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Imperfect state preparation in continuous-variable quantum key distribution
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In continuous-variable quantum key distribution, the loss and excess noise of the quantum channel are key
parameters that determine the secure key rate and the maximal distribution distance. We investigate the imperfect
quantum state preparation in Gaussian modulation coherent-state protocol both theoretically and experimentally.
We show that the Gaussian distribution characteristic of the prepared states in phase space is broken due to the
incorrect calibration of the working parameters for the amplitude modulator and phase modulator. This further
causes a significant increase of the excess noise and misestimate of the channel loss. To ensure an accurate
estimate of the quantum channel parameters and achieve a reliable quantum key distribution, we propose and
demonstrate two effective schemes to calibrate the working parameters of the modulators.
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I. INTRODUCTION

Quantum key distribution (QKD) can achieve secret key
sharing between two legitimate parties over an unsafe quantum
channel with the help of a public, authenticated classical
channel [1,2]. The unconditional security relies on the basic
properties of the quantum physics, for instance, the quantum
no-cloning theorem and uncertainty principle. Continuous-
variable (CV) QKD protocols encode the secret keys into
continuous-spectrum quantum observables (quadratures of
the light field) and employ homodyne detectors instead of
single photon detectors. One potential of the CV protocols is
that we can achieve high key rates at a relatively short distance
due to the multiphoton feature of the signal states. Recently, the
research of CV QKD has made great progress in experimental
aspects as well as the theoretical analysis [3–18].

In real scenarios, the experimental imperfections of QKD
systems may threaten their security. Such imperfections
mainly include the light source, the preparation of the signal
state, and the measurement of the received states [19–29].
These side-channel attacks can be countered in principle
by characterizing the system carefully; for instance, a real-
time measurement of the shot noise or generating the local
oscillator (LO) locally in Bob’s side disables the attacks on
the LO [30,31]. Measurement-device-independent QKD is
another powerful countermeasure to address the imperfect
measurement process [32–34]. In a prepare-and-measure (PM)
implementation of Gaussian-modulated protocols, waveguide
electro-optic amplitude and phase modulators are usually
exploited to achieve the desired bivariate Gaussian modulation.
It has been shown that approximating the theoretical Gaussian
modulation with a discrete one is sufficient in practice [24].
Waveguide electro-optic modulators are currently the most
popular modulating device utilized in high-speed optical
communication systems. The adoption of this type of device
in QKD lies in consideration of its high bandwidth, low
driving voltage, and its ease of further integration in a QKD
system. Lithium niobate–based phase modulators and Mach-
Zehnder (MZ) intensity modulators are the most common
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devices commercially available. However, it is known that
the initial bias point and half-wave voltage drift over time due
to environmental perturbations and aging effects. Such drift
leads to deterioration of the modulation fidelity, and further
causes the incorrect parameter evaluations and opens a security
loophole for CV QKD systems, an issue that has not been
investigated in depth previously.

In this paper, we investigate the imperfect state preparation
issue theoretically and verify the predicted results in exper-
iment. In Sec. II we give a theoretical analysis of imperfect
amplitude and phase modulation in CV QKD. In Sec. III, we
verify the theoretically predicted results in experiment and
analyze the experimental results in detail. Then in Sec. IV
we propose two efficient schemes to calibrate the working
parameters of the modulators and demonstrate a reliable CV
QKD. In Sec. V, we give a conclusion, and discuss the issue
of calibration errors during the calibration procedures.

II. THEORETICAL ANALYSIS OF IMPERFECT
AMPLITUDE AND PHASE MODULATION IN CV QKD

A. Imperfect amplitude and phase modulation due to incorrect
calibration of the modulators

In the Gaussian-modulated coherent-state CV QKD pro-
tocol, Alice randomly generates a coherent state |αA〉 with
αA = |αA|eiθ = xA + ipA. Here αA is the complex amplitude
of the coherent state, xA and pA represent two independent
Gaussian variables with the same variance VA in shot-noise
units (SNUs). According to the Box-Muller transform [35], xA

and pA can be generated from a pair of uniformly distributed
random numbers (U1 and U2) over the interval [0,1]:

xA =
√

−2VA ln U1cos(2πU2),
(1)

pA =
√

−2VA ln U1sin(2πU2).

In the corresponding polar coordinates (|αA|, θ ), Eq. (1)
can be rewritten as

|αA| =
√

x2
A + p2

A =
√

−2VA ln U1,

(2)

θ = arccos
(
xA/

√
x2

A + p2
A

) = 2πU2,

2469-9926/2017/96(4)/042312(7) 042312-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.042312


LIU, WANG, WANG, DU, AND LI PHYSICAL REVIEW A 96, 042312 (2017)

where θ has a uniform distribution on [0,2π ], and |αA| obeys
the Rayleigh distribution

P (|αA|) = |αA|
VA

e−|αA|2/(2VA). (3)

Therefore, an amplitude modulator together with a phase
modulator is sufficient to achieve above bivariate Gaussian
modulation.

The transfer function of a MZ intensity modulator is
represented as

tA = αout

αin
= tA0 sin

(
π

2

Vmin − VAM

V AM
π

)
, (4)

where 1 − t2
A0 is the inserting loss, αin and αout are the input

and output optical fields, respectively, VAM is the modulation
voltage signal, Vmin is the voltage corresponding to a minimum
transmission of modulator, and V AM

π is the half-wave voltage.
The transfer function of a phase modulator is

tP = αout

αin
= tP0e

iπ(VPM/V PM
π ), (5)

where 1 − t2
P0 is the inserting loss, VPM is the modulation

voltage signal, and V PM
π is the half-wave voltage. From Eqs. (4)

and (5), the total transfer function is given by

t = αout

αin
= tAtP = tA0tP0 sin

(
π

2

Vmin − VAM

V AM
π

)
eiπ(VPM/V PM

π ).

(6)

Starting from Eqs. (2) and (6) and letting αout = αA, under
the condition of 0 � (Vmin − VAM)/V AM

π � 1, the modulation
voltage signal VAM and VPM are given by

VAM = Vmin − 2

π
V AM

π arcsin(
√

−2VA ln U1/h), (7)

VPM = 2U2V
PM
π , (8)

where h = |αin|tA0tP0. Equations (7) and (8) show the idealized
modulation voltages required for the amplitude and phase
modulators to achieve a bivariate Gaussian modulation.

However, when the modulators are incorrectly calibrated,
that means the adopted values of Vmin, V AM

π , and V PM
π deviate

from their true values

V ′
min = Vmin + δminV

AM
π , V AM′

π = V AM
π

(
1 + δAM

π

)
,

V PM′
π = V PM

π

(
1 + δPM

π

)
, (9)

where δ denotes the deviation coefficient. In this case, the
actual |α′

A| and θ ′ will differ from the true values of |αA|
and θ which are defined by Eq. (2). This further leads to the
modulation errors

x ′
A = h sin

{
− 2

π
δmin + (

1 + δAM
π

)
arcsin[

√
−2VA ln U1/h]

}

× cos
[
2πU2

(
1 + δPM

π

)]
, (10)

p′
A = h sin

{
− 2

π
δmin + (

1 + δAM
π

)
arcsin[

√
−2VA ln U1/h]

}

× sin
[
2πU2

(
1 + δPM

π

)]
, (11)
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FIG. 1. The contour map of the probability density P (α′
A) for

imperfect amplitude and phase modulation with parameters VA =
1/3, δmin = −0.06, δAM

π = −0.06, and δPM
π = −0.06.

where x ′
A and p′

A are the actual variables generated from the
imperfect amplitude and phase modulation process. In this
case, the mixed coherent states prepared by Alice are modified
from ρideal to ρreal,

ρideal =
∫

P (αA)|αA〉〈αA|d2αA,

(12)

ρreal =
∫

P (α′
A)|α′

A〉〈α′
A|d2α′

A,

where P (αA), P (α′
A) are the probability density of being in

the state |αA〉 and |α′
A〉, respectively. In general, not only the

variance of x ′
A and p′

A changes; furthermore, P (α′
A) is no

longer a Gaussian distribution. Such a phenomenon is plotted
in Fig. 1. For a minus deviation of the MZ intensity modulator’s
null point δmin = −0.06, a hole appears in the center of the
contour map. Meanwhile, a gap also emerges due to the minus
deviation of the phase modulator’s half-wave voltage δPM

π =
−0.06.

B. Estimation of quantum channel parameters

Consider Alice has randomly prepared a set of quantum
states {|αA〉}i (i = 1,...,N ), the quadratures of the modulated
coherent states can be represented as

x̂A = xA + x̂V1, (13)

where xA is the Gaussian modulation signal and x̂V1 is the
quadrature of a vacuum field. The prepared states transmit
through a quantum channel which is characterized by its
transmittance T and excess noise ε, and successively detected
by Bob’s homodyne detector

x̂B =
√

ηT (x̂A + x̂ε) +
√

1 − ηT x̂V2 + xel, (14)

where x̂ε is the quadrature of the added auxiliary mode due
to the eavesdropping, which satisfies 〈x̂ε〉 = 0 and 〈x̂2

ε 〉 =
ε, η and υel = 〈x2

el〉 are the detection efficiency and the
electronic noise of Bob’s homodyne detector, respectively;
x̂V2 is the quadrature of a vacuum field which simulates the
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detection noise due to the nonideal quantum efficiency of the
photodetector.

After Alice and Bob complete the state preparation and
measurement stage, a key sifting procedure is followed to en-
sure they can share correlated variables {xi

A,xi
B}, i = 1,...,N .

In order to estimate the parameters of the quantum channel,
a sampling of the obtained raw keys is declared to calculate
the variance of Alice’s and Bob’s, 〈x2

A〉 and 〈x2
B〉, and the

covariance between them 〈xAxB〉. From Eqs. (13) and (14),
the channel parameters for transmittance T and excess noise ε

are related to these values through the following equations [5]:

〈
x2

A

〉 = VA, (15)〈
x2

B

〉 = ηT (VA + ε) + 1 + υel, (16)

〈xAxB〉 =
√

ηT VA, (17)

where the parameters η and υel of the homodyne detector are
calibrated in advance, and the shot noise can be monitored in
real time at Bob’s side. It is noted that all the parameters in the
above equations are expressed in SNUs. From Eqs. (15), (16),
and (17), the parameters for T and ε have the form

T = 〈xAxB〉2

η
〈
x2

A

〉2 , (18)

ε =
〈
x2

B

〉 − 1 − υel(〈xAxB〉/〈x2
A

〉)2 − 〈
x2

A

〉
. (19)

In the above analysis, we have assumed that Alice performs
a perfect Gaussian modulation. In the case of imperfect Gaus-
sian modulation, one should replace xA with x ′

A in Eq. (13).
Consequently, Eqs. (18) and (19) should be rewritten as

T ′ = 〈xAx ′
A〉2

〈
x2

A

〉2 T , (20)

ε′ =
〈
x

′2
A

〉 + ε

(〈xAx ′
A〉/〈xA

2〉)2 − 〈
x2

A

〉
. (21)

It is evident from the above equations that the estimated
excess noise ε′ differs from its true value ε. In particular, the
transmittance T is mistakenly estimated due to the modulation
error.

C. Calculation of secret key rate

In the asymptotic limit on infinite samples, the collective
attack has been proven to the optimal attack [36], and the
corresponding secret key rate for protocols with reverse
reconciliation is given by


IHolevo = βIAB − χBE, (22)

where β is the reconciliation efficiency, IAB is the mutual
information between the legitimate parties’ measurement
results, and χBE denotes the Holevo quantity between Eve’s
quantum states and Bob’s data. Start from the experimental
accessible parameters VA, η, T , ε, and β, one can calculate the
secret key rate 
IHolevo [5].

According to the results in Sec. II B, if the working param-
eters of the modulators are not calibrated correctly and the

legitimate users are not aware of that, they will get incorrect
channel parameters T ′ and ε′. Based on these incorrect param-
eters, the security key rate will be overestimated or underes-
timated. For the former case, it can open a security loophole,
while for the latter case, the system performance is sacrificed.

To resolve such problems, two countermeasures can be
considered. The first one is to build a model for such imperfect
amplitude and phase modulation protocol and figure out
the accurate secret key rate. As we have shown above, the
mixed coherent states prepared by Alice, ρreal, under the
imperfect modulation no longer satisfy a Gaussian distribution.
To simplify the theoretical calculation of the key rates, in
principle, such PM scheme can be transformed into an equiv-
alent entanglement-based scheme. However, except for the
Gaussian-modulated Gaussian states or some symmetric dis-
crete modulation types such as four-state modulation protocol
[37], the equivalent entangled states for the present nonideal
PM scheme are difficult to find. The second countermeasure
used to solve the imperfect modulation issue is to calibrate
the relevant parameters of the modulators precisely; in this
case, the security analysis approach of the Gaussian-modulated
coherent states protocol can be used.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 2 depicts the sketch of our experimental setup
for fiber-based Gaussian-modulated coherent-state CVQKD.
Optical pulses 100 ns wide and with a repetition rate of
500 kHz are generated from a 1550-nm continuous-wave
single frequency semiconductor laser by using MZ intensity
modulators (AM1). A fiber coupler with a splitting ratio of 99:1
separates the optical pulses into two parts where the weak one
serves as the signal field and the intense one acts as the LO. A
combination of a MZ intensity modulator (AM2) and a phase
modulator (PM1) is adopted to modulate the coherent states
with bivariate Gaussian modulation as described in Sec. II A).
To ensure a real-time shot-noise calibration, we use a third
intensity modulator (AM3) to block the signal path regularly.
The intensity of the signal is monitored in real time by splitting
a small portion of the signal field with a splitter of 90:10. A
variable attenuator (VA) further attenuates the intensity of the
signal field to the desired values.

At Bob’s side, the amplitude or phase quadrature of the
received signal quantum states is randomly measured by using
a pulsed balanced homodyne detector (BHD). The random

FIG. 2. The schematic diagram of the experimental setup. AM,
MZ amplitude modulator; PM, phase modulator; VA, variable
attenuator; BS, 50:50 beam splitter; LO, local oscillator; BHD,
balanced homodyne detector.
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FIG. 3. The estimated excess noise and transmittance versus the
drift of the amplitude modulator’s bias point (normalized to the half-
wave voltage). The filled circle and the solid line are the experimental
data and the theoretical simulation for the excess noise, respectively.
The theoretically predicted transmittance is depicted by a dashed line.

basis switch and relative phase stabilization between the signal
and the LO are fulfilled with a phase modulator (PM2). A
bidirectional classical communication link between Alice and
Bob used for synchronization and parameter estimation is
created using two optical small form-factor pluggable fiber
switches on each side.

For all the implementations below, the modulation variance
and the channel transmittance are set to VA = 5.6 and T = 0.1
respectively, where the channel loss is simulated by setting
an appropriate modulation voltage to the intensity modulator
(AM3). The phase noise between the signal and the LO is
determined to be around ±0.5°, which induces an excess noise
less than 0.001 SNU.

Figure 3 plots the estimated excess noise ε′ and transmit-
tance T ′ as a function of the normalized drift δmin of the
amplitude modulator’s bias point. We can see that the drift
of the amplitude modulator’s bias point (both negative and
positive) leads to an increase of the estimated excess noise. The
dependence of ε′ on the drift δmin is asymmetric, where ε′ grad-
ually increases to around 0.06 (0.08) SNU when δmin reaches
−0.06 (0.06). The experimental results exhibit an excess noise
of 0.02 even if the bias point of the amplitude modulator is
correctly calibrated (no drift); such excess noise is due to other
factors rather than the drift of the bias point and not included
in the theoretical model presented in Sec. II. To compare the
theoretical simulations with the experimental data, a constant
value (0.02) is added in the theoretical values. One also
observes that the estimated channel transmittance T ′ varies
linearly with the drift of the bias point, and the T ′ is lower
(higher) than the real value of T = 0.1 for positive (minus)δmin.
This is due to the fact that the drift of the bias point results in a
nonlinear dependence between xA and xB, whereas the linear
relationship is a precondition for the correct evaluation of the
channel parameters T and ε by using Eqs. (18) and (19).

The estimated excess noise ε′ and transmittance T ′ versus
the normalized drift of the amplitude modulator’s half-wave
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FIG. 4. The estimated excess noise and transmittance of the
quantum channel versus the drift of the amplitude modulator’s
half-wave voltage (normalized to the half-wave voltage). The filled
circle and the solid line are the experimental data and the theoretical
simulation for the excess noise, respectively. The theoretically
predicted transmittance is depicted by a dashed line.

voltage δAM
π is depicted in Fig. 4. Similar to the drift of

the bias point, the estimated channel transmittance T ′ varies
linearly with the drift of δAM

π . In contrast with Fig. 3, T ′ is
higher (lower) than the real T (0.1) for positive (minus) δAM

π .
However, the graph shows that estimated excess noise ε′ is
immune to the drift of the amplitude modulator’s half-wave
voltage. This phenomenon is due to the error cancellation
mechanism between the parameters T ′ and 〈(x ′

A)2〉, which are
used to determine the excess noise ε′.

The drift of the phase modulator’s half-wave voltage δPM
π

(normalized to V PM
π ) also affects the estimated excess noise

and channel transmittance, as shown in Fig. 5. The dependence
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FIG. 5. The estimated excess noise and transmittance of the
quantum channel versus the drift of the phase modulator’s half-wave
voltage (normalized to the half-wave voltage). The filled circle
and the solid line are the experimental data and the theoretical
simulation for the excess noise, respectively. The theoretically
predicted transmittance is depicted by a dashed line.
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of ε′ on the drift δmin exhibits slight asymmetry, where ε′ gradu-
ally increases to around 0.056 (0.074) SNU when δmin reaches
−0.054 (0.054). In contrast with the relevant phenomenon
caused by the drift of the amplitude modulator’s bias point
and half-wave voltage, the estimated channel transmittance T ′
exhibits a nonlinear relation along with δPM

π . In Figs. 3–5, the
main origin of the excess noise fluctuations is statistical due to
the finite samples (1.5 × 107) for the parameters estimation.

IV. CALIBRATION OF THE MODULATORS’
WORKING PARAMETERS

In above sections we have shown that the incorrect
calibration of the parameters can result in a significant increase
of the estimated excess noise and misestimate of the channel
loss. To solve these problems, we proposed two effective
methods to calibrate the parameters of the modulators.

For the MZ amplitude modulator, one can scan its bias volt-
age over [0,2V AM

π ] and record the bias voltage and transmitted
optical power (xi,yi) at the same time. In this way, the null
point Vmin and half-wave voltage V AM

π can be conveniently
determined in principle. However, for a high extinction ratio
modulator (>40 dB in our experiment), the required dynamic
range should be larger than the value of the extinction ratio;
this is usually well beyond the conventional photodetectors.
Such an obstacle can be overcome subtly by utilizing a fitting
method. More precisely, a high-order polynomial fitting is
employed to fit the measured data, which is acquired by a
conventional photodetector. In this way, we can acquire the
null point and half-wave voltage in spite of the insufficient
dynamic range and dark noises of the photodetector.

In our experiment, we fit the measured data (xi,yi) to a
13th-order polynomial function

f (xi) =
13∑

j=0

ajx
j

i , (23)

where f (xi) represents the best polynomial fit of the transmit-
ted optical power and aj is the polynomial coefficient, which
is found by using the least-square method, i.e., minimizing the
residue using the following equation:

R = 1

N

N−1∑
i=0

[f (xi) − yi]
2, (24)

where N is the number of the recorded data (xi,yi).
In order to calibrate the half-wave voltage of the phase

modulator, we proposed a noninvasive method here. From
Eqs. (13) and (14), the mean value of x̂B is given by

〈x̂B〉 =
√

ηT (〈x ′
A〉 + 〈x̂V1〉 + 〈x̂ε〉) +

√
1 − ηT 〈x̂V2〉 + 〈xel〉.

(25)

For a sufficient amount of measurements, the quadrature of
the excess noise, vacuum fields, and electronic noise should
average out to be close to zero,

〈x̂V1〉 ≈ 0, 〈x̂ε〉 ≈ 0, 〈x̂V2〉 ≈ 0, 〈xel〉 ≈ 0. (26)

In this case, Eq. (25) can be simplified to be

〈x̂B〉 ≈
√

ηT 〈x ′
A〉. (27)

By using Eqs. (1), (2), (3), and (27), the mean value of x̂B

can be determined as

〈x̂B〉 ≈
√

ηT

∫ ∞

0

∫ 2π(1+δPM
π )

0

r2

VA
e−r2/2VA cos(θ )drdθ

=
√

ηT VA

8π
sin

(
2πδPM

π

)
. (28)

Thus, the drift of the phase modulator’s half-wave voltage
δPM
π is found to be equal to

δPM
π = 1

2π
arcsin

( 〈x̂B〉√
(ηT VA)/(8π )

)
. (29)

We assume δPM
π � 1, which is justified in practice; the

expression of δPM
π can be approximately given by

δPM
π ≈ 〈x̂B〉√

(πηT VA)/2
. (30)

By using Eq. (30), the drift of the phase modulator’s half-
wave voltage δPM

π can be determined in real time by using 〈x̂B〉,
VA, and ηT . The determination of δPM

π only refers to the raw
signal data and no other additional modulations are required;
this approach ensures a noninvasive calibration and keeps the
secret key rate intact. In practice, 〈x̂B〉 can be determined with
a precision of less than 0.1%, and VA is the ideal modulation
variance. The calibration period is chosen so that the drift of
the phase modulator’s normalized half-wave voltage is less
than ±0.01. In this case, T can be determined with a precision
of less than 1% from Fig. 5. Therefore, the calibration error of
δPM
π for the phase modulator is within 0.5% using Eq. (30).

By using the above methods, we can determine the working
parameters of the modulators including the bias point δmin

and half-wave voltage δAM
π of the amplitude modulator, the

half-wave voltage δPM
π of the phase modulator. In order to

calibrate the working parameters of the modulators in real
time, the QKD system automatically measures and corrects
the corresponding parameters regularly. A feedback control
period of 2 min is adopted so that the drifts of the parameters
are small and tolerable.
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FIG. 6. Excess noises of the CV QKD system when the modula-
tors are free running. (a) Excess noise and (b) the corresponding drift
of the amplitude modulator’s bias point.
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FIG. 7. Excess noises of the CV QKD system when the mod-
ulators are feedback controlled. (a) Excess noise and (b) the
corresponding drift of the amplitude modulator’s bias point. Inset:
measured δPM

π which is used to calibrate the phase modulator’s
half-wave voltage.

Figure 6(a) illustrates measured excess noises of the
CV QKD system when the modulators are free running.
Initially, we carefully calibrate the modulators and then use
the calibrated parameters repeatedly. It is evident that the
measured excess noise of the system stays at a low level at
the first stage, and then it starts to increase with time due to
the drifts of the modulator’s working parameters. Figure 6(b)
plots the variation of the amplitude modulator’s bias point δmin

along with time; the amount of the drift is around 2% for an
observation period of 11 h. Meanwhile, we record the drifts
of the modulator’s half-wave voltages δAM

π and δPM
π , which are

relatively stable both with fluctuations less than 1%. Due to
the finite operating time and stable environment temperature
(within 2 °C in our experiment), the observed drifts of the
modulator’s working parameters are not obvious. It is expected
that the drifts will increase for a long-term operation and
fluctuating environment temperature.

Figure 7 shows measured excess noises when the working
parameters of the modulators are calibrated and feedback
controlled regularly. Due to the existence of the active feedback
procedure, the excess noise of the system remains stably at
a low level during a 10-h observation period. The inset of
Fig. 7 shows the δPM

π measured in real time which is used
to calibrate the phase modulator’s half-wave voltage. The
fluctuations of the excess noise mainly stem from the statistical
fluctuations due to the finite size effect, where the parameters
estimation is performed on data blocks of size 1.5 × 107.

Using the experimental parameters of η = 0.64, υel = 0.1,
and β = 0.95, the secret key rate (per pulse) of the system is
determined to be 
IHolevo = 0.02 bit/pulse.

In the above sections, we have focused on the influence
of the imperfect working parameters of both the amplitude
and phase modulators on CV QKD, and assume the devices
operate perfectly and ideally in other aspects other than the
imperfections mentioned above. It is noted that other imperfect
factors of the modulators certainly exist and will affect the
QKD to some extent. For instance, the modulators may not
operate strictly according to Eqs. (4) and (5), and the working
parameters obtained during calibration may vary when the
device is under continuous and high-speed modulation. We
will consider such effects in our future work.

V. CONCLUSION

We have investigated the influences of imperfect amplitude
and phase modulation upon continuous-variable quantum
key distribution. The imperfect modulations we considered
are caused by the incorrect calibration of the half-wave
voltage and bias point for the amplitude modulator, and the
half-wave voltage for the phase modulator. We show that
an accurate modulation is crucial to the performance and
security of the QKD system. When imperfect modulations
occur, the Gaussian distribution characteristic of the prepared
states is destroyed; one cannot estimate correctly the channel
loss and excess noise using the conventional approaches.
In order to overcome such problems and realize a faithful
quantum key distribution, we proposed and demonstrated two
effective approaches, which can calibrate the parameters of the
modulators at regular intervals. In this way, we demonstrated
a stable continuous-variable quantum key distribution without
suffering from the imperfect state preparation. However, due
to the finite resolution of the experimental techniques, the
relevant parameters can only be calibrated as close as possible
to their real values. There inevitably exist calibration errors
for the calibration procedures. In this scenario, the remaining
question is how such slight imperfections affect the security
of the QKD system, which requires a further study.
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