
PHYSICAL REVIEW A 96, 042306 (2017)

High-fidelity Rydberg quantum gate via a two-atom dark state
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We propose a two-qubit gate for neutral atoms in which one of the logical state components adiabatically
follows a two-atom dark state formed by the laser coupling to a Rydberg state and a strong resonant dipole-dipole
exchange interaction between two Rydberg excited atoms. Our gate exhibits optimal scaling of the intrinsic error
probability E ∝ (Bτ )−1 with the interatomic interaction strength B and the Rydberg state lifetime τ . Moreover,
the gate is resilient to variations in the interaction strength, and even for finite probability of double Rydberg
excitation the gate does not excite atomic motion and experiences no decoherence due to internal-translational
entanglement.
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I. INTRODUCTION

Strong long-range interactions between atoms excited to the
Rydberg states with large principal quantum numbers n make
them attractive systems for the studies of few- and many-
body physics and for quantum information applications [1].
Different schemes of interatomic interactions are employed in
this research, ranging from the blockade of multiple Rydberg
excitations of nearby atoms by resonant laser fields [1–3],
and the antiblockade nonresonant (facilitated) laser excitation
[4–8], to the Rydberg dressing of the ground-state atoms by
very far-off-resonant lasers [9–15].

The Rydberg state interatomic interactions hold unique
potential for the implementation of quantum gates with
spatially separated neutral atoms. In the seminal proposal of
Jaksch et al. [16], each qubit is encoded in a pair of (meta)stable
states |0〉 and |1〉 of an atom, and two-qubit gate operations
are performed by selectively exciting a pair of atoms from
specific qubit states, e.g., |1〉, to the interacting Rydberg states.
In the regime of a weak dispersive interaction, the pair of
Rydberg excited atoms acquires an interaction-induced phase
shift, which is then transferred to the corresponding two-qubit
state |11〉 by coherently deexciting the atoms. In the alternative
regime of strong interaction, if one (control) atom is resonantly
excited to the Rydberg state, the interaction-induced level
shift suppresses Rydberg excitation of the second (target)
atom within a distance of several micrometers. Ideally, this
blockade effect [1–3] does not depend on the precise value
of the interaction strength, as long as it is sufficiently strong
to completely preclude multiple Rydberg excitations. Since at
most one atom is excited to the Rydberg state at a time, the
interaction potential does not induce interatomic forces, which
would otherwise entangle the internal (qubit) and external
(motional) degrees of freedom of the atoms. The Rydberg
blockade gate has therefore been the preferred choice for
quantum logic gate operations [16–20].

The performance of the Rydberg blockade gate has been
extensively analyzed [21–24], taking into account various
experimental imperfections and fundamental limitations of
the scheme. Assuming that technical errors due to, e.g., laser
phase and amplitude fluctuations and finite temperature atomic
motion and Doppler shifts can be eliminated, and that leakage
errors to the unwanted Rydberg states can be suppressed by

using, e.g., shaped laser pulses [24], the remaining limitations
of the standard blockade gate stem from the finite lifetime τ =
1/� ∝ n3 of the Rydberg states, duration T � 2π/� of the
gate performed by excitation lasers with Rabi frequency � �
�, and finite Rydberg-Rydberg interaction strength B � �.
Two types of intrinsic errors have been identified: the error
Edecay � 2π�/� due to the decay of the Rydberg states during
the gate time T , and the rotation error Erot � �2/2B2 due to
imperfect blockade of double Rydberg excitation. Minimizing
the total error E = Edecay + Erot with respect to � leads then to
E ∝ (�/B)2/3 scaling of the intrinsic error [23]. The resulting
estimates for the gate error probability (E ∼ 10−3) are above
the required threshold values for fault tolerant quantum
computation. We recall that scaling the quantum hardware
in order to tackle problems for which quantum computers may
outperform their classical counterparts entails low threshold
values of the gate error probabilities: E � 2 × 10−5 for use
of the [7,1,3] Steane and [9,1,3] Bacon-Shor error correction
codes [25,26], and E � 4 × 10−4 for use of the Knill C4/C6
code [27].

Here we propose and analyze an improved mechanism
for implementing entangling two-atom Rydberg gates. Our
gate is similar to the Rydberg blockade gate, but with an
important difference. As in the standard blockade gate, we
excite the control and target atoms from the qubit states |1c,t〉
to the Rydberg states |rc,t〉. But instead of relying on the
interaction-induced level shift of a pair of Rydberg states,
we employ adiabatic following of the two-atom dark state
that exists when the atoms in state |rcrt〉 can undergo strong
resonant dipole-dipole exchange interaction with another
Rydberg-product state |acbt〉. By using a smooth 2π laser pulse
to resonantly drive the target atom, we ensure that all of the
residual Rydberg state population adiabatically returns back to
the qubit state |1t〉, eliminating thereby the rotation error Erot.
The minimal intrinsic error then scales as E ∝ (�/B), with
�/B � 1, and it can reach values as small as E ∼ 10−5 for
the Rydberg states with n � 100.

In the following sections, we present the quantitative
description of our scheme, estimates of the smallest achievable
intrinsic error probability of the gate, and the results of
numerical simulations. In Appendix A we outline the essentials
of the resonant Förster process for properly tuned Rydberg
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FIG. 1. Level scheme of two atoms leading to a Rydberg phase
gate by three focused laser pulses. States |0c,t〉 and |1c,t〉 are long-lived
qubit basis states of the control (c) and target (t) atoms, and states
|rc,t〉 and |ac〉, |bt〉 are Rydberg states with decay rate �. In steps i and
iii the control atom in state |1c〉 is resonantly excited and deexcited to
state |rc〉 by a laser with Rabi frequency �c and pulse area π , and in
step ii the target atom in state |1t〉 is resonantly coupled to state |rt〉
by another laser with Rabi frequency �t and pulse area 2π . Atoms
excited to Rydberg states |rc〉 and |rt〉 strongly interact with each other,
B � �t, via resonant dipole-dipole exchange process |rcrt〉 ↔ |acbt〉
which leads to suppression of excitation of the target atom in step ii
if the control was initially in state |1c〉. We assume that atoms in state
|0〉 are decoupled from the laser fields.

states of atoms to realize our two-atom dark state, while
detailed description of the two-atom systems is given in
Appendix B. In Appendix C we show that using adiabatic
pulses for the conventional blockade gate also eliminates
rotation errors and improves its performance. In contrast to
the conventional gates, however, in our scheme the uncertainty
in the interaction strength does not lead to phase errors,
and despite the nonvanishing probability of double Rydberg
excitation there is no mechanical force between the atoms,
which would otherwise hinder the operation of both the
interaction and blockade gates with the Rydberg excited
atoms [28–30].

II. THE DARK STATE ADIABATIC GATE

In Fig. 1 we show the relevant energy levels of two atoms
for realizing the Rydberg quantum gate. The qubit basis states
are represented by a pair of long-lived hyperfine ground-state
sublevels |0〉 and |1〉 which can be manipulated by a microwave
(MW) field or an optical Raman transition [31,32]. States |1c,t〉
of the control and target atoms can be coherently coupled to
the Rydberg states |rc,t〉, respectively, by focused laser fields.
The atoms excited to the Rydberg states |rc〉 and |rt〉 undergo a
resonant dipole-dipole exchange process |rcrt〉 ↔ |acbt〉 with
the energy-degenerate pair of Rydberg states |ac〉 and |bt〉. The
dipole-dipole interaction strength B = C3/x

3 depends on the
interatomic distance x and the coefficient C3 ∝ ℘acrc℘rtbt is
determined by the product of the dipole matrix elements ℘ ∝
n2 of the transitions |rc〉 → |ac〉 and |rt〉 → |bt〉 between the
Rydberg states with large principal quantum number n ∼ 100
(see Appendix A).
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FIG. 2. Evolution of the two-atom system during step ii of the
Rydberg-exchange phase gate. Left: The initial two-qubit state |0c1t〉
remains unchanged after step i, and during step ii the target atom
undergoes a 2π Rabi cycle via state |0crt〉. Middle: The initial two-
qubit state |1c1t〉 is converted to |rc1t〉 after step i, and during step ii
the resonant dipole-dipole exchange interaction |rcrt〉 ↔ |acbt〉 with
strength B � �t leads to the formation of a two-atom dark state |ψ0〉
and two bright states |ψ±〉 shifted by ±B (right). In our protocol,
state |rc1t〉 adiabatically follows the dark state |ψ0〉 as the target pulse
�t is turned on and off.

Our gate procedure is carried out in three steps i–iii, similar
to those of the Rydberg blockade protocol [16]. In steps i
and iii, resonant pulses of area θc ≡ ∫

�cdt = π are applied
to the control atom. For the initial state |1c〉, this amounts
to the transitions |1c〉 → i|rc〉 in step i and i|rc〉 → −|1c〉
in step iii. State |0c〉 is assumed completely decoupled from
the lasers, due to transition selection rules or large transition
frequency mismatch augmented by properly shaped laser
pulses. In step ii, a resonant pulse of area θt ≡ ∫

�tdt = 2π

is applied to the target atom resulting in the full Rabi cycle
|1t〉 → i|rt〉 → −|1t〉 if the control atom is in state |0c〉.
If, however, in step i the control atom was excited from
state |1c〉 to the Rydberg state |rc〉, the strong dipole-dipole
exchange interaction B would result in the two-atom dark
state suppressing the target atom Rydberg excitation by the
smooth pulse �t, as detailed below. Here again we assume
that the target atom in state |0t〉 remains decoupled from the
laser. Steps i–iii would ideally result in a sign change (π phase
shift) of the two-qubit states |01〉,|10〉,|11〉 relative to |00〉.
In combination with a Hadamard gate (π/2 rotation on the
|0t〉 ↔ |1t〉 transition) applied to the target qubit before and
after the phase gate, this leads to the universal CNOT gate
between the control and target qubits [33,34].

Hence, out of four possible initial two-qubit states
|00〉,|01〉,|10〉,|11〉, only the last one will probe the Rydberg-
Rydberg interaction during step ii. We shall therefore consider
in more detail the dynamics of the initial two-atom state |1c1t〉,
which becomes |rc1t〉 after step i (see Fig. 2). A pulsed laser
field with Rabi frequency �t (and area θt = 2π ) acts resonantly
on the transition |1t〉 → |rt〉 of the target atom, while the
two-atom state |rcrt〉 is resonantly coupled to state |acbt〉
with strength B. The Hamiltonian for the effective three-state
system is then

H3/h̄ = 1
2�t|rcrt〉〈rc1t| + B|acbt〉〈rcrt| + H.c. (1)

This Hamiltonian has three eigenstates:

|ψ0〉 = (
B|rc1t〉 − 1

2�t|acbt〉
)/

ν, (2a)

|ψ±〉 = (
1
2�t|rc1t〉 ∓ ν|rcrt〉 + B|acbt〉

)/√
2ν, (2b)
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with ν2 ≡ B2 + 1
4�2

t , and the corresponding eigenvalues are
λ0 = 0 and λ± = ±ν. The zero-energy eigenstate |ψ0〉 does
not contain the intermediate state |rcrt〉, and it is customary to
call it a dark state [35]. The energy shifted eigenstates |ψ±〉,
with λ± � ±B (B > �t ), are similarly called bright states.

Before the laser pulse is switched on, �t(0) = 0, the
two-atom state |rc1t〉 coincides with the dark state |ψ0〉.
During the application of the pulse �t(t), if it is sufficiently
smooth, |∂t�t| � B|λ± − λ0| � B2, the system adiabatically
follows the dark state, and the bright states |ψ±〉 are never
populated [34,35]. For a smooth envelope �t(t), the pulse
bandwidth is mainly determined by its duration Tt ≈ 2π/�t0,
where �t0 is the mean amplitude. Then the adiabatic following
condition |∂t�t| ≈ �t0/Tt � B2 reduces to �t0 � B, while
we assume throughout that �t0 � �.

The dark state |ψ0(t)〉 involves instantaneous popu-

lation PRy(t) = �2
t (t)

4B2+�2
t (t)

of the two-atom Rydberg state
|acbt〉. During the gate time Tt, this population contributes
�

∫ Tt

0 PRy(t)dt ≈ π��t0/4B2 to the decay error. At the end
of the pulse, �t(t → Tt) → 0, and the dark state adiabatically
returns to state |rc1t〉. This state has not accumulated any phase
(see below), since the adiabatically connected eigenstate |ψ0〉
has energy λ0 = 0 for all times t ∈ [0,Tt]. Moreover, even
though the double Rydberg excitation state |acbt〉 has finite
occupation probability PRy while the �t(t) pulse is on, there is
no mechanical force between the atoms, since the gradient of
energy of the two-atom eigenstate |ψ0〉 identically vanishes,
∂xλ0 = 0 ∀ t ∈ [0,Tt]. Note that if the adiabatic condition is
not satisfied, after the pulse the target atom will have a residual

Rydberg population PRy � �2
t

4B2 representing a rotation error.

III. RESULTS AND DISCUSSION

The Rydberg states of atoms decay with rate �. In order to
minimize the error Edecay � �Tc due to decay of the control
atom, we thus need to accomplish steps i and iii in shortest
possible times using strong pulses of mean amplitude �c0

and duration Tc = π/�c0. Similarly, to minimize the error
Edecay � �Tt due to the Rydberg state decay of either the
control atom or the target atom during step ii, Tt ≈ 2π/�t0, we
should take the mean Rabi frequency �t0 as large as possible,
but it should still be smaller than the interaction B, to satisfy the
adiabatic following condition detailed above. It then follows
that, for the gate performed with a smooth (adiabatic) pulse
�t, during step ii the intrinsic error probability averaged over
all the possible two-qubit inputs is

E � π�

4

[
5

�t0
+ �t0

4B2

]
. (3)

If we minimize E with respect to �t0, we find E =
√

5π�
4B

for

�t0 = 2
√

5B, which, however, violates the adiabatic criterion.
Furthermore, such a large Rabi frequency �t0 � B is difficult
to achieve experimentally for high-lying Rydberg states.
Instead, we can choose �t0 = αB with α � 1, obtaining
E � 5π�

4�t0
, or E � η �

B
with η � 5π

4α
.

We can estimate the minimum attainable error as follows.
In a cryogenic environment with no blackbody radiation,
the radiative lifetime of the ns,np, . . . Rydberg states of

the alkali atoms is given by τ = 1/� ≈ 10−9n3 s [36–38].
The strongest interaction is achieved with the dipole-dipole
potential B � 1

h̄

℘2

4πε0x3 , where ℘ ∼ a0en
2 is the dipole moment

of the atom in the Rydberg state. At the interatomic distance
of x = 3–5 μm, we then have B � 100n4 rad/s. To avoid
population leakage to other Rydberg states, this interaction
strength should be smaller than the level separation between
neighboring n states, δωF ∼ 2Ryn−3 > B (see Appendix A).
This then leads to the condition n � 100, which also follows
from the requirement that the Rydberg electron clouds (of size
∼a0n

2) of neighboring atoms do not overlap. We thus obtain
Bτ ≈ 10−7n7 ∼ 107 for n ∼ 100. Choosing α = �t/B � 0.1
(η � 40), the minimal error probability is E � η �

B
� 10−5.

We note that general arguments [39] put a lower limit
E � 2�

B
on the gate error due to decay of the interacting

excited states, which is an order of magnitude smaller than
in our case. This is due to our requirement of adiabatic, i.e.,
slow, evolution of the system to avoid population leakage
to undesired states. To speed up the gate and reduce the
accumulated decay probability of the Rydberg states, one
may resort to recently developed “shortcut to adiabaticity”
schemes [40]. In particular, using the so-called derivative
removal by adiabatic gate pulses [24,41] may accelerate the
gate by operating in the regime of �t0 ∼ B, provided the
necessary laser intensities can be achieved.

As we discuss in Appendices A and B, the Rydberg product
states |rcrt〉 and |acbt〉 might experience nonresonant dipole-
dipole couplings to other Rydberg pair states. While population
leakage to these states is reduced in the adiabatic regime,
dispersive coupling with these states will result in second-
order (van der Waals) energy shifts βrr and βab of states |rcrt〉
and |acbt〉. The two-atom dark state |ψ0〉 does not involve the
population of the intermediate state |rcrt〉 and is insensitive to
its energy shifts βrr . But the energy shift βab of state |acbt〉
perturbs the dark state |ψ0〉. This perturbation will not result
in the coupling of |ψ0〉 to the bright states |ψ±〉 as long as
the shift βab is small compared to the exchange interaction
strength B, since the latter determines the energy splitting
of the bright eigenstates and thereby the width of the dark
resonance. Yet, during the gate execution the small but finite
population of the energy shifted state |acbt〉 will result in a
phase shift of the dark state, φ = ∫ Tt

0 βabPRy(t)dt . This phase
can be amended, as described in [23] and in Appendix C.
Otherwise, we can tune the Förster frequency defect δω for
the transition |rcrt〉 → |acbt〉 to exactly compensate this level
shift, δω = −βab, as discussed in Appendix B. Then the phase
shift φ will vanish for any resonant pulse �t(t).

We have verified the above qualitative results by exact
numerical simulations of the dynamics of the two-atom
system, as detailed in Appendix B. We use smooth 2π laser
pulses �t(t) applied to the target qubit during step ii and
stronger π pulses �c0 = 4�t0 applied to the control atom
in steps i and iii. In Fig. 3 we show the error probabilities
E = 1 − F of the phase gate. The gate fidelity F is obtained
by averaging over all possible two-qubit input states, as
described in Appendix B and [42]. We observe that the error
follows approximately the linear scaling E = η/(Bτ ), but
for large values of Bτ � 106 the numerically obtained error
probabilities start to deviate from the analytic estimate of the
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FIG. 3. Error probabilities E = (1 − F ) of the phase gate, av-
eraged over all the input states, versus Bτ . Filled blue circles
correspond to smooth 2π laser pulses �t(t) applied to the target
qubit, while empty red circles correspond to nonadiabatic (square)
pulses of the same area and duration. The results are obtained by
numerical simulation of the dynamics of the two-atom system with
a non-Hermitian Hamiltonian, as described in Appendix B. The
solid blue line shows E = η/(Bτ ) and the dashed red line shows
E = η/(Bτ ) + α2/16. All Rydberg states decay with the same rate
�, while qubit states |0〉 and |1〉 do not decay. We used α ≡ �t0/B =
0.10472 (η = 37.5) resulting in the nonadiabatic transition errors
Ena � 2 × 10−6 for smooth (shifted Gaussian) pulses.

error during only step ii. This is due the contribution of the
additional error ∼10−5 stemming from the decay of the control
qubit Edecay � π�/�c0 during steps i and iii, nonadiabatic
transitions and leakage from the dark state Ena, and imperfect
phase compensation. Nevertheless, we obtain that the average
fidelity reaches F = 0.99995 for Bτ � 106.

For comparison, we also show in Fig. 3 the results of
simulations for the gate performed with square 2π pulses
acting on the target qubit. Now, starting from the values of
Bτ � 105, the error probability significantly deviates from the
linear scaling, which is due to the breakdown of adiabaticity
leading to the residual Rydberg population of the target atom
∼�2

t /16B2. There is also sizable population leakage to other
Rydberg states not accounted for by the analytic estimate of
the gate error. We note that this error is of the same magnitude
as the rotation error due to imperfect Rydberg blockade [23].
As we show in Appendix C, this error can also be avoided
in the usual Rydberg blockade scenario [16], using either
adiabatic pulses to excite and deexcite the target atom, or
by applying a square pulse of proper amplitude �t = Bsh√

4k2−1
(k ∈ N) which accomplishes both a full resonant 2π Rabi
cycle and a full precession of the two-level Bloch vector with
the generalized off-resonant Rabi frequency �̄ ≡

√
B2

sh + �2
t .

Such pulses, however, contribute interaction phases to the
quantum state amplitudes which can only be compensated
for if we know precisely the interatomic distance and thereby
the interaction strength Bsh. Moreover, during the standard
blockade or interaction gates with dispersive interatomic
interaction (static dipole-dipole or van der Waals level shift
Bsh), for any nonvanishing probability of double Rydberg

excitation, the atoms are subject to forces due to the spatially
dependent potential.

IV. CONCLUSIONS

In summary, we have examined the phase gate performance
using strong resonant dipole-dipole interactions between pairs
of atoms in Rydberg states. Our gate assumes atomic level
and laser excitation schemes which are similar to the ones
used in current experiments. Employing adiabatic excitation
of the Rydberg states of atoms with smooth laser pulses, we
find favorable scaling of the intrinsic gate errors E ∝ (�/B)
with the ratio of the Rydberg state decay rate � to the
interaction strength B, which should be contrasted with the
optimized error probability E ∝ (�/B)2/3 obtained in the pre-
vious studies [21–23] with nonadiabatic pulses. The better
scaling of the gate error probability is due to nearly com-
plete elimination of the residual Rydberg excitation of the
imperfectly blockaded atom. The corresponding gate fidelity
can reach F > 0.9999 for B/� � 106. The ultimate limit on
gate fidelity depends on the value of B/� and the ability to
suppress other technical sources of errors. While the analysis
of Sec. III shows that generically Bτ � 107, the precise limit
may be higher. Thus, for cases 1–5 in Appendix A, we find that
Bτ can be as high as 4 × 107 in a cryogenic environment at
4 K, which implies that a fidelity of F = 1 − 10−5 is feasible.

We have focused in this paper on the intrinsic gate error E

due to the decay of the Rydberg states and their finite inter-
action strength. In any real experiment, however, there will also
be technical errors, due to, e.g., the laser phase fluctuations and
Doppler shifts leading to dephasing γ of the atomic transition,
and variations of the laser pulse duration or amplitude leading
to pulse area uncertainty δθ . If we require that γ � �/2 and
δθ �

√
E, these errors will not exceed the intrinsic error E

and adversely affect the system.
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APPENDIX A: RESONANT DIPOLE-DIPOLE
INTERACTIONS OF RYDBERG STATE ATOMS

In the main text, we discuss the realization of a quantum
gate using a two-atom dark state resonance which employs a
resonant dipole-dipole exchange interaction between a pair of
Rydberg atoms in a state |rcrt〉 and a state |acbt〉 with the same
energy, εrc + εrt = εac + εbt (see Fig. 1). The most obvious
choice of Rydberg states that exhibit strong resonant exchange
interaction is |rc〉 = |bt〉 ≡ ns1/2 and |rt〉 = |ac〉 ≡ np3/2 with
a large principal quantum number n ∼ 100. State |1c〉 of the
control atom can then be coupled to the Rydberg state |rc〉 by a
two-photon transition via a virtual intermediate state involving
two optical photons (or a UV and a MW photon). State |1t〉 of
the target atom can be coupled to the Rydberg state |rt〉 by a
single UV photon.
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While being automatically resonant for the |rcrt〉 ↔ |acbt〉
transition, this choice of Rydberg states, however, presents
problems associated with near-resonant coupling to other,
unwanted states. Recall that, in the absence of external
electric or magnetic fields, the energies of the Rydberg
states are given by εnl ≡ h̄ωnl = − Ry

(n−δl )2 , where Ry is the
Rydberg constant and δl is the quantum defect for the
angular momentum states with l = s,p, . . . [1,36]. For large
n, we then obtain that the frequency mismatch δωrr(ab) =
ωns + ωnp − ω(n+dn)p − ω(n−dn)s for transitions from |ns,np〉
to unwanted states |(n + dn)p,(n − dn)s〉 scales as δωrr �
δωF

3(dn+δS−δP )
n

� δωF, rather than the familiar Förster defect
δωF = Ry 2dn

n3 .

1. Stark tuned Förster resonances

We can mitigate this problem by resorting instead to the
Stark tuned Förster resonances, which have been demonstrated
in [43,44]. In principle, Stark tuning with an appropriate
external static electric field ESt can render any pair of two-atom
states |rcrt〉 and |acbt〉 degenerate. These two-atom states may
still couple to many other states resulting in leakage and
gate errors, and our task is to search for state combinations
minimizing this leakage. We consider two types of leakage
channels, as shown in Fig. 4: forward leakage where |rcrt〉
couples to states |a′

cb
′
t〉 with strength Brr and Förster defect

δωrr , and backward leakage that couples |acbt〉 to states
|b′

ca
′
t〉 with strength Bab and Förster defect δωab. We neglect

higher-order leakage processes where the states |a′
cb

′
t〉 and

|b′
ca

′
t〉 couple to |b′′

c a
′′
t 〉 and |a′′

c b′′
t 〉, etc.

We have searched for suitable Cs atom pair Rydberg states
by choosing |rcrt〉 and |acbt〉 and then finding the static Stark
field ESt, directed along the quantization axis, that makes the
pairs energy degenerate. We used standard expressions for
the scalar and tensor polarizabilities [45] in the fine-structure
basis calculated by summing over all dipole allowed transitions
over a range of principal quantum numbers of ±20 from each
state. Small hyperfine corrections have been neglected. Radial
matrix elements between Rydberg states were calculated using
the quasiclassical (WKB) approximation [46] with quantum
defect values taken from [47,48]. The effective matrix elements
were not corrected for state mixing due to ESt.

We checked all possible dipole allowed transitions from
|rcrt〉 and |acbt〉 to the leakage states with the change of
principal quantum number up to ±5 from the resonant
states. The Förster energy defects of leakage state pairs
were calculated for ESt corresponding to the |rcrt〉 ↔ |acbt〉
resonance. The two-atom dipolar coupling coefficient is given

rc
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tb

rt

tb
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B
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FIG. 4. Energy-level structure of Rydberg states for Stark tuned
Förster interaction. Resonant lasers couple the qubit states |1c,t〉 of
the control and target atoms to the corresponding Rydberg states
|rc,t〉 (see Fig. 1). A static electric field shifts the Rydberg states
making the two-atom states |rcrt〉 and |acbt〉 energy degenerate and
resonantly coupled via exchange interaction with strength B. The
forward leakage channel couples |rcrt〉 to |a′

cb
′
t〉 with strength Brr and

energy defect δωrr . The backward leakage channel couples |acbt〉 to
|b′

ca
′
t〉 with strength Bab and energy defect δωab.

by the general expression

C3 = − e2

4πε0

√
6(4π )3/2

3
√

5

∑
M,q

(−1)MC
2,−M
1,q,1,−M−q

×Y2,M (ε̂)(rY1,q)(c)(rY1,−M−q)(t), (A1)

where C..
.... is a Clebsch-Gordan coefficient, Y2,M is a spherical

harmonic, ε̂ is a unit vector pointing from atom (c) to
atom (t), and (rY1,q)(c) and (rY1,−M−q)(t) are the relative
electron positions for each atom in spherical coordinates.
We evaluate the above expression for ε̂ perpendicular to
the quantization axis. This corresponds to the geometry of
a planar array of atoms that may be individually addressed
while having isotropic interactions in the plane, as in [20].
In this geometry, the selection rules for the dipole-dipole
interaction are �M = 0,±2. Fewer leakage channels occur
with ε̂ along the quantization axis which limits the interactions
to �M = 0, but such a geometry is less convenient for a
multiqubit implementation of quantum information processing
with trapped neutral atoms.

In Tables I and II we show several possible choices of
the Rydberg atom pair states |rcrt〉 and |acbt〉. One possibility
(cases 1–3) is |rcrt〉 = |ncs1/2,m = 1/2; nts1/2,m = 1/2〉, with

TABLE I. Resonant Rydberg atom pair states |rcrt〉 and |acbt〉, specified as nljm, with the corresponding dipole-dipole interaction coefficient
C3, parameter Bτ at interatomic separation x = 3 μm and temperatures 300 and 4 K, and the strength of the tuning Stark field ESt.

Case |rc〉 |rt〉 |ac〉 |bt〉 C3 (GHz μm3) Bτ (×106) ESt (V/m)
300 K, 4 K

1 109s1/21/2 101s1/21/2 109p3/23/2 101p3/23/2 −64.4 6.5, 32.6 15.4
2 112s1/21/2 101s1/21/2 111p3/23/2 101p3/23/2 65.3 6.8, 35.5 5.36
3 105s1/21/2 94s1/21/2 105p3/23/2 94p3/23/2 −51.4 4.7, 23.1 20.1
4 112p3/23/2 101p3/23/2 112s1/21/2 101s1/21/2 −68.2 7.1, 38.5 14.2
5 95p3/23/2 84p3/23/2 95s1/21/2 84s1/21/2 −33.0 2.7, 10.7 34.7
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TABLE II. The dominant forward and backward leakage states, corresponding to the largest absolute values of parameters βrr = B2
rr /δωrr

and βaa = B2
aa/δωaa , for the cases 1–5 in Table I. The last column gives the population missing from state |rc1t〉 after step ii as found from

numerical integration of the Schrödinger equation with Hamiltonian (A2) and the laser parameters given there.

Case |a′
c〉 |b′

t〉 Brr/B δωrr/2π (MHz) |b′
c〉 |a′

t〉 Bab/B δωab/2π (MHz) 1 − P|r1〉(Tt )

1 109p1/2(−1/2) 101p3/2(−1/2) −0.49 65 108d5/25/2 99d5/25/2 −0.64 190 1.4 × 10−5

2 111p1/2(−1/2) 101p1/2(−1/2) 0.66 −259 110d5/25/2 100d5/25/2 −2.17 1990 1.7 × 10−6

3 105p1/2(−1/2) 94p3/2(−1/2) −0.49 247 104d5/25/2 92d5/25/2 −0.64 −185 5.5 × 10−5

4 111d5/2(5/2) 99d5/2(5/2) −0.64 −75 112p1/2(−1/2) 101p3/2(−1/2) −0.49 171 9.5 × 10−6

5 94d5/2(5/2) 82d5/2(5/2) −0.64 −478 95p3/23/2 84p1/2(−1/2) 0.28 122 6.4 × 10−6

the Stark field set for resonance with |acbt〉 = |ncp3/2,m =
3/2; ntp3/2,m = 3/2〉. The laser excitation of the Rydberg
states |rc〉 and |rt〉 from the Cs ground state requires two-
photon transitions. The forward leakage channels from |rcrt〉
are to p1/2 or p3/2 states. The backward leakage channels
couple |acbt〉 to either two s states with different n, two
d states, or an s and a d state. Another possibility (cases
4 and 5) is |rcrt〉 = |ncp3/2,m = 3/2; ntp3/2,m = 3/2〉 tuned
to resonance with |acbt〉 = |ncs1/2,m = 1/2; nts1/2,m = 1/2〉.
The Rydberg states |rc〉 and |rt〉 can now be reached with
one UV photon starting from the Cs ground state. Although
the fine-structure splitting between np3/2 and np1/2 states
is small at large n, undesired coupling to np1/2 is strongly
suppressed in the heavy alkali-metal atoms [49]. Note that
state |acbt〉 can couple strongly with |ncp1/2; ncp1/2〉, but the
energy separation of the np fine-structure states is increased
in the presence of a Stark field.

2. Numerical estimates of the leakage errors

To estimate the gate error due to the leakage of population
of states |rcrt〉 and |acbt〉 to the nonresonant states |a′

cb
′
t〉 and

|b′
ca

′
t〉, we solve the Schrödinger equation for the two-atom

system subject to the Hamiltonian

H5/h̄ = H3/h̄ + δωrr |b′
t〉〈b′

t| + δωab|a′
t〉〈a′

t |
+Brr |a′

cb
′
t〉〈rcrt| + Bab|b′

ca
′
t〉〈acbt| + H.c., (A2)

where H3 is the Hamiltonian of Eq. (1). Starting with the
initial state |rc1t〉, we apply a smooth pulse of duration
Tt = 2π/αB and a (shifted) Gaussian temporal shape �t(t) =
A[e−(t−Tt/2)2/(2σ 2) − e−(Tt/2)2/(2σ 2)], where A is chosen such
that θt = ∫ Tt

0 �tdt = 2π , and we take σ = Tt/5 leading to
the peak Rabi frequency �t (Tt/2) = 2.1 × 2π/Tt. Numerical
simulations were performed with B/2π = 350 MHz, α = 0.1,
Tt = 29 ns, and a peak Rabi frequency of �t (Tt/2)/2π =
74 MHz. In Table II, last column, we show the population
missing from state |rc1t〉 at the end of the pulse. In all cases, the
population rotation error is in the range of 2 × 10−6–5 × 10−5,
with the smallest error obtained for case 2. A full analysis
including all the leakage channels will undoubtedly show
larger errors. The results presented here, however, account for
the dominant leakage and we are optimistic that nonadiabatic
effects may further be reduced by pulse shaping [24].

APPENDIX B: DETAILS OF THE NUMERICAL
CALCULATIONS

In Fig. 3 we present the results of numerical simulations of
the complete phase gate between the control and target qubits

represented by the atoms. The system we simulate consists
of two six-level atoms described by the Hamiltonian of the
form

H = HMW + HL + HRy. (B1)

Here the first term describes the qubit states of the atoms, |0c,t〉
and |1c,t〉, and their manipulation by the microwave fields,

HMW/h̄ = −�
(c)
MW(t)|0c〉〈0c| − �

(t)
MW(t)|0t〉〈0t|

× 1
2�MW(t)(|1c〉〈0c| + |1t〉〈0t| ) + H.c., (B2)

where �MW(t) is the Rabi frequency of the pulsed microwave
field seen by both atoms, and the selectivity is provided
by setting the detuning �

(c,t)
MW(t) of each atom to either

�MW = 0 or �MW � |�MW|. This can be done by using
nonresonant laser light tightly focused onto the selected atom
to induce an ac Stark shift of one of the qubit states [31]. We
always start with the two-atom state |00〉 and prepare one
of the four input states |00〉, |01〉,|10〉,|11〉 by applying a
microwave π pulse, with the atom(s) required to switch to
state |1〉 being resonant (�MW = 0), and the atom(s) required
to remain in |0〉 being strongly detuned (�MW = 100|�MW|).
The Hadamard gates on the atoms can also be performed in
the same way, with the π/2 microwave pulse having the phase
arg(�MW) = −π/2.

The second term of Eq. (B1) describes the resonant laser
coupling of the qubit states |1c,t〉 of the control and target atoms
to the Rydberg states |rc,t〉:

HL/h̄ = 1
2�c(t)|rc〉〈1c| + 1

2�t(t)|rt〉〈1t| + H.c. (B3)

The lasers are focused onto the atoms, and we apply strong π

pulses to the control atom in steps i and iii of the protocol, and
a smooth 2π pulse to the target atom in step ii. The temporal
shape of the target laser pulse is

�t(t) = A[e−(t−Tt/2)2/(2σ 2) − e−(Tt/2)2/(2σ 2)] (B4)

with

A = eT 2
t /(8σ 2) − 1

1 − e−(Tt/2)2/(2σ 2)

√
2π

σeT 2
t /(8σ 2)erf[Tt/(23/2σ )] − Tt

.

The pulse duration is Tt = 2π/�t0 with �t0/B = α =
0.10472, and we take σ = Tt/5. The shifted Gaussian pulses
of the form (B4) have the advantage of being smooth, finite-
duration pulses that can be readily implemented experimen-
tally. The time intervals between the laser pulses in steps i–iii
are set to Tt/20.
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Finally, the last term of Eq. (B1) describes the Rydberg
states of atoms and their interactions:

HRy/h̄ = δω|bt〉〈bt| + δωrr |b′
t〉〈b′

t| + δωab|a′
t〉〈a′

t |
+(B|acbt〉〈rcrt| + Brr |a′

cb
′
t〉〈rcrt|

+Bab|b′
ca

′
t〉〈acbt| + H.c.), (B5)

where we include the Förster defect δω on the Stark tuned tran-
sition |rcrt〉 ↔ |acbt〉. When the transitions to the unwanted
states |a′

cb
′
t〉 and |b′

ca
′
t〉 are nonresonant, i.e., the corresponding

Förster defects are large, δωrr(ab) > Brr(ab), the leakage from
the two-atom dark state is suppressed. Yet, the nonresonant
couplings induce second-order level shifts of states |rcrt〉
and |acbt〉, given by βrr = B2

rr/δωrr and βab = B2
ab/δωrr ,

respectively. The dark state |ψ0〉 is insensitive to the small
energy shift βrr of the intermediate state |rcrt〉. But the
energy shift βab of state |acbt〉 perturbs the dark resonance.
If βab is small compared to the energy splitting ±B of
the bright eigenstates |ψ±〉 (see Sec. II), they will not be
populated from |ψ0〉 under the adiabatic condition. However,
during the phase gate sequence starting from state |rc1t〉,
the small but finite population PRy(t) = �2

t (t)
4B2+�2

t (t)
of state

|acbt〉 will result in the dark state accumulating the phase
φ = ∫ Tt

0 βabPRy(t)dt ≈ κ
π2βab

B2Tt
, where κ = O(1) depends on

the �t(t) pulse shape. For example, κ = π2

8 � 1.23 for the
pulse �t(t) = 1

2π�t0 sin(πt/Tt), and κ � 1.52 for the pulse
of Eq. (B4) [κ = 1 for the square, nonadiabatic pulse �t(t) =
�t0]. In order to suppress the undesired phase shift, we assume
that the Förster defect δω can be tuned to compensate the level
shift βab. In the numerical simulations of Fig. 3 we thus set
δω = −βab. There we choose Brr(ab) = B/2 and δωrr(ab) =
3Brr(ab), but other values of Brr(ab) < δωrr(ab) yield similar
results for the gate fidelities under the adiabatic conditions.
For the nonadiabatic (square) pulse �t, however, we observe
significant population leakage to states |a′

cb
′
t〉 and |b′

ca
′
t〉, in

addition to the nonvanishing residual population of the bright
states |ψ±〉 after the pulse. This explains the slightly larger (by
a factor of ∼1.4) gate error for Bτ � 105 as compared to the
analytic estimates which take into account only the population
of the bright states.

In the numerical simulations of Fig. 3, we neglect decay
and decoherence of the qubit states |0c,t〉 and |1c,t〉 and
assume that all the Rydberg states |ρc,t〉 (ρ = r,a,a′,b,b′) of
atoms (c) and (t) decay with the same rate � = 1/τ . This
process is described by adding the Lindbladian decay term
L2 = ∑

j=c,t

∑
ρ �|ρj 〉〈ρj | to the Hamiltonian of Eq. (B1),

making it thus non-Hermitian:

H̃ = H − i

2
h̄L2. (B6)

We solve the Schrödinger equation ∂t |�〉 = − i
h̄
H̃ |�〉 for the

total state vector |�〉 of the systems of two six-level atoms.
The decay of the Rydberg states thus results in the loss of the
total population of the system (decreasing the norm 〈�|�〉 due
to population of states outside the basis states). This slightly
overestimates the gate error by disregarding processes that
may repopulate the qubit states from the Rydberg states by the
spontaneous decay.

In calculating the error probabilities for the phase gate, for
each two-qubit input state |�(tin)〉 = |00〉,|01〉,|10〉,|11〉, we
propagate the state vector |�(t)〉 of the system until the end of
the sequence (t = tout) involving the preparatory microwave
and optical pulses as described above. From the four output
states |�(tout)〉, we obtain the 4 × 4 transformation matrix U ,
and then calculate the average fidelity [42] of the two-qubit
gate via F = [Tr(MM†) + |Tr(M)|2]/(20) with M = U

†
CZU ,

where UCZ is the transformation matrix of the ideal phase
gate. The average gate error is identified with the infidelity
E = 1 − F .

APPENDIX C: RYDBERG BLOCKADE GATE

For comparison, we now discuss the relevant properties
of the Rydberg blockade gate performed in the conventional
way [16] via excitation of (identical) Rydberg states |rc,t〉 of
the control and target atoms.

Strong interatomic interactions can be provided by either
static or nonresonant dipole-dipole interaction, which results
in the energy shift of double Rydberg excitation, Hsh =
h̄Bsh|rcrt〉〈rcrt| . The static dipole-dipole interaction occurs
between the Stark eigenstates of the atoms in a static electric
field. Then atoms in such states |r〉 possess permanent dipole
moments ℘r ∝ n2, leading again to Bsh = C3/x

3 with C3 ∝
n4. The dipole-dipole exchange interaction B reduces to the
van der Waals type of interaction, Bsh = C6/x

6, with C6 �
C2

3/δωF ∝ n11, when the Förster defect δωF ∝ n−3 between
|rcrt〉 and (the nearest) |acbt〉 is large compared to B. More
precisely, we have to sum up the second-order level shifts of
|rcrt〉 due to the nonresonant interaction with all the pairs of
states |acbt〉, C6 ∝ ∑

ab
|℘ar℘rb |2

ωr+ωr−ωa−ωb
.

We consider again the dynamics of the two-atom system in
state |rc1t〉 during step ii, but under the scenario of dispersive
Rydberg-Rydberg interaction leading to large level shift Bsh

of the double-excited state |rcrt〉 (see Fig. 5). The laser field
with Rabi frequency �t acts on the transition |1〉 → |r〉 of
the target atom, which is now shifted out of resonance by
the Rydberg-Rydberg interaction Bsh. The Hamiltonian of the

tΩcΩ

rc rt

1c

0c 0t

1t

(i) (iii) (ii)

Γ Γ

Bsh

FIG. 5. Schematics of the conventional Rydberg blockade phase
gate between the control and target atoms [16]. Atoms in Rydberg
states |rc,t〉 strongly interact with each other via the static or
nonresonant dipole-dipole interaction leading to level shift Bsh(� �t)
of state |rcrt〉.
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two-level system is then

H2/h̄ = 1
2 (�t|rcrt〉〈rc1t| + H.c.) + Bsh|rcrt〉〈rcrt| . (C1)

The eigenstates of H2 are |ψ±〉 = ([�̄ ∓ Bsh]|rc1t〉 ±
�t|rcrt〉)/ν±, with �̄ ≡

√
B2

sh + �2
t and ν2

± = 2(B2
sh ∓

�̄Bsh + �2
t ), and the corresponding eigenvalues are λ± =

1
2 (Bsh ± �̄).

1. Adiabatic driving

For a smooth 2π pulse �t(t), the initial state |rc1t〉 is
adiabatically connected to the |ψ−〉 eigenstate with eigenvalue
λ−, and nonadiabatic transition to |ψ+〉 is suppressed for
�t0 � Bex. During the pulse, the population of the double-

excited Rydberg state |rcrt〉 is PRy � �2
t

4B2
ex

, which returns back
to |rc1t〉 at the end of the pulse, �t(t = Tt) → 0.

The situation is thus similar to that of the resonant exchange
interaction studied in the main text, but there are also important
differences. Since the adiabatically connected eigenstate |ψ−〉
has nonzero energy λ−(t) � −�2

t (t)
4Bsh

, at the end of the �t(t)

pulse, state |rc1t〉 acquires the phase φ = ∫ Tt

0 λ−(t)dt . If both
�t and Bsh are well defined, this phase is known and can
be amended, as described in [23]. [In the present context,
correcting the phase shift φ involves splitting during step ii the
2π pulse �t(t) into two smooth π pulses �

(1)
t (t) and eiφ�

(2)
t (t)

with the relative phase difference φ and then, after step iii,
applying to the target qubit the operation Ẑt = |0t〉〈0t| +
e−iφ|1t〉〈1t| .] But if there is an uncertainty in the interaction
strength, Bsh → Bsh + δB with δB � ∂xBsh|x=x0δx, due to un-
certainty δx in the interatomic distance x0, it will cause phase
errors of the target qubit, δφ � π�tδB/B2

sh. Furthermore,
during the pulse �t the pair of atoms in state |ψ−〉 occupies
the double Rydberg excitation state |rcrt〉 with a finite prob-
ability PRy and, hence, experiences a mechanical force F =
−h̄∂xλ−|x=x0 , where the x dependence of λ− stems from Bsh.

2. Square pulse of specific amplitude

Perhaps surprisingly, the rotation errors can in principle
be avoided even when using nonadiabatic square 2π pulses
�t on the target atom, as was studied in detail in [50]. The
time-dependent state of the two-level system described by
Hamiltonian (C1) can be written as |ψ(t)〉 = c1(t)|rc1t〉 +
cr (t)|rcrt〉, with c1(0) = 1 and cr (0) = 0 corresponding to
|ψ(0)〉 = |rc1t〉. Neglecting the decay � � �t, the general

TABLE III. Error probabilities during step ii of the Rydberg-
blockade gate, for four two-qubit input states.

Input state Decay errora Rotation errorb Phase error

|0c0t〉 0 0 0
|0c1t〉 π�

�t
0 0

|1c0t〉 2π�

�t
0 0

|1c1t〉 2π�

�t
+ π��t

4B2
�2

t
2B2

πδB�t
B2

aFor the control and/or target qubit in state |1〉.
bOnly for nonadiabatic (square) pulse �t.

solution for the amplitudes of state vector |ψ(t)〉 is given
by [34]

c1(t) = eiφ(t)

[
cos( 1

2 �̄t) − i
Bsh

�̄
sin( 1

2 �̄t)

]
, (C2a)

cr (t) = e−iφ(t)−φt
�t

�̄
sin( 1

2 �̄t), (C2b)

where φ(t) ≡ 1
2Bsht and φt is the laser phase. Our goal is

that cr (t = Tt) = 0 at time Tt = 2π/�t of the resonant 2π

pulse. We thus require that 1
2 �̄Tt = 2πk (k ∈ N). We obtain

�t = Bsh√
4k2−1

, which is largest for k = 1: �t = 1√
3
Bsh. The

final phase of state |rc1t〉 would then be φ = √
3π , which

should be amended as described above. Notice, however, that
if there are pulse timing or amplitude errors and/or uncertainty
in Bsh, the averaged (over a small time interval �t � π/�̄)
residual Rydberg population of the target atom will be PRy �
�2

t

2B2
sh

. Hence, this method is even less robust with respect to

uncertainties of parameters than the above adiabatic methods.

3. Gate error estimates

Let us summarize the above results. In Table III we show
the error probabilities during step ii of the blockade gate, for
the four two-qubit input states. For the gate performed with
a smooth (adiabatic) pulse �t, and assuming compensation
of the interaction phase φ, the error averaged over all the
inputs is again E � π�

4 [ 5
�t

+ �t
4B2 ], as in the main text for

the dark resonance gate. Choosing �t = αB with α � 1, we
obtain E � η �

B
with η � 5π

4α
. If we also include the phase

error of the gate due to uncertainty in the dispersive Rydberg-
Rydberg interaction strength, this coefficient would increase
accordingly, η � 5π

4α
+ πα

4
δB
�

.
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