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Estimation of gradients in quantum metrology
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We develop a general theory to estimate magnetic field gradients in quantum metrology. We consider a
system of N particles distributed on a line whose internal degrees of freedom interact with a magnetic field.
Usually gradient estimation is based on precise measurements of the magnetic field at two different locations,
performed with two independent groups of particles. This approach, however, is sensitive to fluctuations of the
offset field determining the level splitting of the particles and results in collective dephasing. In this work, we
use the framework of quantum metrology to assess the maximal accuracy for gradient estimation. For arbitrary
positioning of particles, we identify optimal entangled and separable states, allowing the estimation of gradients
with maximal accuracy, quantified by the quantum Fisher information. We also analyze the performance of
states from the decoherence-free subspace (DFS), which are insensitive to the fluctuations of the magnetic offset
field. We find that these states allow us to measure a gradient directly, without the necessity of estimating the
magnetic offset field. Moreover, we show that DFS states attain a precision for gradient estimation comparable
to the optimal entangled states. Finally, for the above classes of states, we find simple and feasible measurements
saturating the quantum Cramér-Rao bound.
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I. INTRODUCTION

Quantum metrology holds the potential to enhance the
measurement of physical quantities with the help of quantum
effects [1,2]. In practice, ideas from quantum metrology
may improve gravitational wave detectors [3], imaging in
biology [4], or sensors for protein molecules [5]. In a typical
metrological scenario, one aims to estimate a certain phase
ϕ, e.g., generated by a magnetic field, with quantum probe
systems. By using entanglement between the probes, the
uncertainty �2ϕ̃ of the estimate can be reduced [1]. In this
way, quantum metrology offers an advantage in theory, but
for practical implementations noise and decoherence have to
be taken into account. Here, it has been shown that noise has
often a negative effect and the improved scaling gets lost [6,7].
Nevertheless, concepts such as differential metrology, where
some probe systems are used to monitor the noise, can be used
to maintain a quantum advantage [8,9].

A different problem is the estimation of the gradient of
a spatially distributed magnetic field [10–12]. Of course,
one may just measure the field at different positions [13]
or move a single probe through the field [14,15] and then
compute the gradient. But these are not necessarily the optimal
strategies, especially in cases where one aims to measure
small fluctuations of a large offset field. Then, a detection
of magnetic fields with high precision and spatial resolution
is often not possible [16]. Furthermore, techniques to measure
spatial varying fields by probes with well-known position can
be reversed in order to measure the spatial distributions of
probes [17] or the spatial distribution of entanglement [18] by a
well-known spatial field distribution. For example, in magnetic
resonance imaging (MRI) the spatial resolution of such an
image depends on the strength of the applied magnetic field
gradient and the calibration of this gradient. As the magnetic

field gradient is larger, the resolution becomes better. However,
practically the resolution is limited by the patients, e.g., for
patients with medical implants. An old cardiac pacemaker
or a cochlear implant would make the application of a large
magnetic field gradient and therefore a high-spatial-resolution
MRI impossible. A precise calibration of the applied spatial
field distribution is necessary. Here, quantum metrology could
offer a solution for a precise calibration. With these presented
findings, it will be possible to calibrate a gradient for MRI
with high precision.

In this paper, we discuss the estimation of magnetic
gradients using the language of quantum metrology. We
consider N particles distributed in an arbitrary but fixed
manner along a line and ask in which quantum state they have
to be prepared and which measurements have to be carried out
in order to estimate the magnetic field gradient with the optimal
precision. We also consider the case of collective dephasing
noise, as it occurs in realistic setups with trapped ions [19] or
neutral atoms in optical microtraps. We arrive at a general
scheme with optimal states and measurements, depending
on the knowledge of the offset field or the presence of
noise.

This paper is organized as follows: In Sec. II, we explain
basic facts about quantum metrology and the Fisher informa-
tion, being the central figure of merit in estimation scenarios.
In Sec. III, we introduce the scenario of gradient estimation.
Section IV deals with the case in which the offset field B0 at a
certain position is known and the gradient should be estimated.
In this part, we also consider the effect of collective phase
noise on the performance of gradient estimation. Section V
considers the situation in which the offset field B0 is not known.
Section VI discusses briefly the measurement of more general
notions than the gradient of the field. Finally, we conclude and
discuss optimal strategies.
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II. QUANTUM METROLOGY

We first review the basics of quantum metrology [1] and
introduce the main technical tools and notation that will be
used in our work. Then we briefly present the canonical phase-
estimation scheme and compare it with gradient estimation that
is studied in this work.

The task in a typical quantum metrology scheme is to
determine an unknown parameter ϕ which is encoded in a
quantum state �ϕ by a quantum channel described via the map
�ϕ . After passing through the quantum channel, the state is
subsequently measured and the whole process repeated ν times
to gather the sufficient statistics.

Let pj (ϕ) be the probability for the measurement outcome
j , given that the initial state was � and the unknown parameter
was ϕ. Then a result in classical statistics states that the
variance �2ϕ̃ of any unbiased and consistent estimator ϕ̃ of ϕ

is lower bounded by the Cramér-Rao Bound (CRB) [20]:

�2ϕ̃ � 1

ν Fcl({pj (ϕ)}) , (1)

where

Fcl({pj (ϕ)}) :=
∑

j

[∂ϕpj (ϕ)]2

pj (ϕ)
(2)

is the classical Fisher information (FI). A single estimator
saturating Eq. (1) may not always exist for the whole parameter
range. When estimating small fluctuations of a parameter
around a given value, the CRB in Eq. (1) is guaranteed to
be tight in the limit of large number of repetitions ν [20].

If the probabilities pj (ϕ) come from a quantum mechanical
experiment, the classical Fisher information (FI) Fcl depends
on the initial state �, the map �ϕ encoding the phase

�ϕ : � −→ �ϕ := �ϕ(�), (3)

and the performed measurement. In quantum mechanics, the
measurement process is described by a positive operator-
valued measure (POVM), i.e., a collection M = {Mj } of
positive semidefinite operators satisfying the normalization
condition

∑
j Mj = 1. The probability of measuring the

outcome j on the state �ϕ is given by

pj (ϕ) = Tr[Mj�ϕ(�)]. (4)

In the following, we will denote the classical Fisher infor-
mation for the measurement statistics obtained from �ϕ by
the POVM M by Fcl(ρϕ,M). The optimization of Fcl(ρϕ,M)
over all possible POVMs is called quantum Fisher information
FQ[ρ,�ϕ] (QFI) [21]. The QFI depends solely on the quantum
state � and �ϕ , whereas the FI depends on the state �,
�ϕ , and the POVM M. The QFI operationally quantifies the
metrological usefulness of the initial state � under the map �ϕ

for the estimation of ϕ. The precision limitations for estimating
ϕ is usually put in the from of the quantum Cramér-Rao bound

�2ϕ̃ � 1

νFQ[�,�ϕ]
. (5)

The QFI FQ can be computed explicitly via the formula [2,22]

FQ[�,�ϕ] = 2
∑

α,β:λα+λβ �=0

|〈α|∂ϕ�ϕ(�)|β〉|2
λα + λβ

, (6)

where {λα} are the eigenvalues and {|α〉} are the eigenvectors of
�ϕ(�). If the parameter ϕ is encoded via an unitary evolution,
i.e., when �ϕ(�) = Uϕ�U †

ϕ , where Uϕ = exp(−iϕH ) for some
Hermitian operator H , then the QFI depends only on the initial
state � and the operator H and will be denoted by FQ[�,H ].
The QFI for pure states ψ := |ψ〉〈ψ | in unitary time evolutions
is related to the variance of the operator H ,

FQ[ψ,H ] = 4�2
ψH := 4[tr(H 2ψ) − tr(Hψ)2] . (7)

Let us also recall that FQ[�,H ] is a convex function of �.
For this reason, the maximal value of QFI is always attained
for pure states. In fact, for a fixed Hermitian operator H , the
maximal FQ can be computed explicitly by [1]

max
�∈D(H)

FQ[�,H ] = (λmax − λmin)2, (8)

where λmax and λmin are the maximal and minimal eigenvalues
of H , respectively, and D(H) denotes the set of (mixed and
pure) quantum states supported on the Hilbert space H. The
pure state for which the QFI attains Eq. (8) is given by

|ψopt〉 = 1√
2

(|max〉 + |min〉), (9)

where |max〉 and |min〉 are eigenvectors of H corresponding
to eigenvalues λmax and λmin, respectively.

In the experimental context, it is common to infer the value
of the parameter solely from the expectation value 〈M〉ϕ :=
tr(�ϕM) of some observable M . This is done by using the
Taylor expansion

ϕ̃M − ϕ0 ≈ 〈M〉ϕ − 〈M〉ϕ0

∂ϕ〈M〉|ϕ0

(10)

to construct the estimator ϕ̃M
1 of the value of ϕ. This strategy

is in general only optimal for a specific choice2 of the operator
M . The precision of this estimator �2ϕ̃M , after the experiment
is repeated ν times, is given by the error-propagation formula
[2]

�2ϕ̃M =
(
�2

�ϕ0
M

)2

νt[∂ϕ〈M〉|ϕ0 ]2
. (11)

In what follows, we will drop the number of repetitions ν in
order to simplify the notation and discussion.

1More specifically, in order to construct the estimator ϕ̃M , one has
to assume that the statistical fluctuations of the phase ϕ around the
known value ϕ0 are small [so that Eq. (10) makes sense] and that the
expectation value 〈M〉ϕ0 is known.

2Note, however, that locally (in the neighborhood of the specific
value ϕ0) the precision attainable by this method saturates the
quantum Cramér-Rao bound given in Eq. (5), for the suitable choice
of the observable. The optimal observable in general depends on the
value of the phase. In particular, it is known that the error propagation
formula in Eq. (11) for the so-called symmetric logarithmic derivative
[2] saturates Eq. (5). However, in general there is no guarantee that
symmetric logarithmic derivative is an observable easily accessible
in an experiment.
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(a) (b)

FIG. 1. Comparison of two metrological scenarios (in the absence of experimental noise). A quantum device encodes the parameter ϕ by
acting on the multiparticle initial state �. The parameter is estimated by multiple measurements of the output state. (a) The parameter ϕ is
encoded by the application of unitaries Uϕ acting in parallel on every particle. (b) The parameter ϕ is encoded by the application of unitaries
U (i)

ϕ applied in parallel, but acting differently on each particle. This scenario is relevant for the gradient estimation.

A. Standard metrological scenario

In the standard scenario, a quantum device (e.g., an inter-
ferometer) acts on a single particle (photon, atom, etc.) with
the Hamiltonian h0 (often taken to be equal to 1

2σz). The device
encodes the unknown parameter ϕ on the system of N particles
by performing the parallel unitary transformation Uϕ = U⊗N

ϕ ,
where Uϕ = e−ih0ϕ [see Fig. 1(a)]. This unitary evolution is
generated by the global Hamiltonian H = ∑N

i h
(i)
0 , where

h
(i)
0 denotes the Hamiltonian on the ith particle. In classical

measurement strategies (corresponding to separable input
sates), the particles are only classically correlated and the
variance �2ϕ̃ for measuring ϕ is limited by the number of
particles N via the standard quantum limit (SQL) �2ϕ̃ ∝ 1/N .
However, in quantum mechanics we have the freedom to apply
the device in parallel to an entangled state of N particles [see
Fig. 1(a)]. This allows us to obtain the accuracy �2ϕ̃ ∝ 1/N2,
which is usually referred as the Heisenberg limit (HL).

The concepts of SQL and HL are tailored to the schemes
where every particle is affected by the same unitary Uϕ .
As we will see later, in the context of the estimation of
gradients of electric or magnetic fields, it is natural to consider
again parallel encoding, but this time allowing single particle
unitaries Ui

ϕ acting differently on different particles; see
Fig. 1(b). The standard HL and the SQL are no longer valid
and new bounds in precision have to be derived. This is one of
the main aims of the present paper.

At this point, it is important to remark that in the standard
metrological scenario, the Heisenberg scaling is typically
destroyed by local noise and asymptotically only an enhance-
ment by a constant factor can be achieved [6,7]. However,
in the case of global noise such as collective phase noise
the scaling �2ϕ̃ ∝ 1/N2 can be restored, e.g., by differential
interferometry [8,9]. In this work, we will also discuss the
impact of collective phase noise on the performance for
gradient estimation.

III. SETUP FOR GRADIENT ESTIMATION

Throughout this paper we consider a string of N particles
whose internal, qubit-like, degrees of freedom are coupled
to the z component of the spatially varying magnetic field

B(x) := B(x)�ez with

B(x) = B0 + (x − x0)G, (12)

with B0 := B(x0) being the field at position x0, called offset
field, and G being the strength of the gradient. Usually in
experiments the offset field B0 is set to split the degenerate
energetic levels. The direction of the offset field B0 is defined
to be the quantization axis that is called z axis. Furthermore,
the offset field B0 is strong comparing to fields that point in
other directions. Therefore, we neglect all other components.
We assume without loss of generality a spatial gradient in the
x direction. The particles are arranged along the x axis and
labeled in such a way that B(xi) � B(xi+1), where xi with
i ∈ {1, . . . ,N} denotes the position of the ith qubit; see Fig. 2.

The magnetic field B(x) depends on the positions xi of
the qubits. In our analysis, we will focus on experiments,
where these positions can be measured with high precision.
This is the case, e.g., in experiments with trapped ions [19,23]
or neutral atoms in optical microtraps [24,25]. In both kinds
of experiments, the position of the qubits can be measured
up to ∼nm, whereas the distance of the qubits scales with
∼μm. Generally, position-dependent fields such as magnetic
gradients lead to a coupling between the internal and external
degrees of freedom [26,27]. Within this paper, we will assume
that this coupling is negligible small, such that the position xi

of the ith qubit can be treated classically. This can be always
achieved by, e.g., trapping the particles strong enough.

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

x

B(x)

B0

x0

FIG. 2. A string of particles in a magnetic field with a spatial
gradient in the z component along the string. The magnetic field
B(x) := B(x)�ez acts on each particle, depending on its position. The
particles are labeled such that the smallest magnetic field acts on the
first and the largest magnetic field on the last particle.
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The Hamiltonian describing the interaction of the internal
degrees of freedom with the magnetic field is given by H =
h̄γH0 + h̄γGHG, with

H0 := B0Jz, HG := 1

2

N∑
i=1

(xi − x0)σ (i)
z , (13)

where σ (i)
z denotes the Pauli matrix acting on the ith qubit,

Jz = 1
2

∑
σ (i)

z is the collective spin operator, and γ is the
coupling strength. The map �G describing the unitary time
evolution due to H for time t is given by �G(�) = UG�U

†
G,

where

UG := exp

[
−iγB0tJz − iγGt

N∑
i=1

(xi − x0)
σ (i)

z

2

]
. (14)

In the following, we will use tools of quantum metrology
to derive limits in precision for a classical and quantum
enhanced estimation of the gradient G, analogous to SQL
and HL known from the standard phase estimation scheme
depicted in Fig. 1(a). The maximal achievable precision of
G depends on the knowledge about the magnetic offset field
B0. In general, an experimenter could measure the offset field
with some uncertainty �2B̃0 first and would have some a priori
knowledge about the offset field before estimating the gradient
G. However, throughout this paper we focus on two extremal
situations: full knowledge and no a priori knowledge about
B0. The first scenario is covered in Sec. IV and allows us to
study the so-called clean situation, where the only parameter
to be estimated is the gradient of the field and leads to the
ultimate bounds in precision. The second scenario is described
in Sec. V and applies to two interconnected cases where
either (i) an experimenter has no access to the reference frame
associated to the rotations generated by the offset field or (ii)
the system is strongly affected by the action of collective phase
noise.

As we discuss in Sec. IV C, collective phase noise is the
main source of noise in setups of trapped ions or trapped atoms
in an optical microtrap. It leads to an effective erasure of the
information about the offset field B0. In Sec. V C, we will argue
that in these experimental scenarios the precision in gradient
estimation does not gain much from the measurements of the
offset field or having a partial knowledge about it. Hence, we
a fortiori justify why we focused on the two extreme cases of
full and no a priori knowledge about B0. Other experimental
scenarios may require a more refined analysis of the problem
such as multiparameter estimation [28,29] and systematically
taking into account the lack of knowledge about B0 [30].

Please note that in the main text of the paper we will
make two implicit assumptions on the system that we are
considering. First, we will assume that xi � x0 for all particles.
This affects the precise form of the optimal states and the
formula for the maximal QFI. For the sake of simplicity
of the presentation, we decided to discuss this in detail in
Appendix A. Second, we will assume that the number of
particles N is even. This has only a slight effect on the form
of the results for the case of no a priori knowledge about B0.
The change for odd N is that the summation range has to
be changed from N/2 to N/2�. These are discussed in full
generality in Appendix G.

IV. GRADIENT ESTIMATION WITH FULL A PRIORI
KNOWLEDGE ABOUT B0

Having the full a priori knowledge about the offset field
B0 amounts to treating it as a fixed constant. Using the
commutation relations

[Jz,HG] = [UG,HG] = 0 (15)

and Eq. (6), we obtain the following relation:

FQ[�,�G] = (γ t)2FQ[�,HG]. (16)

In what follows, we will reserve the notation

FQ(�) := FQ[�,�G] (17)

to avoid ambiguity and simplify the notation. The physical
meaning of Eq. (16) is that the QFI for gradient estimation is
reduced to the QFI for the standard Hamiltonian FQ[�,HG]
and that FQ[�,�G] does not depend on the value of the
magnetic offset field B0 at x0. However, the QFI does depend
on x0, via the dependence of HG on this parameter; see
Eq. (13). Notice that the unitary transformation generated by
the field has a product structure UG = ⊗N

i=1U i
G, where U i

G =
exp{−iγ t[B0 + G(xi − x0)]σ (i)

z /2} is a single qubit unitary.
Therefore, the problem of deriving the maximal QFI and the
optimal state becomes mathematically equivalent to the case
of parallel encoding of the phase given in Fig. 1(b).

The rest of this section is organized as follows. First,
in Subsec. A we identify the bounds in precision for the
estimation of the gradient G with separable and entangled
states. Then, in Subsec. B we give simple, physically accessible
measurements saturating these bound. Finally, in Subsec. C,
we discuss the influence of collective phase noise on the
proposed gradient estimation scheme.

A. Bounds on precision for gradient estimation

Here, we first derive precision bounds for fixed positions
{xi} and identify optimal probe states. Then, we discuss the
case of linear spacing of particles. Finally, we identify the
optimal positioning of qubits and give the ultimate bounds for
gradient estimation.

1. Separable states

Our first result concerns the maximal QFI for estimating G

using separable states. We start with the observation that from
the decomposition

HG =
N∑

i=1

h
(i)
G , (18)

with h
(i)
G = (xi − x0)σ (i)

z /2, we can simplify the QFI for
product states � = ⊗N

i=1 �i via

FQ

[
N⊗

i=1

�i,HG

]
=

N∑
i=1

FQ

[
�i, h

(i)
G

]
, (19)

by using the additivity of the QFI [2]. Using this relation
together with the convexity of QFI and Eq. (16), we find that
the maximum of the QFI on the set of separable states on N
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qubits SEPN is obtained for the product state ⊗N
i=1�i such that

each �i maximizes FQ[�i,h
(i)
G ]. Therefore, we have

max
�∈SEPN

FQ(�) = (γ t)2
N∑

i=1

(xi − x0)2 . (20)

and the maximum is obtained for the state

|P〉 := |+〉⊗N, with |+〉 = 1√
2

(|0〉 + |1〉). (21)

From Eq. (20), we get the bound in precision for separable
input states

�2G̃ � 1

(γ t)2
∑N

i=1 (xi − x0)2
. (22)

2. Entangled states

The second result concerns the maximal QFI over all states
from the N qubit Hilbert spaceHN . To compute this maximum,
we use Eqs. (16) and (8) and the fact that HG can be explicitly
diagonalized by the computational basis of the N qubit Hilbert
space HN . We obtain

max
�∈D(HN )

FQ(�) = (γ t)2

[
N∑

i=1

(xi − x0)

]2

, (23)

with the optimal state being the N qubit Greenberger-Horne-
Zeilinger (GHZ) state [31]

|GHZ〉 := 1√
2

(|0〉⊗N + |1〉⊗N ). (24)

Analogously to the case of separable states in Eq. (22), we use
the quantum Cramér-Rao bound to get the limitations on the
precision for estimating G with entangled states

�2G̃ � 1

(γ t)2
[∑N

i=1 (xi − x0)
]2 . (25)

Let us remark that both the maximal QFI in Eq. (23) and the
maximal QFI for separable states in Eq. (20) strongly depend
on the positioning of the particles and the coordinate x0, if the
value of the magnetic offset field B0 is assumed to be known.
Notice, however, that the quantum states for which the optimal
values are attained do not depend on the spacing of particles.
Moreover, the optimal states derived by us are invariant under
the relabeling of qubits according to B(xi) � B(xi+1), which
proves that our scheme works also for a negative value of
the gradient G. Let us finally remark that in our analysis we
have assumed, according to the note in the end of Sec. III, that
xi � x0. The structure of optimal states and the precise formula
for maximal QFI changes if this assumption is dropped. We
discuss this in detail in Appendix A.

3. Equidistant spacing

Neutral atoms in an optical microtrap are equidistant
spaced. We consider an equidistant spacing in the interval
[x0,L + x0], i.e., xi −x0 = (i −1) L

N−1 for measuring the gradi-
ent G with N qubits. For this positioning, the QFI for separable

states is given by

max
�∈SEPN

FQ(�) = (γ tL)2

6

N (2N − 1)

N − 1
, (26)

which (for fixed length L) scales proportionally to N for a large
number of particles. On the other hand, the QFI for entangled
states becomes

max
�∈D(HN )

FQ(�) = (γ tL)2

4
N2 (27)

and scales with N2 (for fixed L).

4. Optimal positioning and the ultimate bounds

We can optimize the QFI in Eqs. (20) and (23) over the
positioning x0. Again, we assume that the particles are located
in the interval [x0,L + x0] and we fix both x0 and L. In order
to maximize the right-hand sides of both Eqs. (20) and (23), an
experimenter should put all qubits at the position xi = x0 + L.
This means that the particles are as far away as possible from
the point x0. If this is the case, we get for separable states

max
�∈SEPN

FQ(�) = (γ t)2NL2. (28)

Similarly, the maximal QFI over all states becomes

max
�∈D(HN )

FQ(�) = (γ t)2N2L2. (29)

An experimental realization of this positioning includes
another dimension of the system. Atoms in an optical microtrap
can be arranged in a two-dimensional lattice. Then, one
dimension can be defined as the x dimension and all qubits
can be placed at one position x = x0 + L by using the second
dimension. In state-of-the-art ion traps, this arrangement is
hard to realize. However, in future on-chip ion traps as
proposed, e.g., in Refs. [32,33] this arrangement is possible. In
both types of experiments, the extension of the qubit chain at
x0 + L must be much smaller as L in order to exclude effects
due to field gradients in the second dimension.

Using Eqs. (22) and (25), we can give now the ultimate
bounds for the precision of estimating G, with the usage of N

qubits placed in the fixed interval [x0,L + x0], and when we
perfectly know the value of the field at x0. For separable probe
states, the best achievable precision for the determination of
G is given by

�2G̃ � 1

(γ t)2NL2
, (30)

similar to the SQL. Likewise, for entangled probe states, we
get a Heisenberg-like scaling given by

�2G̃ � 1

(γ t)2N2L2
. (31)

For both, the scaling behavior in N (for fixed length L) is
identical to the case of the estimation of global parameters.
This is not surprising, since we assumed that we perfectly
know the value of the offset field B0 at the position x0 and the
optimal strategy is to use all particles for the estimation of the
field at the position x0 + L.
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B. Optimal measurements for experimental realizations

The optimal states derived by us can be prepared in
experimental settings such as trapped ions and neutral atoms
in optical microtraps. In experiments with trapped ions, the
preparation of GHZ states [31] up to N = 14 qubits with high
fidelity is possible [19]. In experiments with neutral atoms in
optical microtraps, the preparation of a Bell or GHZ state as
defined in Eq. (24) with N = 2 qubits has been achieved [34].

However, as explained in Sec. III, the bounds involving
the QFI assume implicitly the application of the optimal
measurement. In general, the optimal measurement saturating
the quantum Cramér-Rao bound is the projective measurement
in the eigenbasis of the so-called symmetric logarithmic
derivative [1]. This measurement can be difficult to perform in
practice. Fortunately, the optimal measurement is not necessar-
ily unique. In what follows, we show that parity measurements
in the x basis are sufficient in order to reach the maximal
possible precision in gradient estimation with GHZ states.
Parity measurements can be easily performed in experiments
with trapped ions [19,23] as proposed by Bollinger et al. in
1996 [35] and neutral atoms in optical microtraps [34,36].
A parity measurement is basically a detection of the number
of qubits in either the spin-up or spin-down state and can be
realized with almost 100% efficiency [35]. Interestingly, the
parity measurement does not depend on the spacing of particles
and is thus the same for any configuration {xi}.

1. Classical Fisher information

A parity measurement in the x basis is a projective
measurement P := {P+,P−} with the projective operators

P+ = 1
2

(
I + σ⊗N

x

)
, P− = 1

2

(
I − σ⊗N

x

)
. (32)

After the time t , the initial N -qubit state � evolves due to
UGρU

†
G. Upon measuring P on ρG, the output probabilities

are given by

p+(G) = tr(UGρU
†
GP+), p−(G) = tr(UGρU

†
GP−). (33)

In Appendix B, we show that

tr
(
UGψGHZU

†
Gσ⊗N

x

) = cos

[
NγB0t + γGt

N∑
i=1

(xi − x0)

]
,

(34)

where ψGHZ := |GHZ〉〈GHZ|. Using this expression, together
with Eq. (32) and the definition of the FI in Eq. (2), we find that
the classical Fisher information associated with the statistics
of parity measurements with GHZ states is given by

Fcl(UGψGHZU
†
G,P) = (γ t)2

[
N∑

i=1

(xi − x0)

]2

, (35)

and equals the QFI for estimating G with GHZ states [see
Eq. (25)]. Therefore, parity measurements in the x basis are
optimal for gradient estimation with GHZ states. The choice
of an optimal measurement is not unique; also measurements
of the collective spin operator in the x direction Jx are optimal
as shown in Appendix C.

2. Error propagation formula

It turns out that measurements of the expectation value of
the parity M̂ = P+ + P− = σ⊗N

x with GHZ states also saturate
the ultimate limitations given in Eq. (25) for the accuracy of
the measurement of G. In usual experiments, this expectation
value 〈M̂〉 is measured for different probing times t and if
the initial state is ψGHZ the theoretical time dependence is
given in Eq. (34). In this measurement scheme, the gradient
G is deduced from the value of the frequency, which can
be estimated by a fit on the data. This procedure, however,
requires the known value of the offset field B0. If one has no
a priori knowledge about B0, one has to average [37] over all
possible values of B0 and one cannot infer the value of G. It is
possible to avoid this problem by measuring this expectation
value for different positioning {xi} at a fixed probing time
t . This strategy has been realized with a single ion moving
through a gradient field in Ref. [14]. However, this scheme
is definitely a less practical solution, as one has to make
sure that the initial quantum states are the same, despite the
change in the configuration of the chain. The case of no a
priori knowledge about the offset field will be considered
systematically in Sec. V.

With the error propagation formula in Eq. (11) and using
Eq. (34) together with the fact that 〈M̂2〉 = 1, we can show
that both measurement strategies (varying the probing time
at a fixed positioning and varying the positioning at a fixed
probing time) saturate the Cramér-Rao bound and therefore
also the analog HL for gradient estimation, assuming that the
positioning {xi} and the measurement time t can be determined
with high precision, so we have

�2G̃M̂ = 1

(γ t)2
[∑N

i=1 (xi − x0)
]2 . (36)

C. Gradient estimation in the presence of collective phase noise

In realistic experiments, noise affects the time evolution
of a quantum system, reducing the entanglement of the probe
states. This can diminish the enhancement in precision for
gradient estimation obtained with entangled states. In both
types of experiments considered in this work, collective phase
noise is the main source of decoherence. In experiments with
trapped ions, this noise is caused by temporal magnetic field
fluctuations [19], whereas in experiments with neutral atoms
in optical microtraps, collective phase noise is caused by
temporal fluctuations of the trapping potential [39]. In what
follows we describe the influence of collective phase noise on
the proposed scheme for the estimation of the gradient of the
magnetic field.

1. Collective phase noise

We focus our attention on trapped ions. We follow the
steps and assumptions for describing the noise source in this
system given in Ref. [19]. The total Hamiltonian of the system
including the noise is given by

H ′ = h̄γH0 + h̄γHG + h̄γ ′�E(t)Jz , (37)

where operators H0 and HG are defined in Eq. (13), γ ′ is
the coupling constant, and �E(t) is the temporally fluctuating
random field. We will use 〈·〉 to denote the average over the

042319-6



ESTIMATION OF GRADIENTS IN QUANTUM METROLOGY PHYSICAL REVIEW A 96, 042319 (2017)

stochastic fluctuations of this field. Following Ref. [19], we
assume (i) no systematic time-dependent bias due to phase
fluctuations 〈δϕ〉 = 0, where δϕ := ∫ t

0 dτ�E(τ ), (ii) Gaus-
sian character of the fluctuations δϕ, (iii) stationarity of the
noise process, 〈E(t + τ )E(t)〉 = 〈E(τ )E(0)〉, and finally (iv)
that the time correlation 〈�E(t)�E(0)〉 = (�E)2 exp [−t/τc]
decays exponentially, with the correlation time τc and the
fluctuation strength �E.

Now, for a fixed realization of the stochastic process the
output state at a given time t is given by

�(t) = U ′
t �(U ′

t )
†, (38)

with U ′
t = UGUnoise, where UG is given in Eq. (14) and

Unoise = exp[−iγ ′ ∫ t

0 �E(τ )dτJz] describes the noise acting
on the system. By averaging over the realization of the
stochastic process �E(t) (for the fixed time t), we get that
the initial state � is mapped into �′

G(�), where

�′
G(�) = UG�̄(t)U †

G with �̄(t) := 〈Unoise�U †
noise〉. (39)

Since the encoding of the value of the gradient commutes with
the map describing the noise, we have

FQ(�,�′
G) = (γ t)2FQ[�̄(t),HG]. (40)

That is, in order to compute the QFI in the presence of
collective phase noise, it suffices to calculate the “standard”
QFI on the noisy initial state. In ion trap experiments, for
which this paper is relevant, the repetition rate (i.e., the rate
with which a single experiment can be repeated) typically
is fixed for noise cancellation of another noise source and
t ≈ μs-ms [19]. Moreover, the correlation time for the field
fluctuations �E(t) is of order τc ≈ s. Therefore, we can
assume τc � t [19].

2. Noisy gradient estimation with GHZ states

For a GHZ state in the presence of collective phase noise,
the QFI can be calculated analytically (see Appendix E 1 for
details) and takes a closed form,

FQ(ψGHZ,�′
G) = d(t)2γ 2t2

[
N∑

i=1

(xi − x0)

]2

, (41)

with d(t) = exp{−(Nγ ′�Eτc)2[exp(− t
τc

) + t
τc

− 1]}. We see

that the QFI first increases with t2 and then, in the limit of
large times, decreases double exponentially to zero. Therefore,
there exists a global maximum3 and an optimal measurement
time as shown in Fig. 3. Under the condition τc � t [see the
discussion below Eq. (40)], we get exp[(−t/τc) + t/τc − 1] ≈
1/2(t/τc)2, which gives the optimal measurement time topt =√

2/(Nγ ′�E) and the maximal QFI

FQ = 2γ 2

[
N∑

i=1

(xi − x0)

]2/
e(Nγ ′�E)2, (42)

3Because the repetition rate is fixed, the relevant figure of merit to
optimize is FQ(t) rather than FQ(t)/t , which appears naturally when
a variation of the repetition rate is possible and the total time of the
experimental procedure is fixed [6,7].
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FIG. 3. The time-dependent part of the QFI for a GHZ state with
N = 50 qubits in the presence of collective phase noise [see Eq. (41)].
Here, we assume typical field fluctuations in the order of γ ′�E =
2π×50 Hz and correlation time τc = 1 s (see, e.g., Ref. [38]).

which can be maximized over the positioning xi . The posi-
tioning maximizing the QFI in Eq. (42) leads to placing all
qubits as far away as possible from x0 that is x0 + L. Then,
the maximal QFI is given by

FQ = 2γ 2L2/e(γ ′�E)2, (43)

which scales neither with N nor with N2.
Now we will discuss the saturation of the quantum Cramér-

Rao bound for the estimation of the gradient G, with the QFI
as in Eq. (41) with parity measurements. Generically, we can
achieve such a saturation by a suitable choice of the global
phase θ for the probe state

|GHZθ 〉 := 1√
2

(|0〉⊗N + exp(iθ )|1〉⊗N ) (44)

and performing a parity measurement M̂ = σ⊗N
x as shown in

Appendixes B 2 and D. Then, the Cramér-Rao bound can be
saturated if the condition

cot

[
NγB0t + γGt

N∑
i=1

(xi − x0) + θ

]
= 0 (45)

holds. However, due to this condition an experimenter must
have full knowledge about B0 and G at all measurement times
t in order to prepare the state in Eq. (44) that is not feasible.

3. Noisy gradient estimation with the state |P〉
In general, it is difficult to evaluate the QFI in Eq. (40)

analytically for arbitrary probe states �. The initial pure
product state ψP := |P〉〈P|, given in Eq. (21), evolves into
a mixed state ψ̄P(t) due to noise. We will focus on the
regime of large probing times t −→ ∞. In this limit, the state
does not change any more due to collective phase noise and
[ψ̄P(∞),Jz] = 0 [40] and therefore we call this regime the
steady-state regime. We get that for this state the QFI does not
vanish in the limit of large times (see Appendix F for details),

FQ(ψP,�
′
G)

t→∞−−−→ (γ t)2

⎡
⎣ N∑

i=1

x2
i − 1

N

(
N∑

i=1

xi

)2
⎤
⎦ . (46)
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Thus, in the steady-state regime, the product state |P〉 performs
better then the GHZ state in the presence of noise. Interestingly,
the QFI in Eq. (46) is independent of x0. This is due to the
fact that in the steady-state regime the probe state is not only
invariant under collective phase noise but also under the offset
field B0 since [ψ̄P(∞),Jz] = 0.

4. Optimal positioning

For the GHZ state in the steady-state regime, the QFI
vanishes independently of the positioning of the qubits.
However, for the separable state |P〉 in the steady-state regime,
the optimal positioning (see Lemma 1 in Appendix F for the
proof) at the interval xi ∈ [x̃0,x̃0 + L] is to place one half of
the qubits at position xi = x̃0 and the other half as far away as
possible xi = L + x̃0 (note that the position x̃0 is some fixed
reference coordinate and can have any value including x0). For
this case, the QFI is given by

FQ(ψP,�
′
G)

t→∞−−−→ (γ t)2L2 N

4
, (47)

that is linear in N and by constant factor of 1/4 smaller than in
the case of having no noise and placing all qubits at xi = x0 +
L [see Eq. (28)]. This can be realized by a similar arrangement
as described in Sec. IV A.

The optimal spacing of the particles leads to the situation
in which the particles are located at two different positions. As
a result, two different unitaries U I

G and U II
G act on one half of

the particles each. This is a local estimation strategy similar
to differential interferometry [8,9]. In these works, phase and
frequency estimation in the presence of correlated phase noise
were investigated. It was shown that the quadratic scaling in
N can be preserved by the usage of differential interferometry
in the presence of correlated noise. Furthermore, it was shown
that for the product state |P〉 a linear scaling in N up to a
constant factor can be preserved. In Eq. (47), we find a similar
result. Furthermore, in Ref. [42] also similar results where
found. Here, the two unitaries U I

G and U II
G = U I

−G act on half
of the particles each. For this estimation scenario, it was shown
that the HL can be preserved in the presence of correlated
dephasing.

V. GRADIENT ESTIMATION WITHOUT
A PRIORI KNOWLEDGE ABOUT B0

In Sec. IV, we derived bounds in precision for the estimation
of the gradient G, assuming complete knowledge of the offset
field B0. The question arises of whether it is possible to
measure G without knowing anything about B0. We can
already answer this question: Collective phase noise can be
interpreted as an erasure of information about B0 in time.
Therefore, waiting long enough leads to the case of having
no knowledge about B0. In Eq. (41), we saw that in the
steady-state regime the QFI for the GHZ state |GHZ〉 vanishes
such that the GHZ state is useless in order to estimate G in the
case of having no knowledge about B0. However, in Eq. (47),
we saw that in the steady-state regime the QFI for the product
state |P〉 did not vanish. Therefore, it is possible to measure G

without knowing B0. In this section, we systematically study
limits on the accuracy for estimating the gradient G, when no
knowledge about B0 is available.

In this section, we first (Subsec. A) identify optimal probe
states and the corresponding bounds in precision for estimating
G when no a priori knowledge of B0 is available. Interestingly,
we find that these bounds asymptotically behave in the similar
way, as in the noiseless case. Then, (Subsec. B) we prove that
similarly to the noiseless case parity measurements in the x

basis saturate the derived bounds in precision. Finally, (Subsec.
C) we compare these results with the other measurement
strategies considered in this paper and earlier works on the
subject.

A. Bounds in precision for gradient estimation

In what follows, we derive precision bounds for estimating
a gradient with a fixed positioning {xi}. Then, we discuss the
case of equidistant spacing. Finally, we derive the optimal
positioning for the particles located in the fixed interval of
length L.

When assuming no a priori knowledge about the offset field
B0 the Hamiltonian of the system does not change compared
to Eq. (13). However, now the offset field B0 is unknown and
therefore must be treated as a random variable and all states,
operations, and measurements performed on the system have
to be averaged over all realizations of this random variable.4

Phrasing this in a different way, we can say that we erase
the reference frame [37] associated to the knowledge of the
offset field [or, formally speaking, the one-parameter group
of transformations formed by operators exp (−iθJz), where
θ ∈ [0,2π )]. Complete erasure of the knowledge about B0

is modeled by averaging the initial state � over all possible
rotations around the z axis

�̄ :=
∫ 2π

0

dθ

2π
e−i2θJz�ei2θJz . (48)

States of the above form are called decoherence-free states
since they are stationary states with respect to collective phase
noise: [�̄,Jz] = 0. Conversely, every state τ satisfying [τ,Jz] =
0 can be written as τ = �̄, for a suitable � [40]. Decoherence-
free states are insensitive to the offset field B0 but in general
can be affected by gradients, i.e., [�̄,HG] �= 0. This suggests
that they can be used for gradient estimation. In what follows,
we will use the decoherence-free subspace for N qubits DFSN

to denote the set of decoherence-free states in the considered
scenario. It is easy to see from the definition that every � ∈
DFSN can be written as a convex combination

� =
N∑

k=0

pk�k (49)

of decoherence-free states �k ∈ D(Vk), each supported on
the subspaces Vk spanned by computational basis vectors
|i1〉|i2〉 . . . |in〉 containing exactly k excitations (1) and N − k

qubits in the ground state 0.5

4Because of the specific form of the measurements and evolutions
used in our analysis, we can limit ourselves only to averaging the
initial quantum states.

5Alternatively, Vk can be characterized as the eigenspace of Jz

corresponding to the eigenvalue λk = 1
2 (N − 2k).
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1. Optimal decoherence-free states

In order to compute how useful decoherence-free states
are for the estimation of the gradient G, we use directly
Eq. (16), which reduces the problem of computing the QFI for
the proposed metrological scheme to the computation of the

FQ[�,HG], where HG = ∑N
i=1(xi − x0) σ

(i)
z

2 . Using the fact that
HG preserves subspaces Vk and the properties of FQ[�,HG]
(see Appendix G for details), we prove that in order to find
optimal decoherence-free states it suffices to look only at
optimal (and thus necessary pure) states in each subspace Vk

separately,

max
�∈DFSN

FQ(�) = (γ t)2 max
k=0,...,N

max
�∈D(Vk)

FQ[�,HG] . (50)

The maximal attainable QFI for states in the subspaces Vk with
k excitations is given by (see Appendix G)

max
�∈D(Vk)

FQ(�) = (γ t)2

[
l∑

i=1

(xi − xN−i+1)

]2

, (51)

where l = min{k,N − k}. We observe that the above result
is independent of x0 and that it does not change under the
simultaneous translation of each xi −→ xi + δ by the same
distance δ. This is a consequence of the relation [�,Jz] = 0,
valid for � ∈ DFSN . The optimal decoherence-free (ODF)
state for a given number of excitations k, yielding Eq. (51), is
given by

|ODFk〉 = 1√
2

(|1〉⊗k ⊗ |0〉⊗N−k + |0〉⊗N−k ⊗ |1〉⊗k). (52)

The detailed derivation of Eqs. (51) and (52) is given in
Appendix G. A remarkable fact is that for decoherence-free
states the QFI for the estimation of the gradient G does not
decrease in time due to the collective phase noise. In Fig. 4,
we show the QFI from Eq. (51) for different number of
excitations k and for different positioning {xi}. We observe
that the maximal QFI is attained exactly for k = N/2, for an
arbitrary positioning of the qubits.6 This observation can be
proven analytically for any positioning of the particles (see
Appendix G for details) and we find

max
�∈DFSN

FQ(�) = (γ t)2

[
N/2∑
i=1

(xi − xN−i+1)

]2

(53)

with |ODFN/2〉 being the optimal state. It is important to note
that just like in the noiseless case [see Eq. (24)], the optimal
state does not depend on the spacing of particles. From the
quantum Cramér-Rao bound in Eq. (5), we get the ultimate
bound on the precision of the estimation of the gradient G

with decoherence-free states

�2G̃ � 1

(γ t)2
[∑N/2

i=1 (xi − xN−i+1)
]2 . (54)

6For simplicity, we assumed that N is even. In general, the maximal
QFI is attained for k = N/2� (see Appendix G for details).

2. Separable states

In the case of no a priori knowledge about the offset field,
it is hard to derive precision bounds for separable states.
This follows from the difficulty to characterize the convex set
DFSN ∩ SEPN , consisting of states that are both decoherence
free and separable. In particular, extremal points of DFSN ∩
SEPN generally do not have the form of pure state. We leave
the problem of finding the optimal decoherence-free separable
state open. However, let us remark that the decoherence-
free separable state7 ψ̄P (∞) exhibits asymptotically the same
(linear in N ) scaling of the QFI as the optimal product state
ψP = |P〉〈P| at least for the case of equal and optimal spacing
(that is, placing half of the qubits at each position x̃0 and x̃0 + L

for ψ̄P (∞) and placing all qubits at position x0 + L for ψP );
see Eqs. (46) and (47).

3. Equidistant spacing

Just like in the case of complete knowledge about B0

(described in Sec. IV), we consider a measurement scheme
in which N particles are equally spaced in the interval
[x̃0,x̃0 + L], i.e., xi = x̃0 + (i − 1) L

N−1 (recall that the position
x̃0 is some fixed reference coordinate and can have any value
including x0). Then, for the optimal decoherence-free state
ψ

N/2
ODF := |ODFN/2〉〈ODFN/2| we have

FQ

(
ψ

N/2
ODF

) = (γ tL)2

16

N4

(N − 1)2 , (55)

which scales ∝N2 for large numbers of particles.
With the optimal separable state from the noiseless case

|P〉, the QFI for equidistant spacing in the steady-state regime
becomes

FQ(ψ̄P (∞)) = (γ tL)2

12

N (N + 1)

N − 1
, (56)

which scales ∝N for large numbers of particles.

4. Optimal positioning

Optimizing the right hand side of Eq. (53) over the
positions xi ∈ [x̃0,x̃0 + L], we find the maximal QFI over all
decoherence-free states

max
�∈DFSN

FQ(�) = (γ tL)2

4
N2, (57)

which is independent of x̃0 and scales ∝N2. The optimal
positioning leading to Eq. (57) is xi = x̃0 for i � N/2 and
xi = x̃0 + L for i > N/2 (see Appendix G for the proof). This
corresponds to locating the particles at two positions with the
maximal possible distance L. Recall that the same positioning
was found to be optimal for estimating the gradient G with
the state |P〉 in the steady-state regime [ψ̄P (∞) as discussed
above Eq. (47)].

7Recall that the averaging operation �̄(t) preserves separability of
quantum states.
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FIG. 4. (a) Quantum Fisher information for optimal decoherence-free states |ODFk〉 for different k, for N = 100 qubits. Different colors
denote different spatial distributions of particles. (b) Different spatial distributions with a chain of N qubits spread over the interval of length
L. Black denotes the optimal spatial distribution; N/2 qubits at one end of the chain and the other N/2 qubits at the other end of the chain.
Purple denotes a distribution, where the qubits are more dense at the ends of the chain. Red denotes an equidistant spatial distribution. Yellow
denotes a distribution, where the qubits are more dense in the middle of the chain. The spatial distributions used here are given in Appendix H.

B. Optimal measurements for the experimental realization

Optimal decoherence-free states |ODFk〉 are equivalent
under local unitaries to GHZ states, which means that ODF
states can be transformed into GHZ states and vice versa by
local unitaries. ODF states can be prepared with high fidelity
by a global Sørensen-Mølmer gate [43] in experiments with
trapped ions. That has been performed for N = 14 qubits
in Ref. [19]. In experiments with neutral atoms in a lattice,
the preparation of the ODF state with k = N/2 for N = 2
qubits has been realized [34,36]. We therefore conclude that
optimal probe states for gradient estimation can be realized
in experiments considered in this work. As in the case of full
knowledge about B0 and the absence of noise, the question
remains of which measurement should be performed in order
to attain the maximal precision. In what follows, we show
that for parity measurements in the x basis (i) the classical
Fisher information [see Eq. (2)] and (ii) the error propagation
formula [see Eq. (11)] saturate the quantum Cramér-Rao bound
in Eq. (54) for optimal decoherence-free states |ODFk〉.

1. Classical Fisher information

As described in Sec. IV B, the projective measurement P
of the parity in the x basis is described by the projectors
P± = 1

2 (I ± σ⊗N
x ) [see Eq. (32)]. In Appendix B, we show that

the expectation value of the parity on the state ψk
ODF evolves

according to

tr
(
UGψk

ODFU
†
Gσ⊗N

x

) = cos

[
γ tG

l∑
i=1

(xi − xN−i+1)

]
, (58)

where l = min{k,N − k}. Using this result and performing the
analogous computations as the ones given in Sec. IV B, we get

Fcl
(
UGψk

ODFU
†
G,P

) = (γ t)2

[
l∑

i=1

(xi − xN−i+1)

]2

, (59)

with l = min{k,N − k}. Comparing Eqs. (59) and (53), we see
that parity measurements in the x basis saturate the quantum
Cramér-Rao bound for the estimation of G with the optimal

decoherence-free state |ODFk〉. In particular, the quantum
Cramér-Rao bound is saturated for the optimal state |ODFN/2〉
and therefore also the bound in Eq. (54) is saturated.

2. Error propagation formula

Just like in the noiseless case (discussed in Sec. IV B), one
can try to estimate the gradient G from the measurements of
the expectation value of M̂ = σ⊗N

x given in Eq. (58). Using the
error propagation formula in Eq. (11) and the formula for the
expectation value in Eq. (58) with 〈M̂2〉 = 1, we obtain that
this measurement strategy again leads (for small fluctuations of
the gradient G) to the maximal achievable precision, provided
by the optimal state |ODFN/2〉:

�2G̃M̂ = 1

(γ t)2
[∑N/2

i=1 (xi − xN−i+1)
]2 . (60)

From the above discussion, we see that parity measurements
in the x basis are optimal in both extremal scenarios considered
in this paper, under the condition of full and no a priori
knowledge about the offset field B0. As discussed in Sec. IV B,
these measurements can be routinely realized in experiments
with trapped ions and neutral atoms in an optical lattices. It
is also important that the ultimate accuracy given in Eq. (60)
is saturated independently on the value of the gradient G and
does not deteriorate with time due to collective phase noise.

C. Comparison of the performance of decoherence-free
states with other strategies

In this part, we compare the performance of ODF states
(i) with GHZ states in the case of full a priori knowledge of
B0 but in the presence of collective phase noise and (ii) with
Dicke states, for the estimation of gradients.

1. Comparison with GHZ states

We compare the performance of GHZ states with optimal
decoherence-free states when we have complete information
about B0 and collective phase noise is present. As mentioned
before, collective phase noise can be interpreted as an
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erasure of information about B0. Therefore, the QFI for
GHZ states vanishes for long measurement times t and ODF
states |ODFN/2〉 with k = N/2 excitations perform better.
In contrast, for short probing times t GHZ states perform
better. We can calculate the critical time tcrit for which the
QFI for GHZ states under noise is equal to the QFI for
|ODFN/2〉. In experiments for which this paper is relevant
typically t ≈ μs-ms and the correlation time τc ≈ s of the
field fluctuations �E(t). Therefore, we can assume τc � t ,
from which we get (see Appendix G 2)

tcrit =

{
2 loge

[
(
∑N

i=1(xi−x0))2

(
∑N/2

i=1 (xi−xN−i+1))2

]}1/2

Nγ ′�E
. (61)

In the case of complete a priori knowledge about B0 at the
beginning and collective phase noise, GHZ states perform well
for t < tcrit. For t > tcrit, ODF states |ODFN/2〉 outperform
GHZ states.

Neutral atoms in an optical microtrap are arranged equidis-
tantly xi − x0 = (i − 1)L/(N − 1). For this positioning, we
find the critical time tcrit = 2

√
loge[2(N − 1)/N]/(Nγ ′�E).

This is independent of the total length L of the string. For
N = 50 qubits and γ ′�E = 2π×50 Hz (as used for Fig. 3),
we find tcrit = 104 μs and for N = 8 we find tcrit = 595 μs.
Both are within typical coherence times of such experiments.

In Sec. IV, we discussed the case of full a priori knowledge
about B0. Here, we found that in the absence of noise
GHZ states are optimal. However, this holds only under the
assumption that xi � x0, which means that the whole string of
qubits is on the right-hand side of the position x0 where B0 is
known. If x0 is defined to be located within the range of the
qubit string, GHZ states are not optimal anymore (as shown
in Appendix A). The experimentally relevant case is if an
experimenter has full a priori knowledge about the offset field
B0 right in the middle of the qubit string xN/2 � x0 < xN/2+1,
e.g., by estimating the average field. Interestingly, in this case
the optimal states are ODF states (as shown in Appendix A)
that are decoherence free. Therefore, when x0 is defined to
be in the middle of the string, it does not matter whether an
experimenter has knowledge about the offset field. This fact
implies that only if an experimenter is able to measure the
offset field at a position that is not right in the middle of the
string, she could gain from having information about the offset
field.

In principle, a priori knowledge about the offset field
could enhance the precision for gradient estimation since the
maximal QFI when having full a priori knowledge about the
offset field in Eq. (29) is by constant factor of 4 greater than the
one in the case of having no a priori knowledge about the offset
field in Eq. (57). However, this comparison is unfair because
this enhanced precision is gained by an unknown amount of
resources that was previously used to determine the offset field
B0. Furthermore, as discussed before, a gradient measurement
does not always gain from having a priori knowledge about
the offset field. In fact, only for t < tcrit knowledge about the
offset field enhances the precision for gradient estimation since
collective phase noise immediately erases the information
about the offset field. However, even for t < tcrit the gain from
measuring the offset field is only a constant factor (up to 4).
This factor can also be reached by using longer measurement

times since FQ ∝ t2 for ODF states (that are insensitive to the
offset field). In the experiments here considered, tcrit ∝ μs,
whereas typical measurement times t ∝ ms such that t > tcrit

as we discussed above. Then, ODF states perform better than
GHZ states. Therefore, in the experiments here considered, it
is not worth spending any resources for a measurement of the
offset field for the estimation of gradients.

One possible objection to the above reasoning is that for any
specified probing time t there exist in principle optimal states
and measurements that would give a precision for gradient
estimation higher than the one for optimal DFS states [given in
Eq. (54)]. The technical limitation of such a scheme is that the
optimal states and measurements depend on the probing time
which results in experimental difficulties. On the other hand,
the optimal DFS states and the corresponding measurements
have already been implemented in experiments [19].

2. Gradient estimation with Dicke states

In Ref. [45], it was claimed that for gradient estimation with
a W state a good scaling of the QFI in N is possible. Recall
that W states are decoherence-free states and belong to the set
of symmetric Dicke states [44] |Dk

N 〉 = 1
N

∑
j Pj {|0〉⊗N−k ⊗

|1〉⊗k}, where N is a normalization constant and
∑

j Pj {.}
denotes the sum over all possible permutations. Symmetric
Dicke states with k = 1 excitations are exactly W states. We
use Eq. (16) to compute the QFI for Dicke states Dk

N :=
|Dk

N 〉〈Dk
N | [see Appendix F, Eq. (F6) for details] and the final

result is

FQ

(
Dk

N

)/
(γ t)2 =

N∑
i=1

x2
i −

(
N∑

i=1

xi

)2
(2k − N )2

N2

+
N∑

i �=j=1

xixj

[
(2k − N )2 − N

N (N − 1)

]
. (62)

For equidistant positioning xi = (i − 1) L
N−1 , we have

FQ

(
Dk

N

) = (γ t)2

(
L

N − 1

)2 (N + 1)k(N − k)

3
, (63)

which is maximal for k = N/2,

FQ

(
DN/2

N

) = (γ t)2

(
L

N − 1

)2
N2(N + 1)

12
. (64)

For W states (k = 1), we have

FQ

(
D1

N

) = (γ t)2

(
L

N − 1

)2
N2 − 1

3
. (65)

This is exactly the same result as the one from Ref. [45] with
a = L/(N − 1). In Ref. [45], a is defined as a fixed distance
between the qubits with xi = (i − 1)a, such that adding a qubit
leads to an extension of the total length L of the string. When
we use this convention, the QFI for W states in Eq. (65) scales
with FQ ∝ a2N2 for large N . At first sight, this seems to
be a good scaling since it is quadratic in N . However, when
fixing the distance between the qubits a, the HL from Eq. (31)
for gradient estimation is �2G̃ ∝ 1/N4 and the SQL from
Eq. (30) is �2G̃ ∝ 1/N3 for large N and with L = (N − 1)a.
Therefore, a quadratic scaling in N is not a good scaling for
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FIG. 5. Quantum Fisher information for different families of quantum states for the estimation of the gradient of a magnetic field, under
the assumption of equidistant spacing of the particles. The case of full a priori knowledge of B0 is depicted in part (a), whereas the case of
no a priori knowledge of B0 is given in part (b). In part (a), the GHZ state performs best, and in part (b), the QFI for GHZ states vanishes
FQ = 0. The QFI for decoherence-free states is the same in both scenarios. The performance for optimal Dicke states |DN/2

N 〉 is given by the
solid yellow line, for W states |D1

N 〉 by the solid orange line, and finally, for the optimal decoherence-free states with k = N/2 by the solid
purple line. The last one is not smooth for small N . This is due to the fact that the exact formula for the QFI differs from Eq. (55) for odd N as
shown in Appendix G. In the presence of noise, both the product state |P〉 (solid red line) and the GHZ state (solid black line) are between the
QFI shown in part (a) and the QFI shown in part (b). The slope of the curves represent the scaling in N , i.e., a N2 scaling (analogue of HL), a
linear scaling in N (analogue of SQL) and a constant scaling in N (W states |D1

N 〉 for large N ).

a fixed distance between the qubits. Furthermore, when fixing
the total length L, the QFI for W states decreases with N to

a constant FQ(D1
N )

N→∞−−−→ (γ t)2L2/3. The product state |P〉
in the steady-state regime in Eq. (56) performs better then a
W state in Eq. (65) and is for large N equal to the maximal
attainable QFI with symmetric Dicke states (k = N/2).

We conclude the section with the graphical comparison of
the performance of different families of states for gradient
estimation in Fig. 5, under the assumption of (a) full or (b) no
a priori knowledge about the offset field B0.

VI. GENERALIZATION

The model described in Sec. III, can be generalized to an
arbitrary known spatial distribution f (x) of the z component
of the magnetic field. We can consider an experiment for
the estimation of the strength G of a spatial magnetic field
distribution given by

B(x) = B0 + Gf (x − x0) , (66)

where the function f (x) is known and f (x0) = 0 holds. For
example, due to the quadratic Zeeman effect, it may be known
that the field has to be quadratic in x such that f (x − x0) =
(x − x0)2 − (x − x0)a, as depicted in Fig. 6. The Hamiltonian
in Eq. (13) is then generalized by replacing xi − x0 by f (xi −
x0), for i = 1, . . . ,N . The labeling of the particles is then
imposed by the ordering of the values of the magnetic field, i.e.,
B(xi) � B(xi+1). Under these slight modifications, essentially
all the results presented in this paper carry over. In particular,
the bounds on the precision given by the QFI in Eqs. (23)
and (20) for the case of full a priori knowledge of B0 and in
Eq. (53) for the case of no a priori knowledge are valid in this
generalized model.

Also the optimal states and the optimal measurements
attaining these bounds do not change. Furthermore, the optimal
positioning for the case of full a priori knowledge about B0 is
to put all qubits at the position xmax that maximizes f (x − x0).
For the case of no a priori knowledge about B0 it is optimal
to put half of the qubits at the position xmin that minimizes
f (x − x0) and the other half of the qubits at the position xmax

that maximizes f (x − x0).
Note that one has to keep in mind that the above analysis is

valid under the assumption f (x − x0) � 0 (which corresponds
to the condition xi � x0 from the note given in the end of
Sec. III). As depicted in Fig. 6, the assumption f (x − x0) � 0
in general does not always hold. If this assumption is dropped,
all the results for the case of no a priori knowledge about
B0 (decoherence-free states) still carry over. However, for the
case of full a priori knowledge about B0, the precise form
of the optimal states and formulas for maximal QFI change,
although one can still recover the results by substituting
xi − x0 by f (xi − x0) in the appropriate formulas given in
Appendix A.

6 4 3 2 1 5 7 86 4 3 2 1 5 7 8

x

B(x)

B0

x0

FIG. 6. A string of particles in a magnetic field with a spatial
distribution along the string. The magnetic field B(x) acts on each
particle, depending on its position. The particles are labeled such that
the smallest magnetic field acts on the first and the highest magnetic
field on the last particle.
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VII. CONCLUSIONS

We presented a systematic analysis of the ultimate limits in
precision for the estimation of a gradient of a spatially varying
magnetic field in systems of cold atoms and trapped ions. The
position degrees of freedom were treated classically and taken
as fixed. We used the framework of quantum metrology to
study two extreme scenarios: (i) the case when the magnetic
offset field is known and (ii) the case where the magnetic offset
field is not a priori known.

For the first case (i), we have introduced the bounds in
precision for gradient estimation analogous to the standard
quantum limit (maximal possible accuracy with separable
states) and the Heisenberg limit (maximal possible accuracy
with entangled states) known from the usual phase estimation
scenario. Moreover, we have identified the optimal probe state,
that is, a GHZ state [see Eq. (24)]. It is then optimal to put
all qubits as far away as possible from the point x0, where the
magnetic offset field is known. This leads to a magnetic field
measurement, similar to a magnetic offset field measurement,
but at a different place.

For the second case (ii), we found that GHZ states are
completely useless (FQ = 0) for the estimation of a magnetic
field gradient. In the absence of knowledge about B0, effective
superselection rules restrict the class of allowed states to
decoherence-free states. We proved that the decoherence-free
state given in Eq. (52) with k = N/2 excitations is optimal
and does not depend on the positions of the qubits. Here,
the optimal positioning is to put half of the qubits at one
place and the other half as far away as possible. We also
showed that the performance of optimal decoherence-free
states is generically comparable to optimal GHZ states in the
case of complete knowledge about B0—both scale with N2.
Both optimal states can be prepared with high fidelities in
experiments with trapped ions up to N = 14 and cold atoms
up to N = 2.

For both scenarios, we identified the parity measurement
in the x basis as the optimal measurement saturating the

quantum Cramér-Rao bounds for gradient estimation. This
measurement is feasible in experiments considered in this
work, as for the positions of the particles can be considered
fixed and local measurement of σx can be easily performed.

Finally, we investigated the effect of collective phase noise.
Collective phase noise can be interpreted as an erasure of
knowledge about the magnetic offset field and continuously
interpolates between scenarios (i) and (ii) for strong noise or
rather long probing times. We found a critical time tcrit for
which the GHZ state performs as good as the ODF state with
k = N/2 excitations. For t < tc, GHZ states perform better
than ODF states, and for t > tc, ODF states outperform GHZ
states. These results are summarized in the decision diagram in
Fig. 7. Values of the QFI for different positioning and different
states in the two cases (i) and (ii) are summarized in Table I.

We derived Cramér-Rao bounds for gradient estimation
from the QFI and discussed their saturation with FI. Such
a saturation implies an unlimited amount of statistics and
therefore many repetitions of a measurement. However,
realistic experiments are limited in measurement time and
therefore limited in the amount of possible repetitions. In
such a scenario, a proper analysis of bounds in precision
can be performed in a Bayesian estimation approach. For the
standard scheme [as depicted in Fig. 1(a)], it was shown in
Ref. [46] that only the bound �2ϕ � π2/N2 can be saturated
with limited statistics, contrary to the bound �2ϕ � 1/N2

from the QFI. An investigation of bounds from a Bayesian
approach for the estimation of gradients would be interesting
for further work. Moreover, it would be interesting to take
the uncertainty in positioning of the qubits into account. In
fact, independently from our work, an article on gradient
estimation with systems of atoms with probability distributions
in position has appeared [47]. For such a system, also weak
value measurements could offer an enhancement in precision
for the estimation of gradients [48]. Furthermore, in certain
setups there is a coupling between the internal and external
degrees of freedom, i.e., the spin and the position [26]. This

FIG. 7. Decision diagram describing how to perform the best gradient measurement. First, we distinguish between the case of full a priori
and the case of no a priori knowledge about the offset field B0. When no noise is present, we derived the optimal state, optimal positioning,
and optimal measurements for both cases. Furthermore, we derived the ultimate limits in precision for both cases. For the case of full a priori
knowledge about the offset field B0 we investigated the influence of collective phase noise to the precision bounds and found that this noise
source can be interpreted as an erasure of information about B0. Therefore, from the set of investigated states, the GHZ state performs best for
t < tcrit and the ODF state with k = N/2 performs best for t > tcrit.
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TABLE I. QFI for different states and scenarios considered in this work. For the case of full a priori knowledge about the offset field B0,
GHZ states [Eq. (24)] and from the set of separable states |P〉 [Eq. (21)] are optimal. For the case of no a priori knowledge about the offset
field B0, ODF states [Eq. (52)] with k = N

2 are optimal and are here compared to the separable state |P〉. In this table, we list the QFI for a fixed
positioning (general), for the optimal positioning, and for equidistant spacing.

General Optimal positioning Equidistant spacing

B0 is known |GHZ〉 (γ t)2[
∑N

i=1(xi − x0)]
2

(γ t)2L2N 2 (γ t)2L2 N2

4

|P〉 (γ t)2
∑N

i=1(xi − x0)2 (γ t)2L2N (γ t)2L2 N(2N−1)
6(N−1)

B0 is not known |ODFN/2〉 (γ t)2[
∑N/2

i=1 (xi − xN−i+1)]
2

(γ t)2L2 N2

4 (γ t)2L2 N4

16(N−1)2

|P〉 (γ t)2[
∑N

i=1 x2
i − 1

N
(
∑N

i=1 xi)
2
] (γ t)2L2 N

4 (γ t)2L2 N(N+1)
12(N−1)

requires an adaption of our ideas. Also, the investigation
of precision limits and optimal strategies for simultaneous
estimation of many parameters describing a field (i.e., the
offset field B0, the gradient G, and higher derivatives) could be
interesting (especially in the presence of collective dephasing
noise [41,42]). A first step in this direction, however, without
considering the effect of noise has been done in Ref. [47].
Finally, another interesting topic for further studies is the
performance of random multiparticle states [49] for gradient
estimation.
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APPENDIX A: MAXIMAL QFI AND OPTIMAL
STATES FOR ARBITRARY POSITION x0

In this Appendix, we derive the maximal QFI for gradient
estimation for an arbitrary position of x0, in which the offset
field is assumed to be perfectly known. Let us first introduce
the auxiliary notation fi := xi − x0. Moreover, just like in the
main text, let us label the qubits in such a way that fi+1 �
fi . By the virtue of Eq. (16), we can focus on maximizing
FQ[�,HG], where

HG =
N∑

i=1

fi

σ (i)
z

2
. (A1)

Let us note that the above Hamiltonian can be diagonalized by
the computational basis

|I 〉 = |i1〉|i2〉 . . . |in〉, with ik ∈ {0,1}. (A2)

The symbol I labels the set of positions of particles which are
in the state |0〉 and is formally defined by

I = {l| il = 0 }. (A3)

Note that I can be arbitrary (in particular, it can be also the
empty set). The eigenvalue corresponding to the eigenvector
|I 〉 is given by

λI = 1

2

∑
i∈I

fi − 1

2

∑
i∈Ī

fi , (A4)

where Ī denotes the complement of the set I in the set
{1,2, . . . ,N}. The maximal eigenvalue λmax is given by

λmax = 1

2

N∑
i=1

|fi | (A5)

with the corresponding eigenvector |Imax〉, where

Imax = {l|fl � 0 }. (A6)

Let m be the minimal number with fm � 0, that is, the number
of particles on the left side of x0 such that xm � x0 < xm+1.
Now, using the ordering fi+1 � fi , we find

|Imax〉 = |1〉⊗m ⊗ |0〉⊗N−m . (A7)

Because of λĪ = −λI , we get λmin = −λmax and

|Imin〉 = |0〉⊗m ⊗ |1〉⊗N−m . (A8)

Finally, by virtue of Eqs. (16), (8), and (9), we obtain

max
�∈D(HN )

FQ(�) = (γ t)2

[
N∑

i=1

|fi |
]2

, (A9)

with the optimal state given by

|�m〉 = 1√
2

(|1〉⊗m ⊗ |0〉⊗N−m + |0〉⊗m ⊗ |1〉⊗N−m). (A10)

Note that for m = N/2 this state happens to be the optimal
decoherence-free state |ODFN/2〉.

APPENDIX B: PARITY MEASUREMENTS

In this Appendix, we compute expectation values of the
parity operator M̂ = σ⊗N

x on the families of quantum states
investigated in this paper. These computations are relevant for
the computations involving the classical Fisher information
and the error propagation formula given the main text.
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1. Parity expectation value for GHZ states

Recall that |GHZ〉 = 1√
2
(|0〉⊗N + |1〉⊗N ). Using the iden-

tities

UG|0〉⊗N =exp

[
− i

2

(
NγB0t + γGt

N∑
i=1

(xi − x0)

)]
|0〉⊗N,

(B1)

UG|1〉⊗N =exp

[
i

2

(
NγB0t + γGt

N∑
i=1

(xi − x0)

)]
|1〉⊗N,

(B2)

and the property M̂|0〉⊗N = |1〉⊗N , we obtain

tr(UGψGHZU
†
GM̂) =cos

[
NγB0t +γ tG

N∑
i=1

(xi − x0)

]
.

(B3)

2. Parity expectation value for noisy GHZ states

Let ψGHZ,θ := |GHZθ 〉〈GHZθ |, where

|GHZθ 〉 = 1√
2

(|0〉⊗N + exp(iθ )|1〉⊗N ). (B4)

In this part, we compute the expectation value of the parity
σ⊗N

x on the noisy state ρ := UGψ̄GHZ,θ (t)U †
G. Using Eq. (E4),

we find

ρ = d(t)UGψGHZ,θU
†
G+[1 − d(t)] 1

2 [(|0〉〈0|)⊗N+(|1〉〈1|)⊗N ],

(B5)

where d(t) is given below Eq. (E4) in Appendix E 1. From the
above expression and using M̂|0〉⊗N = |1〉⊗N , we get

tr(ρM̂) = d(t)tr(UGψGHZ,θU
†
GM̂). (B6)

Finally, repeating essentially the same computations as the
ones from Sec. B 1, we obtain

tr(ρM̂) = d(t) cos

[
NγB0t + γ tG

N∑
i=1

(xi − x0) + θ

]
.

(B7)

3. Parity expectation value for optimal decoherence-free states

Repeating the analogous computations to these given in
Appendix B 1 for

|ODFN/2〉 = 1√
2

(|1〉⊗N/2 ⊗ |0〉⊗N/2 + |0〉⊗N/2 ⊗ |1〉⊗N/2),

(B8)
we obtain

UG|a〉 = exp

[
− i

2

(
γ tG

N/2∑
i=1

(xi − xN−i+1)

)]
|a〉, (B9)

UG|b〉 = exp

[
i

2

(
γ t

N/2∑
i=1

(xi − xN−i+1)

)]
|b〉, (B10)

where we denoted |a〉 := |1〉⊗N/2 ⊗ |0〉⊗N/2 and |b〉 :=
|0〉⊗N/2 ⊗ |1〉⊗N/2. Using the above expressions together with
the identity M̂|b〉 = |a〉, we obtain

tr
(
UGψ

N/2
ODFU

†
GM̂

) = cos

[
γ t

N/2∑
i=1

(xi − xN−i+1)G

]
, (B11)

where ψ
N/2
ODF = |ODFN/2〉〈ODFN/2|.

APPENDIX C: CLASSICAL FISHER INFORMATION
FOR Jx MEASUREMENT

Analogous computations to the ones performed in Sec. IV
can be performed to show that the classical Fisher information
for the measurement of the projective POVM PJx

, associated
with the eigenspaces of Jx , also gives the QFI for the optimal
states. More precisely,

Fcl(�G,PJx
) = Fcl(�G, P), (C1)

for � = ψGHZ and � = ψ
N/2
ODF.

This result can be also derived from the monotonicity of
QFI under coarse graining, i.e.,

Fcl(�G, {Mi}) � Fcl(�G, {Ni}), (C2)

where {Ni} is a POVM obtained by coarse graining of a POVM
{Mi}; i.e., for every outcome i we have Ni = ∑

j q(i|j )Mj

for some stochastic matrix q(i|j ) (we call a matrix q(i|j )
stochastic if and only if q(i|j ) � 0 and for every j we have∑

i q(i|j ) = 1). A measure P, describing the measurement
of the parity in x basis σ⊗N

x , can be obtained as follows:
First, measuring the projective measurement PJx

, and second,
output +1 or −1 depending on the number of excitations
contributing to the observed eigenvalue of Jx . Therefore, P
is coarse graining of PJx

and thus, by virtue of Eq. (C2), we
obtain Eq. (C1) for arbitrary states �.

APPENDIX D: COMPUTATIONS
OF ERROR-PROPAGATION FORMULA FOR
GHZ STATES IN THE PRESENCE OF NOISE

The aim of this Appendix is to show that for a suitable
chosen value of the initial relative phase in a state |GHZθ 〉 it is
possible to saturate the quantum Cramér-Rao bound with the
measurement of M̂ = σ⊗N

x , even in the presence of collective
phase noise. Our reasoning essentially mimics the one given
in the previous section. Setting ψG,noise = UGψ̄GHZ,θU

†
G and

using (B7), we obtain

�2
ψG,noise

M̂ = 1 − d(t)2 cos2 [α(t)], (D1)

with α(t) := NγB0t + γGt
∑N

i=1(xi − x0) + θ . Using this
formula in the error propagation formula given in Eq. (11),
we get

�2G̃M̂ = 1 − d(t)2 cos2[α(t)][
d(t)γ t

∑N
i=1(xi − x0)

]2
sin2 [α(t)]

= 1 + [1 − d(t)2]cot2[α(t)][
d(t)γ t

∑N
i=1(xi − x0)

]2 . (D2)
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From this, we see that the quantum Cramér-Rao bound [in this
case given by the inverse of the QFI in Eq. (41)] is saturated
for cot[α(t)] = 0 (for a suitable choice of the initial phase θ ).

APPENDIX E: OPTIMAL STATES IN THE PRESENCE
OF COLLECTIVE PHASE NOISE

In this Appendix, we will assume full a priori knowledge
about B0. We calculate the QFI first for GHZ states in the
presence of noise and then for optimal states for arbitrary
position x0 in the presence of noise.

1. GHZ states in presence of collective phase noise

Due to the noise, the probe state � evolves into
a mixed state �̄(t) := 〈Unoise�U

†
noise〉, where Unoise =

exp[−iγ ′ ∫ t

0 �E(τ )dτJz] describes the noise acting on the
system. The diagonal entries of the probe state do not change
�̄(t)ii = �ii . However, the off-diagonal ones do. The GHZ
state has only two nonzero off-diagonal entries �0,q = (�q,0)†,
where q = 2N − 1 for a state of dimension 2N . For these
entries, we find [19]

[Unoise�U †
noise]0,q = exp

[
−iγ ′N

∫ t

0
�E(τ )dτ

]
�0,q . (E1)

Now we use the fact that 〈exp[±iδϕ]〉 = exp[− 1
2�2δϕ] for an

unbiased Gaussian distribution of δϕ that means that 〈δϕ〉 = 0.
With the fact that the variance �2δϕ = 〈δϕ2〉 we can calculate〈

exp

[
±iγ ′N

∫ t

0
�E(τ )dτ

]〉
= exp

[
−1

2
(γ ′N )2C(t)

]
(E2)

with C(t) = 〈∫ t

0 dτ1
∫ t

0 dτ2�E(τ1)�E(τ2)〉. Substituting t1 =
τ1 − τ2 and t2 = τ1 + τ2 and using 〈E(t + τ )E(t)〉 =
〈E(τ )E(0)〉 and 〈�E(t)�E(0)〉 = (�E)2 exp [−t/τc], we find

C(t) = 2(�Eτc)2[exp(−t/τc) + t/τc − 1]. (E3)

Together, we find the N -particle GHZ state evolves in presence
of collective phase noise into the state

�̄(t) = 1

2
|0⊗N 〉〈0⊗N | + 1

2
|1⊗N 〉〈1⊗N |

+ d(t)

2
|0⊗N 〉〈1⊗N | + d(t)

2
|1⊗N 〉〈0⊗N | (E4)

with d(t) = exp{−(Nγ ′�Eτc)2[exp(−t/τc) + t/τc − 1]}.
This state in its eigendecomposition is given by the
nonzero eigenvalues λ± = 1

2 [1 ± d(t)] and the corresponding
eigenvectors |v±〉 = 1√

2
(|0 . . . 0〉 ± |1 . . . 1〉). In order to

compute the QFI for a noisy GHZ state and for estimating G,
we use Eqs. (16) and (6), with the final result

FQ (�̄(t)) = (λ+ − λ−)2

λ+ + λ−
(γ t)2|〈v+|

N∑
i=1

(xi − x0)σ (i)
z |v−〉|2

= d(t)2(γ t)2

[∑
i

(xi − x0)

]2

, (E5)

where all other terms in Eq. (6) vanish since

N∑
i=1

(xi − x0)σ (i)
z |v+〉 =

N∑
i=1

(xi − x0)|v−〉. (E6)

2. Optimal states for arbitrary position
x0 in the presence of noise

Let m be the minimal number with fm � 0, that is, the
number of particles on the left side of x0. Then, in Appendix A
we showed that the optimal state is given by x

|�m〉 = 1√
2

(|1〉⊗m ⊗ |0〉⊗N−m + |0〉⊗m ⊗ |1〉⊗N−m). (E7)

Following the calculations from the previous Appendix, we
find the averaged state for a given time t is

�̄(t) = 1

2
|1⊗m,0⊗N−m〉〈1⊗m,0⊗N−m|

+ 1

2
|0⊗m,1⊗N−m〉〈0⊗m,1⊗N−m|

+ dm(t)

2
|1⊗m,0⊗N−m〉〈0⊗m,1⊗N−m|

+ dm(t)

2
|0⊗m,1⊗N−m〉〈1⊗m,0⊗N−m|, (E8)

with

dm(t) := exp

[
−(N − 2m)2(γ ′�Eτc)2

(
e− t

τc + t

τc

− 1

)]
.

(E9)

In the cases of m = 0 and m = N , the optimal state is
a GHZ state |�0〉 = |�N 〉 = |GHZ〉 and we find d0(t) =
dN (t) = d(t). The nonzero eigenvalues of �̄(t) are given by
λm

±(t) = 1±d(m,t)
2 with the corresponding eigenvectors

|vm
±〉 = 1√

2
(|1〉⊗m ⊗ |0〉⊗N−m ± |0〉⊗m ⊗ |1〉⊗N−m). (E10)

Now we can use the fact that

N∑
i=1

(xi − x0)σ (i)
z |vm

+〉 =
(

N∑
i=1

|xi − x0|
)

|vm
−〉 (E11)

to evaluate the QFI for estimating G that is given by

FQ = (λm
+ − λm

−)2

λm+ + λm−
(γ t)2

∣∣∣∣∣〈vm
+|

N∑
i=1

(xi − x0)σ (i)
z |vm

−〉
∣∣∣∣∣
2

= (γ t)2dm(t)2

(
N∑

i=1

|xi − x0|
)2

. (E12)

APPENDIX F: OPTIMAL PRODUCT STATE
IN THE STEADY STATE REGIME

In the noiseless case, the product state |P〉 is the best
classical probe state. We now want to understand what
noise (losing information about B0) does to the scaling for
this state. The state ψ̄P (t → ∞) = ∑N

k=0 pk|Dk
N 〉〈Dk

N | is a
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mixture of symmetric Dicke states |Dk
N 〉 [44] with probabilities

pk = 2−N (Nk ), where
∑N

k=0 pk = 1. Recall first that

HG =
N∑

i=1

fi

σ (i)
z

2
, (F1)

where we set for convenience fi := xi − x0. We perform the
calculations analogous to the ones given in Ref. [9]. Because
of the fact that HG preserves subspaces Vk and |Dk

N 〉 ∈ Vk , we
have 〈Ds

N |HG|Dl
N 〉 ∝ δl,s and therefore the QFI reduces to

FQ = 4(γ t)2
N∑

k=0

pk�
2
kHG, (F2)

with �2
kHG being the variance of HG in the state |Dk

N 〉. The
second term of the variance is the squared expectation value
〈HG〉, which is given by

〈
Dk

N

∣∣ N∑
i=1

fi

σ (i)
z

2

∣∣Dk
N

〉 =
N∑

i=1

fi

〈
Dk

N

∣∣σ (i)
z

2

∣∣Dk
N

〉

=
N∑

i=1

fi

1

N

〈
Dk

N

∣∣Jz

∣∣Dk
N

〉

=
N∑

i=1

fi

(2k − N )

2N
, (F3)

using the symmetry of the state. The expectation value of the
squared operator 〈H 2

G〉 is

〈
Dk

N

∣∣[ N∑
i=1

fi

σ (i)
z

2

]2∣∣Dk
N

〉 =
N∑

i,j=1

fifj

〈
Dk

N

∣∣σ (i)
z

2

σ
(j )
z

2

∣∣Dk
N

〉

=
N∑

i=1

f 2
i

〈
Dk

N

∣∣(σ (i)
z

2

)2∣∣Dk
N

〉
︸ ︷︷ ︸

=1/4

+
N∑

i �=j=1

fifj

〈
Dk

N

∣∣σ (i)
z

2

σ
(j )
z

2

∣∣Dk
N

〉
.

(F4)

Using the symmetry of the state 〈Dk
N |σ (i)

z σ
(j )
z |Dk

N 〉 =
〈Dk

N |σ (a)
z σ (b)

z |Dk
N 〉 for arbitrary a and b, we can rewrite the

second term〈
Dk

N

∣∣σ (i)
z

2

σ
(j )
z

2

∣∣Dk
N

〉 = 1

N (N − 1)

N∑
a �=b=1

〈
Dk

N

∣∣σ (a)
z

2

σ (b)
z

2

∣∣Dk
N

〉

= 1

N (N − 1)

⎛
⎜⎝〈

Dk
N

∣∣J 2
z

∣∣Dk
N

〉︸ ︷︷ ︸
=(2k−N)2/4

−N

4

⎞
⎟⎠.

(F5)

Together the variance is given by

4�2
kHG =

N∑
i=1

f 2
i −

(
N∑

i=1

fi

)2
(2k − N )2

N2

+
N∑

i �=j=1

fifj

[
(2k − N )2 − N

N (N − 1)

]
. (F6)

Here, all terms with x0 vanish. Therefore, 4�2
kHG is inde-

pendent of x0. Using
∑N

k=0 2−N (Nk )(2k − N )2 = N , we can
calculate the QFI

FQ = 4(γ t)2
N∑

k=0

pk�
2
kHG

= (γ t)2

⎡
⎣∑

i

x2
i − 1

N

(∑
i

xi

)2
⎤
⎦. (F7)

For the maximization of Eq. (F7) over the positioning {xi}
we can state the following:

Lemma 1. Let N be an even natural number and let

f (x1,x2, . . . ,xN ) :=
N∑

i=1

x2
i − 1

N

(
N∑

i=1

xi

)2

. (F8)

Then, the restriction of f to the domain xi ∈ [x0,x0 + L]
attains the maximum value for xi = x0, for i = 1, . . . ,N/2
and xi = x0 + L for i = N/2 + 1. . . . ,N .

Proof. A direct computation shows that for any δ ∈ R we
have

f (x1 + δ,x2 + δ, . . . ,xN + δ) = f (x1,x2, . . . ,xN ). (F9)

Therefore, the problem of maximizing f in the domain
specified by the restrictions xi ∈ [x0,x0 + L] can be reduced
to the problem of maximizing this function for its arguments
satisfying xi ∈ [−L/2,L/2]. For such restrictions setting half
of xi equal to −L/2 and the other half equal to L/2 maximizes∑N

i=1 x2
i while at the same time minimizing (

∑N
i=1 xi)

2
.

Thus, such configuration maximizes f for xi ∈ [−L/2,L/2].
Coming back to the original interval, we get the thesis of the
lemma. �

APPENDIX G: BOUNDS IN PRECISION
FOR GRADIENT ESTIMATION WITH NO

A PRIORI KNOWLEDGE ABOUT B0

In this Appendix, we derive the bounds in precision for
gradient estimation under the assumption of no a priori
knowledge about the offset field B0. In particular, we will
prove Eqs. (50), (51), (52), and (53) given in Sec. V.

Let us start with proving Eq. (50), which reads

max
�∈DFSN

FQ(�) = (γ t)2 max
k=0,...,N

max
�∈D(Vk)

FQ[� ,HG] . (G1)

In order to prove this equation, we first recall the connection
FQ(�) = (γ t)2FQ[� ,HG]. Then, for the Hamiltonian quantum
Fisher information, we have

FQ

[
N∑

k=0

pk�k,HG

]
=

N∑
k=0

pkFQ[�k,HG] , (G2)

where {pk} is a probability distribution and states �k are
supported on Vk . Equation (G2) follows from the fact that HG

preserves decoherence-free subspaces Vk and the additivity
QFI under the convex combinations of states supported on
orthogonal subspaces [2]. The identity in Eq. (G1) follows
now from the linearity of the right-hand side of Eq. (G2) in
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{pk} and the fact that decoherence-free states are precisely of
the form

∑N
k=0 pk �k for �k supported on Vk .

The optimal value of the QFI on D(Vk) can be found
by using Eqs. (8) and (9). Let λ(k)

max and λ(k)
min denote the

maximal and respectively minimal eigenvalues of HG|Vk
[the

formula for HG is given for example in Eq. (A1)]. Using the
monotonicity of the coefficients fi+1 � fi with fi = (xi − x0)
we get

λ(k)
max =

N∑
i=k+1

fi −
k∑

i=1

fi , (G3)

λ(k)
min =

N−k∑
i=1

fi −
N∑

i=N−k+1

fi . (G4)

The corresponding eigenvectors are given by∣∣I (k)
max

〉 = (|1〉⊗k) ⊗ (|0〉⊗N−k) ,∣∣I (k)
min

〉 = (|0〉⊗N−k) ⊗ (|1〉⊗k) . (G5)

Using Eq. (G3) and Eq. (G4), we get

λ(k)
max − λ(k)

min =
l∑

i=1

(fi − fN−i+1),

l = min{k,N − k} . (G6)

From Eqs. (16) and (G6), we obtain the explicit formula for
the maximal QFI on Vk ,

max
�∈D(Vk)

FQ(�) = (γ t)2

[
l∑

i=1

(fi − fN−i+1)

]2

, (G7)

where l = min{k,N − k}. From Eq. (9), we find that the above
value is attained for the state

|ODFk〉 = 1√
2

(∣∣I (k)
max

〉 + ∣∣I (k)
min

〉)
. (G8)

We have therefore proved Eqs. (51) and (52).
We conclude by noting that the right-hand side of Eq. (G7) is

a monotonic function in k for 2k � N and max�∈D(Vk) FQ(�) =
max�∈D(VN−k) FQ(�); see Fig. 8 for a graphical explanation of
this fact. Therefore, the QFI is maximal for k = N

2 �, where
n� is the smallest integer smaller or equal to n that is called
the floor of n. Using Eq. (G1), we get

max
�∈DFSN

FQ(�) = (γ t)2

⎡
⎣ N

2 �∑
i=1

(xi − xN−i+1)

⎤
⎦

2

. (G9)

This maximum is obtained for the state∣∣ODF N
2 �

〉 = 1√
2

[|1〉⊗ N
2 �|0〉⊗� N

2 � + |0〉⊗� N
2 �|1〉⊗ N

2 �],
(G10)

where �n� is the highest integer greater or equal to n that is
called the ceil of n. Let us note that if N is not even also, the
state ∣∣ODF� N

2 �
〉 = 1√

2

(∣∣I � N
2 �

max
〉 + ∣∣I � N

2 �
min

〉)
(G11)

attains the maximal QFI given in Eq. (G9).

1 2 3 4 5 6

f1 f2 f3 f4 f5 f6

−

−

−

∑
(.)2 FQ

f

1

f1

2

f2ff

3

f3ff

4

f4f

5

f5f

6

f6f

FIG. 8. Graphical illustration of Eq. (G7) for N = 6 qubits. First,
fN−i+1 is subtracted from fi . These differences will be summed up.
Then, the QFI is given by the square of the sum. For k � N/2, the
number of terms in the summation increases with k and decreases with
k for k > N/2. This is due to the fact that the summation cutoff is
given by l = min{k,N − k}. In total, max�∈D(Vk ) FQ(�) is a monotonic
function of k for k � N/2.

1. Optimal positioning of the qubits

Consider N particles that are set to be located in the
interval xi ∈ [x̃0,L + x̃0]. Here, x̃0 is an arbitrary point. We
are interested in how to optimally locate the qubits in order to
get the best possible accuracy for the estimation of G (for fixed
N and L). According to Eq. (G7), the maximal QFI, attainable
with a state from the DFSN is given by

FQ(�) = (γ t)2

⎡
⎣ N

2 �∑
i=1

(xi − xN−i+1)

⎤
⎦

2

. (G12)

The maximum of (G12) over the locations of all particles
{xi}Ni=1 is attained for xi = x̃0 for i � N

2 � and xi = L + x̃0

for i > N
2 � or vice versa. Then, the maximal QFI is given by

FQ = (γ t)2

⌊
N

2

⌋2

L2 . (G13)

Let us note that in the case when N is odd the position
of the middle particle can be arbitrary. We want to emphasize
that the scaling behavior (with respect to N and L) of the (over
the choice of xi’s) optimized QFI is preserved if one picks the
optimal state, which is invariant to the considered noise model.

2. Crosspoint GHZ in presence of noise
and optimal state from the DFS

In the noiseless case, the GHZ state is optimal for gradient
estimation when B0 is known. However, collective phase noise
causes an erasure of knowledge about the offset field B0. In
the limit of no knowledge about B0, we found an optimal state
from the DFSN given in Eq. (G8) with k = N/2�. In total,
the maximal attainable QFI for this state is smaller then for
the GHZ state in the noiseless case. Therefore, in this section
we calculate the measurement time tcrit in which both perform
similar. The QFI for GHZ states in the presence of collective
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phase noise is given by

FQ = d(t)2(γ t)2

[
N∑

i=1

(xi − x0)

]2

, (G14)

with d(t) = exp{−(Nγ ′�Eτc)2[exp(−t/τc) + t/τc − 1]}.
The QFI for the optimal state from the DFSN with k = N/2�
is given by

FQ = (γ t)2

⎡
⎣ N

2 �∑
i=1

(xN−i+1 − xi)

⎤
⎦

2

. (G15)

Then, we can calculate the critical time tcrit by setting both
equal and solve for t . In realistic experiments, the correlation
time τc ∝ s and the measurement time t ∝ ms such that we
can assume t/τc � 1, which leads to [exp(−t/τc) + t/τc −
1] ≈ 1/2(t/τc)2, and we find

tcrit =

{
2 loge

[
(
∑N

i=1(xi−x0))2

(
∑N/2

i=1 (xi−xN−i+1))2

]}1/2

Nγ ′�E
. (G16)

APPENDIX H: SPATIAL DISTRIBUTIONS USED IN FIG. 4

In Fig. 4, we illustrated the QFI with a state from the DFSN

with k excitations for different kinds of spatial distributions
of the qubits. For these, we used the following functions: The
optimal spatial distribution for the positioning of the qubits is
marked in black in Fig. 4 and is given by

xi =
{

0 for i � N/2� ,

L for i > N/2� .
(H1)

The spatial distribution marked by purple is given by

xi = L

2

{
1 + tanh

[(
2i

L
− 1

)
π

]}
. (H2)

The equidistant spatial distribution marked in red is given by

xi = (i − 1)
L

N − 1
(H3)

and the spatial distribution marked by yellow is given by

xi = L

2

{
1 + tan

[(
2i

L
− 1

)
π

4

]}
. (H4)
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A 94, 052108 (2016).

[29] T. J. Proctor, P. A. Knott, and J. A. Dunningham,
arXiv:1702.04271.

[30] Sergey I. Knysh and Gabriel A. Durkin, arXiv:1307.0470.
[31] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s

Theorem, Quantum Theory, and Conceptions of the Universe
(Springer, Berlin, 1989), p. 69.

[32] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature (London)
417, 709 (2002).

[33] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt,
C. Wunderlich, and W. K. Hensinger, Sci. Adv. 3, e1601540
(2017).

[34] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502
(2010).

[35] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Phys. Rev. A 54, R4649(R) (1996).

[36] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage,
T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev. Lett.
104, 010503 (2010).

[37] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys.
79, 555 (2007).

[38] I. Baumgart, J.-M. Cai, A. Retzker, M. B. Plenio, and Ch.
Wunderlich, Phys. Rev. Lett. 116, 240801 (2016).

[39] S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko,
A. Rauschenbeutel, and D. Meschede, Phys. Rev. A 72, 023406
(2005).

[40] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett.
81, 2594 (1998).

[41] U. Dorner, New J. Phys. 14, 043011 (2012).
[42] U. Dorner, Phys. Rev. A 88, 062113 (2013).
[43] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999).
[44] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[45] Y.-L. Zhang, H. Wang, L. Jing, L.-Z. Mu, and H. Fan, Sci. Rep.

4, 7390 (2014).
[46] D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098

(2000); M. Jarzyna and R. Demkowicz-Dobrzański, New J.
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