
⎜⎜⎜⎝

0.0039 0.0005 + 0.0173i 0.0091 − 0.0049i −0.0001 + 0.0014i

0.0005 − 0.0173i 0.5041 −0.4371 − 0.0451i 0.0007 − 0.0002i

0.0091 + 0.0049i −0.4371 + 0.0451i 0.4965 0.0004 − 0.0052i

−0.0001 − 0.0014i 0.0007 + 0.0002i 0.0004 + 0.0052i 0.0021

⎞
⎟⎟⎟⎠.

V. THEORY BACKGROUND AND FULL PROOFS

A. Quantum Fisher information as measures
of state sensitivity

Quantum information geometry studies quantum states and
channels as geometric objects. The Hilbert space of a finite d-
dimensional quantum system admits a Riemannian structure;
thus it is possible to apply differential geometry concepts and
tools to characterize quantum processes. For an introduction
to the subject, see Refs. [48,49].

The information about a d-dimensional physical system is
encoded in states represented by d × d complex Hermitian

matrices ρ � 0, Tr(ρ) = 1, ρ = ρ†, in the system Hilbert
space H. Each subset of rank k states is a smooth manifold
Mk(H) of dimension 2dk − k2 − 1 [50]. The set of all states
M(H) = ∪d

k=1Mk(H) forms a stratified manifold, where the
stratification is induced by the rank k. The boundary of
the manifold is given by the density matrices satisfying the
condition det ρ = 0.

State transformations are represented on M(H) as piece-
wise smooth curves ρ : t → ρt , where ρt represents the
quantum state of the system at time t ⊆ R. By employing
differential geometry techniques, it is possible to study the
space of quantum states M(H) as a Riemannian structure.
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The length of a path ρt , t ∈ [0,τ ], on the manifold is given by
the integral of the line element

lρt
=

∫ τ

0
ds =

∫ τ

0
||∂tρt || dt, (9)

where the norm is induced by equipping M(H) with a
symmetric, semipositive definite metric. The path length is
invariant under monotone reparametrizations of the coordinate
t . The definition of a metric function yields the notion of
distance d(ρ,σ ) between two quantum states ρ,σ . The choice
of the metric is arbitrary. However, Morozova, Chentsov,
and Petz identified a class of functions, the quantum Fisher
information, which extends the contractivity of the classi-
cal Fisher-Rao metric under noisy operations to quantum
manifolds. This means that they have the appealing feature
to be the unique class of contractive Riemannian metrics
under completely positive trace preserving (CPTP) maps �:
d(�(ρ),�(σ )) � d(ρ,σ ),∀ρ,σ,� [51,52]. For such a class
of metrics, given the spectral decomposition of an input
ρ = ∑

i λi |i〉〈i|, the line element associated to an infinitesimal
displacement ρ → ρ + dρ takes the form

dsf =
√∑

i

(dλi)2/4λi +
∑
i<j

cf (λi,λj )/2|〈i|dρ|j 〉|2. (10)

The terms cf (i,j ) = [jf (i/j )]−1, where the f ’s are the
Chentsov-Morozova functions [52], identify the elements of
the class. We here describe their main properties, by focusing
the analysis on the subclass of function identified by the
regularity condition f (0) > 0. The set of symmetric, normal-
ized Chentsov-Morozova operator monotones Fop consists
of the real-valued functions f : R+ → R+ such that (i) for
any Hermitian operators A,B such that 0 � A � B, we have
0 � f (A) � f (B), (ii) f (x) = xf (x−1), and (iii) f (1) = 1.

Thus the following properties are satisfied: (i) 1/cf (x,1) :
R+ → R+; (ii) cf (x,y) = cf (y,x), cf (zx,zy) = z−1cf (x,y);
(iii) x cf (x,1) = cf (1/x,1); (iv) x � y ⇒ cf (y,1) � cf (x,1);
(v) cf (1,1) = 1.

By extending the domain of these functions to positive
square matrices, they enjoy a one-to-one correspondence with
the set Mm

op of matrix means m(A,B); see Ref. [53] for a list
of defining properties. The link between the two sets is

mf (A,B) := A
1
2 f

(
A− 1

2 BA− 1
2
)
A

1
2 , (11)

which reduces to mf (A,B) = Af (BA−1) for commuting A,B.
Thus matrix means also have a bijection with the set of
monotone Riemannian metrics which give rise to norms
||A||ρ,f defined by

||A||2ρ,f := Tr[Amf (Lρ,Rρ)−1(A)], (12)

where Rρ and Lρ are the right- and left-multiplication su-
peroperators: Rρ(A) = Aρ,Lρ(A) = ρA. The monotonicity
property of these metrics implies contractivity under any CPTP
map,

||�(A)||�(ρ),f � ||A||ρ,f . (13)

When applied to the stratified manifold of quantum states,
such norms correspond to the quantum Fisher information.
Indeed, any metric defined on the manifold induces a metric

on a parametrized curve ρt = ∑
i λi(t)|i(t)〉〈i(t)|. The squared

rate of change at time t is then given by the tangent vector
length

||∂tρt ||2f =
∑
i,j

|〈i(t)|∂tρt |j (t)〉|2
λj (t)f (λi(t)/λj (t))

=
∑

i

(dtλi(t))2/4λi(t)

+
∑
i<j

cf (λi(t),λj (t))/2|〈i(t)|∂tρt |j (t)〉|2. (14)

The dynamics of the quantum Fisher information for
closed and open quantum systems has been studied in
Ref. [7].

All such metrics reduce to the classical Fisher-Rao metric∑
i (dtλi(t))2/(λi(t)) for stochastic dynamics of probability

distributions {λi(t)}, represented at any time by a diagonal
density matrix. On the other hand, unitary transformations
ρt = UtρU

†
t are genuinely quantum, as only the eigenba-

sis elements evolve. We focus on the latter case. Let us
consider the unitary transformation UtρU

†
t , Ut = e−iH t . The

quantum Fisher information associated with f ∈ Fop read
f (0)

2 ||i[ρ,H ]||2f . We here absorb the constant factor and recast
the quantity in the more compact form

If (ρ,H ) := 1/4||i[ρ,H ]||2f . (15)

For pure states, one has 2f (0)If (|ψ〉〈ψ |,H ) =
V(|ψ〉〈ψ |,H ) = 〈H 2〉ψ − 〈H 〉2

ψ,∀f . For an arbitrary
initial state ρ = ∑

i λi |i〉〈i|, it can be shown that

If (ρ,H ) = 1

4

∑
i,j

(λi − λj )2

λjf (λi/λj )
|〈i|H |j 〉|2, (16)

where each term in the sum is taken to be zero whenever
λi = λj [49].

B. Proofs of theoretical results

1. Proof that any quantum Fisher information is an ensemble
asymmetry monotone, extending the result in Eq. (3)

We prove two preliminary results upon which the result will
be demonstrated.

(i) For any set of states ρμ and normalized probabilities pμ,
and an orthonormal set {|μ〉},

If

(∑
μ

pμρμ ⊗ |μ〉〈μ|,H ⊗ I

)
=

∑
μ

pμIf (ρμ,H ),∀f.
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Let each ρμ have a spectral decomposition ρμ = ∑
i λi|μ|ψμ,i〉〈ψμ,i |. Recalling Eq. (2), and defining λμ,i := pμλi|μ, one has

If

(∑
μ

pμρμ ⊗ |μ〉〈μ|,H ⊗ I

)
= 1

4

∑
μ,ν,i,j

(λμ,i − λν,j )2

λν,jf (λμ,i/λν,j )
|〈ψμ,i |〈μ|(H ⊗ I)|ψν,j 〉|ν〉|2

= 1

4

∑
μ,i,j

(λμ,i − λμ,j )2

λμ,jf (λμ,i/λμ,j )
|〈ψμ,i |H |ψμ,j 〉|2

= 1

4

∑
μ,i,j

p2
μ(λi|μ − λj |μ)2

pμλj |μf (λi|μ/λj |μ)
|〈ψμ,i |H |ψμ,j 〉|2 =

∑
μ

pμIf (ρμ,H ).

(ii)If (ρ,H ) is convex in ρ. This follows from (i), by tracing
out the ancillary system, as If is monotonically decreasing
under partial trace:

∑
μ

pμIf (ρμ,H ) = If

(∑
μ

pμρμ ⊗ |μ〉〈μ|
)

� If

(∑
μ

pμρμ,H

)
.

We are now ready to prove deterministic monotonicity.
Recall that a U (1)-covariant channel, i.e., a symmetric
operation, � is defined to be such that [�,Ut ] = 0, where
Ut (ρ) := e−iH tρ eiHt . Noting that −i[H,ρ] = dtUt (ρ)|t=0,
we have If (ρ,H ) = f (0)

2 ||dtUt (ρ)|0||2f . The linearity of � and
the monotonicity property then give

||dtUt (�(ρ))||f = ||dt�(Ut (ρ))||f
= ||�(dtUt (ρ))||f � ||dtUt (ρ)||f ,

so that If (�(ρ),A) � If (ρ,A),∀f .
To prove the ensemble monotonicity, we introduce a

quantum instrument as a set of covariant maps {�μ} which
are not necessarily trace preserving, while the sum

∑
μ �μ

is. For every quantum instrument, one can construct a trace-
preserving operation by including in the output an ancilla that
records which outcome was obtained via a set of orthonormal
states {|μ〉}, �′(ρ) := ∑

μ �μ(ρ) ⊗ |μ〉〈μ|. Tracing out the
ancilla results in the channel

∑
μ �μ. It is clear that �′

is covariant whenever each of the �μ is. Writing �′(ρ) =∑
μ pμρμ ⊗ |μ〉〈μ|, result (i) and deterministic monotonicity

imply

∑
μ

pμIf (ρμ,H ) = If

(∑
μ

pμρμ ⊗ |μ〉〈μ|,H ⊗ I

)

= If (�′(ρ),H ⊗ I )

� If (ρ,H ).

2. Proof that the speed bounds any quantum Fisher information,
generalizing Eq. (4)

It is possible to express the system speed in terms of the
Hilbert-Schmidt distance DHS(ρ,σ ) =

√
Tr((ρ − σ )2) and the

related norm,

Sτ (ρ,H ) = D2
HS(ρ,UτρU †

τ )/(2τ 2) = ||UτρU †
τ − ρ||22/(2τ 2).

The zero shift limit is given by

S0(ρ,H ) := lim
τ−>0

Sτ (ρ,H ) = −1/2 Tr([ρ,H ]2).

By expanding the quantity in terms of the state spectrum and
eigenbasis, one has S0(ρ,H ) = ∑

i �=j (λi − λj )2/2|〈i|H |j 〉|2.
We recall the norm inequality chain f (0)/2 ||A||f �

1/4||A||F � 1/4||A||f , ∀f,A, which, for unitary transforma-
tions e−iH tρ eiHt , implies the topological equivalence of the
quantum Fisher information:

2f (0)If (ρ,H ) � IF (ρ,H ) � If (ρ,H ), ∀f,ρ,H,

where F labels the SLDF [53]. We note that its expan-
sion for unitary transformations reads IF (ρ,H ) = ∑

i �=j (λi −
λj )2/[2(λi + λj )]|〈i|H |j 〉|2. Since λi + λj � 1, ∀i,j , it fol-
lows that

S0(ρ,H ) � IF (ρ,H ), ∀ρ,H.

Any distance between two states is defined as the length of the
shortest path between them. By recalling the von Neumann
equation ∂tρt = i[ρt ,H ], and integrating over the unitary
evolution Ut , one obtains

DHS(ρ,UτρU †
τ ) �

∫ ρt≡Uτ ρU
†
τ

ρt≡ρ

||∂tρt ||2 dt

�
∫ ρt≡Uτ ρU

†
τ

ρt≡ρ

(−Tr([ρ,H ]2))1/2dt

=
∫ ρt≡Uτ ρU

†
τ

ρt≡ρ

[2S0(ρ,H )]1/2dt

= [2S0(ρ,H )]1/2τ

� [2IF (ρ,H )]1/2τ

� [2If (ρ,H )]1/2τ, ∀f.

Hence the bound is proven. The inequality is saturated for pure
states in the limit τ → 0.

3. Bonus: Determining the scaling of the SLDF from speed
measurements for pure states mixed with white noise

Suppose we are given the state

ρε = (1 − ε)ρψ + ε
Id

d
,
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where Id is the identity of dimension d, while ρψ is an arbitrary
pure state and ε is unknown. By convexity, one has

IF (ρε,H ) � (1 − ε)IF (|ψ〉〈ψ |,H )

� (1 − ε)S0(|ψ〉〈ψ |,H ), ∀H,

since Id/d is an incoherent state in any basis. By Eq. (2), few
algebra steps give

S0(ρε,H ) � IF (ρε,H ) �
√

d − 1

d Tr
(
ρ2

ε

) − 1
S0(ρε,H ).

By Taylor expansion about τ = 0, one has Sτ (ρ,H ) =
S0(ρ,H ) + O(τ 2),∀ρ,H . Thus measuring the speed function
Sτ (ρε) and the state purity determines both upper and lower
bounds to the SDLF, and consequently to any quantum Fisher
information, up to an experimentally controllable error due to
the selected time shift.

VI. CONCLUSION

We showed how to extract quantitative bounds to metro-
logically useful asymmetry and entanglement in multipartite
systems from a limited number of measurements, demonstrat-
ing the method in an all-optical experiment. The scalability of
the scheme may make possible to certify quantum speedup in
large scale registers [1,11,38], and to study critical properties
of many-body systems [14,15,39], by limited laboratory
resources. On this hand, we remark that we here compared our
method with state tomography, as the two approaches share
the common assumption that no a priori knowledge about
the input state and the Hamiltonian is given. An interesting
followup work would test the efficiency of our entanglement

witness against two-time measurements of the classical Fisher
information, when local measurements on the subsystems are
only available. A further development would be to investigate
macroscopic quantum effects via speed detection, as they have
been linked to quadratic precision scaling in phase estimation
[IF (ρ,Hn) = O(n2)] [20,31,40].
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