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Optimal convex approximations of quantum states
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We consider the problem of optimally approximating an unavailable quantum state ρ by the convex mixing of
states drawn from a set of available states {νi}. The problem is recast to look for the least distinguishable state
from ρ among the convex set

∑
i piνi , and the corresponding optimal weights {pi} provide the optimal convex

mixing. We present the complete solution for the optimal convex approximation of a qubit mixed state when the
set of available states comprises the three bases of the Pauli matrices.
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I. INTRODUCTION

Convex structures are ubiquitous in the realm of quan-
tum mechanics. Density matrices, probability operator-valued
measures, and completely positive maps—which represent
quantum states, quantum measurements, and quantum chan-
nels, respectively—are convex sets. The weights in a convex
sum typically represent classical probabilities which have an
immediate operational interpretation: They are the weights of
the extremal points of the set and may correspond to classical
processing.

In Ref. [1], the problem of optimally approximating an
unavailable quantum channel by the convex mixing of channels
which are supposed to be available was addressed. This
operational problem has been recast to the problem of looking
for the least distinguishable channel from the target among the
convex set of channels constructed by the given set.

Here in this paper we address the analogous problem for
quantum states, namely the problem of optimally generating
a desired quantum state ρ, when only a given set of quantum
states {νi} is disposable. In this case, we will look for the
best convex combination among the states of the given set
that mostly resembles the desired ρ, i.e., that is the least
distinguishable from ρ itself. As for the case of convex
approximation of channels, this approach has clearly a prompt
experimental application when the effectively available states
in a laboratory are limited for intrinsic restrictions, unavailable
technology, or even economical reasons. A further relevance
of this approach is due to the fact that a convex sum of
states offers the possibility of performing different experiments
followed by postprocessing of experimental data when the
quantities of interest are linear with respect to the input
states.

Since the natural measure of distinguishability between
quantum states is based on the trace norm [2], we note
that our general problem of convex approximation includes
the well-studied (and still open) problem of quantifying the
coherence of quantum states for the specific case where the
available set {νi} corresponds to a complete orthogonal basis,
via the trace-distance measure of coherence [3–5]. Also, for
generic mutipartite state ρ and available set of states given by
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all product pure states, our problem is equivalent to evaluating
the trace norm of entanglement measure [6–9].

II. CONVEX APPROXIMATION OF QUANTUM STATES

It is well known that the probability pdiscr of optimally
discriminating between two quantum states ρ0 and ρ1 given
with equal a priori probability is given by [2]

pdiscr(ρ0,ρ1) = 1
2 + 1

4‖ρ0 − ρ1‖1 , (1)

where ‖A‖1 denotes the trace norm of A, namely [10],

‖A‖1 = Tr
√

A†A =
∑

i

si(A) , (2)

with {si(A)} representing the singular values of A. In the case
of Eq. (1), the singular values just correspond to the absolute
value of the eigenvalues, since the operator inside the norm
is Hermitian. Let us also recall that the optimal measurement
for the discrimination is performed by the projectors on the
support of the positive and negative parts of the Hermitian
operator ρ0 − ρ1.

The problem of the optimal convex approximation of a
quantum state is implicitly posed by the following definition.

Definition. The optimal convex approximation of a quantum
state ρ with respect to (w.r.t.) a given set of quantum states
{νi} is given by

∑
i p

opt
i νi , where {popt

i } denotes the vector of
probabilities

{
p

opt
i

} = arg min
{pi }

∥∥∥∥∥ρ −
∑

i

piνi

∥∥∥∥∥
1

. (3)

The effectiveness of the optimal convex approximation is then
quantified by the {νi} distance

D{νi }(ρ) ≡ min
{pi }

∥∥∥∥∥ρ −
∑

i

piνi

∥∥∥∥∥
1

, (4)

which provides the worst probability of discriminating the
desired state ρ from any of the available states

∑
i piνi .

Clearly, our definition of optimal convex approximation can
be suitably changed by referring to any other figure of merit
that quantifies the distance between quantum states (e.g., a
decreasing function of the fidelity).

We notice that the formulation of the trace norm as a
semidefinite program [11] allows its efficient calculation.
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Moreover, the convexity of the norm itself allows one to
search the minimum by means of standard software of convex
optimization [12,13].

From the convexity of the trace norm, it follows the upper
bound

D{νi }(ρ) � min
i

‖ρ − νi‖1 = min
i

Dνi
(ρ) . (5)

Notice also that for all unitary operators U , from the unitary
invariance of the trace norm, one has the symmetry

D{νi }(ρ) = D{UνiU †}(UρU †) . (6)

Clearly, if the set itself {νi} is invariant, then

D{νi }(UρU †) = D{νi }(ρ) , (7)

and the probabilities of the optimal convex approximation for
UρU † are just a permutation of those for ρ. This is the case,
for example, when the set of the available quantum states is
covariant w.r.t. a (projective) unitary representation of a group.

III. PAULI DISTANCE OF QUBIT STATES

In the following, we provide the complete analytical
solution for the optimal convex approximation of an arbitrary
mixed qubit state, when the available set of states is given by
the eigenvectors of the three Pauli matrices.

Let us first consider the simpler case where the set of avail-
able states is an orthogonal basis. Without loss of generality,
let us identify such basis as the eigenstates B1 = {|0〉,|1〉} of
σz-Pauli matrix and parametrize the target qubit state ρ as

ρ =
(

1 − a k
√

a(1 − a)e−iφ

k
√

a(1 − a)eiφ a

)
, (8)

with a ∈ [0,1], φ ∈ [0,2π ], and k ∈ [0,1]. A straightforward
calculation provides the optimal convex approximation of ρ

as the diagonal matrix

ρd =
(

1 − a 0

0 a

)
. (9)

Clearly, the optimal weights are given by p
opt
0 = 1 − a and

p
opt
1 = a, and the approximation is quantified by the B1

distance

D{|0〉,|1〉}(ρ) = 2k
√

a(1 − a) . (10)

This result also corresponds to the trace-distance measure of
coherence for the state ρ referred to the σz eigenstates [14].
Better approximations can be obviously obtained when a larger
set of states is available.

Let us consider now the set containing the eigenstates of all
Pauli matrices, namely

B3 =
{
|0〉,|1〉,|2〉 ≡ 1√

2
(|0〉 + |1〉),|3〉 ≡ 1√

2
(|0〉 − |1〉),

|4〉 ≡ 1√
2

(|0〉 + i|1〉),|5〉 ≡ 1√
2

(|0〉 − i|1〉)
}
. (11)

Since the B3 distance (or, equivalently, Pauli distance) is in-
variant for the state transformations ρ(a,k,φ) → ρ(1 − a,k,φ)
and ρ(a,k,nπ/2 ± φ) → ρ(a,k,φ) (with integer n), we can

restrict the study to the case a ∈ [0,1/2] and φ ∈ [0,π/2].
One can immediately find a large set of density matrices which
indeed correspond to a convex mixing of the six states of B3.
In fact, we can rewrite ρ in Eq. (8) as follows:

ρ = (1 − 2a)|0〉〈0|
+ 2k

√
a(1 − a)(cos φ|2〉〈2| + sin φ|4〉〈4|)

+ [a − k
√

a(1 − a)(cos φ + sin φ)]I, (12)

where I denotes the two-dimensional identity matrix. It
follows that there is a threshold value for the coherence
parameter k under which DB3 (ρ) = 0, namely for

k � kth ≡ a√
a(1 − a)(cos φ + sin φ)

. (13)

The pertaining weights that provide such an exact convex
decomposition can be chosen as follows [15]:

p0 = 1 − a − k
√

a(1 − a)(cos φ + sin φ),

p1 = a − k
√

a(1 − a)(cos φ + sin φ),

p2 = 2k
√

a(1 − a) cos φ, (14)

p4 = 2k
√

a(1 − a) sin φ,

p3 = p5 = 0.

In terms of the expectation values 〈σα〉 = Tr[ρσα], with α =
x,y,z and ρ as in Eq. (8), notice the identities

〈σx〉 = 2k
√

a(1 − a) cos φ ,

〈σy〉 = 2k
√

a(1 − a) sin φ , (15)

〈σz〉 = 1 − 2a.

Thus, the condition k � kth in Eq. (13) can be rewritten more
transparently as

〈σx〉 + 〈σy〉 + 〈σz〉 � 1 . (16)

With the help of symbolic computation, by imposing a
vanishing value to the gradient of ‖ρ − ∑5

i=0 pi |i〉〈i|‖1 with
respect to the probabilities {pi}, one can obtain the complete
analytical solution for the optimal convex approximation of ρ

when k > kth, and hence DB3 (ρ) > 0. Explicitly, one obtains
the following three cases:

(i) For kth < k � a√
a(1−a)

, or k > a√
a(1−a)

and φ ∈
[φth,π/2 − φth], with

φth = 2 arctan

[√
5k2a(1 − a) − a2 − 2k

√
a(1 − a)

a + k
√

a(1 − a)

]
, (17)

the optimal convex approximation has Pauli distance

DB3 (ρ) = 2√
3

√
a(1 − a)(1 + sin 2φ)(k − kth) , (18)

with pertaining optimal weights

p0 = 1 − 4
3a − 2

3k
√

a(1 − a)(cos φ + sin φ),

p2 = 2
3 [a + k

√
a(1 − a)(2 cos φ − sin φ)],

p4 = 2
3 [a + k

√
a(1 − a)(2 sin φ − cos φ)],

p1 = p3 = p5 = 0. (19)
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FIG. 1. Optimal convex approximation of a qubit mixed state ρ

w.r.t. the set B3 of the eigenstates of the three Pauli matrices. The
Pauli distance DB3 (ρ) is here plotted vs the target state parameters a

and φ, for fixed value of the parameter k = 2
3 [see the parametrization

of ρ in Eq. (8)]. The plotted surface is a piecewise function obtained
from Eqs. (18), (20), and (22) in their region of definition. According
to Eq. (13), the minimal trace distance vanishes in the region where

a√
a(1−a)(cos φ+sin φ)

� k = 2
3 .

(ii) For k > a√
a(1−a)

and φ ∈ [0,φth], the optimal convex
approximation has Pauli distance

DB3 (ρ) = {2a[a − 2k
√

a(1 − a) cos φ

+ k2(1 − a)(2 − cos2 φ)]}1/2, (20)

with optimal weights

p0 = 1 − a − k
√

a(1 − a) cos φ,

p2 = a + k
√

a(1 − a) cos φ, (21)

p1 = p3 = p4 = p5 = 0.

(iii) For k > a√
a(1−a)

and φ ∈ [π/2 − φth,π/2], the optimal
convex approximation has Pauli distance

DB3 (ρ) = {2a[a − 2k
√

a(1 − a) sin φ

+ k2(1 − a)(2 − sin2 φ)]}1/2 , (22)

with optimal weights

p0 = 1 − a − k
√

a(1 − a) sin φ,

p4 = a + k
√

a(1 − a) sin φ, (23)

p1 = p2 = p3 = p5 = 0.

Notice that the exact convex decomposition (when k � kth)
involves four states, whereas the optimal convex approxima-
tion corresponds to a mixture of three states in case (i) and just
two states in cases (ii) and (iii).

In Figs. 1 and 2, respectively, we plot the results for the
optimal convex approximation of ρ versus parameters a and φ

with fixed value of the parameter k = 2
3 , and versus parameters

a and k with fixed value of the phase parameter φ = π
3 .

IV. CONCLUSIONS

Let us conclude our paper with the following observations.
Imagine that we want to approximate N copies of the state,

FIG. 2. Optimal convex approximation of a qubit mixed state ρ

w.r.t. the set B3 of the eigenstates of the three Pauli matrices. The
Pauli distance DB3 (ρ) is here plotted vs the target state parameters a

and k, for fixed value of the phase φ = π

3 . According to Eq. (13), the
minimal trace distance vanishes for k � 2a

(
√

3+1)
√

a(1−a)
.

namely ρ⊗N , and we have at disposal a set of single-
copy states {νi}. The optimal convex approximation in this
case provides the distance D{⊗N

j=1νij
}(ρ⊗N ). Since the convex

hull of {⊗N
j=1νij } contains all the N -fold tensor products

⊗N
j=1(

∑
i pij νi), one has

D{⊗N
j=1νij

}(ρ
⊗N ) � min

{pij
}

∥∥∥∥∥ρ⊗N − ⊗N
j=1

(∑
i

pij νi

)∥∥∥∥∥
1

�

∥∥∥∥∥∥ρ⊗N −
(∑

i

p
opt
i νi

)⊗N
∥∥∥∥∥∥

1

, (24)

where {popt
i } denotes the vector of probabilities pertaining to

the optimal convex approximation of a single copy of the
state ρ.

We notice that one can find strict inequalities in both lines
of Eq. (24). The first inequality arises because the presence
of correlations in the convex approximation can be beneficial
even if the target state is indeed the product of independent
states (as it occurs, for example, in the optimal cloning of
quantum states [16], where the copies are correlated). In
fact, it is also known that correlations limit the extractable
information [17–20], and here indeed we want to minimize the
probability of discriminability. The second inequality stems
from the fact that the distance for a convex optimization
has no additive and/or multiplicative property with respect to
the tensor product. Hence, even looking for a tensor-product
state for the optimal convex approximation, the corresponding
optimal weights will be in general different from those
pertaining to the optimal convex approximation of a single
copy. This also implies that we do not have an exact expression
for the scaling with N of the distance between a quantum state
and its convex approximation. In a systematic study of the
scaling of the optimal convex approximation with the number
of copies, the results related to the quantum Chernoff bound
[21,22] might be very useful.

A specific example where Eq. (24) is satisfied with two
strict inequalities is the following. Consider the pure qubit
state |ψ〉 =

√
3

2 |0〉 + 1
2 |1〉. Its optimal convex approximation
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with respect to the basis {|0〉,|1〉} is achieved by p
opt
0 = 3/4 and

p
opt
1 = 1/4, with corresponding distance D{|0〉,|1〉}(|ψ〉〈ψ |) =√
3

2 . The two-copy trace distance can be evaluated as

∥∥|ψ〉〈ψ |⊗2 − (
3
4 |0〉〈0| + 1

4 |1〉〈1|)⊗2∥∥
1 
 1.299. (25)

On the other hand, the optimal convex approximation with
respect to factorized diagonal states is given by

DB1⊗B1 (|ψ〉〈ψ |⊗2)

= min
p,q∈[0,1]

‖|ψ〉〈ψ |⊗2 − [p|0〉〈0| + (1 − p)|1〉〈1|]
⊗[q|0〉〈0| + (1 − q)|1〉〈1|]‖1 
 1.272 (26)

and is achieved for popt = qopt 
 0.859. Finally, by allowing
correlations between the copies of the convex approximation,
one obtains

D{|00〉,|01〉,|10〉,|11〉}(|ψ〉〈ψ |⊗2)

= min
{pij }

‖|ψ〉〈ψ |⊗2 − (p00|00〉〈00| + p01|01〉〈01|

+p10|10〉〈10| + p11|11〉〈11|)‖1 
 1.265, (27)

where the optimal weights are given by p
opt
00 
 0.712, p

opt
01 =

p
opt
10 
 0.144, and p

opt
11 = 0. Notice that the improvement in

the convex approximation of |ψ〉〈ψ |⊗2 is exclusively due
to classical correlations, since obviously no entanglement is
present in the approximating state.
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