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Superconducting microwave circuits form a versatile platform for storing and manipulating quantum
information. A major challenge to further scalability is to find approaches for connecting these systems over long
distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons
that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic
conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert
the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic
at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit
is driven to interconvert between microwave-frequency (7 × 109 Hz) and millimeter-wave-frequency photons
(3 × 1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave
photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear
dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear
decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map
out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the
maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal
circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10−9 times
the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical,
microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected
quantum processors for intracity or quantum data center environments.
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I. INTRODUCTION

As engineered quantum systems of ever greater complexity
are realized in labs across the world, it is important to
address the practical challenges facing large-scale machines.
One vision of scaling involves the construction of a quantum
internet [1] enabled by nodes connected via links that dis-
tribute entanglement at a high rate. High bandwidth quantum
interconnects able to faithfully transmit quantum information
may facilitate implementation of large-scale quantum systems
composed in a modular way of specialized subsystems [2].
In the superconducting circuits architecture [3]—one of the
most promising platforms for engineered quantum systems—
short-distance connections use on-chip coplanar stripline or
machined hollow waveguides. But options for connecting
qubits across longer distances are limited. Losses in long
superconducting waveguides and the difficulty of cooling them
to milli-Kelvin temperatures pose a challenge in distribut-
ing entanglement across a network. Estimates of losses in
hollow metallic waveguides at dilution cryostat temperatures
[4–6] indicate that direct links longer than tens of meters
are impractical. Moreover, the low electromagnetic carrier
frequency used to transmit the quantum information means
that these wavelength-scale waveguides are physically large
and are affected by noise due to the significant thermal photon
occupation at higher temperatures.

A commonly suggested approach to circumvent the three
serious limitations of microwave-frequency interconnects—
high loss, large size, and excess thermal noise—is to con-

*mpechal@stanford.edu
†safavi@stanford.edu

vert the quantum information processed in the microwave-
frequency quantum machine into optical photons for transmis-
sion. Optical fibers provide a medium that has losses below
0.2 dB/km over several terahertz of bandwidth with essentially
no background thermal photon occupation. There is now a
wide-ranging effort to realize quantum microwave-to-optical
converters. Often such converters use strong optical pumping
of a weak electromagnetic nonlinearity to shift signals across
the five orders of magnitude disparity in energy. The high
optical pump power introduces significant heat dissipation per
converted qubit which ultimately limits transmission rates.

Here we propose and investigate the feasibility of an
alternative approach, i.e., conversion of the microwave signals
to millimeter-wave (mm-wave) frequencies in the range of
hundreds of gigahertz. As we will show, an advantage in
comparison with microwave connections is that links useful
for quantum information transfer can be realized at much more
modest cryogenic temperatures and with a smaller footprint.
Compared to optical links, it avoids the need for strong optical
pumping of the electro-optic converters and associated issues
with heating and optical absorption in superconductors that
may limit scaling.

We start in Sec. II by describing the merits and limitations
of current approaches. We are particularly interested in conver-
sion rate limitation due to the energy consumption of existing
methods based on three-wave mixing. We present a theoretical
description of mm-wave systems that use four-wave mixing
to convert information between mm-wave and microwave
frequencies in Sec. III. To understand how such a converter
circuit can make orders of magnitude higher transmission rates
possible, we place bounds on the energy consumption. We
do this by deriving a general theorem in Sec. IV that sets
an upper bound on the effective interaction rate achievable
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between any two modes in an arbitrary lossless quantum
circuit incorporating nonlinear elements. In Sec. V we use
this sum rule to arrive at estimates of circuit parameters and
propose circuits that saturate this bound and enable significant
interaction rates with current state-of-the-art materials. We
calculate the energy dissipated per converted qubit in Sec. VI.
Note that unlike the three-wave mixing processes which
become linear at large pump powers, nonlinear effects become
more important with increasing pump power in conversion
schemes based on four-wave mixing. This means that there
is a trade-off between high conversion rates and linearity. To
understand the resulting upper limits of achievable conversion
rates, we need to carefully consider the nonlinear effective
Hamiltonian and account for shot noise decoherence channels
which result from treating the pump as a quantized mode rather
than a classical drive. The more complex nonlinear dynamics
leads to a rich parameter space that we explore in Sec. VI.
We note that these nonlinear effects were not considered
in the analysis of four-wave mixing conversion experiments
demonstrated to-date [7,8], as they operated in a regime where
fully classical treatment of the pump was satisfactory. Finally,
in Secs. VII and VIII we compare the mm-wave approach to
the pure microwave and optical methods by taking into account
the expected end-to-end losses and the physical space required
by the link.

II. OPTICAL-TO-MICROWAVE CONVERSION ENERGY
AND MOTIVATION FOR MM-WAVES

Parametric processes can be used for quantum conversion
of excitations with vastly different energies [9,10]. For con-
version between optical and microwave frequency excitations,
the three-wave mixing process provided by optomechanics
[11–15], electro-optics [16–18], and magneto-optics [19] can
be used. We describe these processes using an interaction
Hamiltonian g0â

†â(b̂ + b̂†), where â and b̂ are the annihilation
operators for the optical mode and the microwave-frequency
resonance. The basic requirement in all cases is that the para-
metrically enhanced interaction rate g0

√
np, where np is the

mean optical pump photon occupation, equals the geometric
mean of the losses into the microwave and optical channels.
This condition is captured by the requirement of unity cooper-
ativity C ≡ 4g2

0np/κoptκμw = 1 (see Appendix A). Here κμw

is the loaded microwave bandwidth, which is the bandwidth of
conversion. A pump photon occupation of np leads to a heating
rate of Pheating = npκopt,i where κopt,i is the part of the optical
linewidth due to absorption and scattering into the cryogenic
environment. From here we can calculate an energy per “bit”
or temporal mode that is converted:

Eqbit = h̄ωopt

(
κopt,i

g0

)2 1

η2(1 − η2)
, (1)

where the efficiency η is defined by the relation κopt,i = (1 −
η2)κopt [20]. Eqbit is an important figure of merit as it sets a
bound on the achievable conversion rate due to the maximum
allowed heat load Pmax in the cryostat. This upper bound is
given by Pmax/Eqbit, so we should aim to minimize Eqbit. Note
that since we can in principle have a large number of converters
operating in parallel, it is the energy per bit which determines
the throughput rather than just the bandwidth of the converter.

As the time required to convert one qubit is given by the inverse
of the converter’s bandwidth �, we can estimate Eqbit in terms
of the power Pheating dissipated by the device operating in a
continuous mode as Eqbit = Pheating/�.

To outline the technical challenges in optimizing Eqbit,
we note an interesting relation between the quantum con-
verters and classical electro-optic modulators. In classical
electro-optic modulators where an electrical signal is used
to modulate an optical field, the important figure of merit is
the electrical energy required to switch the optical beam. This
is approximately equal to the charging energy of the capacitor
Cm surrounding an electro-optic medium Ecbit ∝ CmV 2

π [21].
The voltage Vπ needed to switch the state is determined
by the geometry and the material’s nonlinear properties. We
can estimate Vπ for the optically resonant systems typically
considered for quantum conversion by noting that a shift in
frequency on the order of the optical linewidth κopt is needed
to switch the beam from an on to an off state, and so we
set Vπ = κopt/gV where gV is the shift in the optical cavity
frequency per volt. This parameter is related simply to the
modal coupling rate as g0 = gVVzp, where Vzp is the zero
point voltage fluctuation amplitude, leading to a relation

Eqbit ∝ ωopt

ωμw
Ecbit. (2)

A surprising aspect of this relation is that Eqbit and Ecbit corre-
spond to different types of loss. Eqbit accounts for the heating
when optical energy is dissipated in the modulator, while
Ecbit is the microwave energy required to switch a classical
modulator. The energy consumption of classical electro-optic
modulators Ecbit has been subject to intense optimization by
industry and academia in the last decade for interconnect and
data center applications. Current world records are on the order
of femtojoules [22]. A quantum converter leveraging the best
available classical technology would therefore be limited to
Eqbit ≈ 1–10 nJ due to the “quantum conversion” prefactor
ωopt/ωμw in Eq. (2). Similar and slightly lower numbers are
obtained for recent experimental efforts utilizing mechanical
resonators [13–15] as intermediaries. From here we conclude
that reducing Eqbit can be accomplished either by improving
the magnitude of the nonlinearity (g0/κopt,i) or by reducing
the carrier frequency ωopt. As we will see below, moving the
carrier from optical (1014–1015 Hz) to mm-wave frequencies
(1011 Hz) achieves both.

III. MICROWAVE TO MM-WAVE CONVERSION THEORY

The envisaged method for efficiently converting the quan-
tum state of photons between gigahertz and hundreds of
gigahertz with small added noise is an extension of the
impedance matched three-wave mixing scheme proposed in
[11]. Variants of this technique have been used for inter-
converting microwave-frequency photons [23–26], optical-
frequency photons [27,28], and there are on-going experiments
to demonstrate conversion between optical and microwave
frequencies [13–15,29]. In superconducting circuits, the more
natural nonlinearity is a nonlinear kinetic inductance which
leads to four-wave mixing. Conversion between modes by
four-wave mixing was initially considered by Louisell et al.
[9] and quantum converters at microwave [7] and optical
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frequencies [8] have been experimentally demonstrated. The
key idea is that pumping at an intermediate frequency couples
microwave and a mm-wave resonant modes a and b and
induces an effective beam-splitter interaction g(a†b + b†a).
The two modes are coupled to open transmission lines with
rates κμw and κmm. A fraction of the power sent through
the microwave line is up-converted by the pumped system
and emitted into the mm-wave line. An input-output theory
analysis (see Appendix A) shows that the theoretical efficiency
of this conversion process reaches unity when the cooperativity
parameter C = 4g2/κμwκmm is equal to one. The beam-splitter
coupling strength required for perfect conversion is therefore
given by

g2 = 1
4κμwκmm. (3)

A kinetic inductor—typically a thin wire made of a
suitable material such a niobium nitride (NbN) or niobium
titanium nitride (NbTiN)—is a weakly nonlinear element
approximately described by the Hamiltonian

ĤKI = φ̂2

2L
− φ̂4

4L3I 2∗
,

where φ̂ is the difference of the flux variable
∫

V̂ dt across the
inductor, I∗ is the crossover current [30], and L is the wire’s
low-current inductance. The term quadratic in φ̂ corresponds to
a linear inductor and we can include it into the free Hamiltonian
Ĥ0 of the circuit together with terms due to the other linear
circuit elements. Diagonalization of Ĥ0 then yields the normal
modes of the circuit, two of which will be the microwave
mode a and the mm-wave mode b. The quartic term can
then be treated as a perturbation inducing four-wave mixing.
In particular, it enables two photons of a strong pump at a
frequency ωp = (ωmm − ωμw)/2 to combine with a microwave
photon at ωμw and produce a mm-wave photon at ωmm.

We assume that to couple the pump signal into the
system, it is designed to have a third normal mode c at the
pump frequency ωp, as shown schematically in Figs. 1(a)
and 1(b). We will write the operator φ̂ as a combination
of the ladder operators â,b̂,ĉ of the three relevant modes:
φ̂ = φa(â + â†) + φb(b̂ + b̂†) + φc(ĉ + ĉ†). We perform the
rotating wave approximation (RWA), retaining only energy-
conserving terms in φ̂4. After putting the result in normal
order, we get terms which are second and fourth order in the
ladder operators. The resulting form of the Hamiltonian is
shown in full detail in Appendix B.

The quadratic terms describe a dressing of the normal mode
frequencies by the nonlinearity and we will absorb them into
Ĥ0. We are then left with a Hamiltonian containing terms such
as â†â†ââ describing anharmonicities of the modes, cross-Kerr
coupling terms of the form â†âb̂†b̂, and an energy exchange
term g0(âb̂†ĉĉ + H.c.).

If the mode c is driven resonantly by a coherent pump tone,
this results in a constant displacement of ĉ to ĉ + √

np in the
reference frame co-rotating with the pump. Here np is the mean
number of photons induced in the mode by the pump. As in
other four-wave mixing conversion schemes, we assume that
np � 1 and to first approximation, we only keep the largest
coupling terms proportional to np in the Hamiltonian. In our
initial analysis of the system, we neglect the lower-order terms.

(d)

(b)

(a)

w mmp=( mm w)/2

FIG. 1. (a) Spectrum of the system, showing the three relevant
modes, and (b) a diagram representing their mutual interaction via the
φ4 nonlinearity of the kinetic inductor and coupling to their respective
continuum input-ouput fields. (c) The effective coupled system of
modes a and b when c is coherently displaced by a strong pump
signal. (d) Model of heat dissipation due to the pump tone at the base
stage of the cryostat. The terms shown in red are, from top left to
bottom right, the internal dissipation in the pump mode and the pump
line losses of the incoming and reflected field.

Later in Sec. VI and Appendix C we analyze the effects of the
higher order terms in ĉ, which cause nonlinear behavior of
the pump mode, and the cross terms such as â†âĉ

√
np, which

induce shot noise dephasing of the converted photons. This
allows us to identify operating regimes in which the linear
approximation is justified.

Assuming for now that nonlinearities in the Hamiltonian
can indeed be neglected, displacement of the coupling term
âb̂†ĉĉ + H.c. yields the desired beam-splitter interaction of
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the form g0np(â†b̂ + b̂†â), where the coupling strength is

g0 = −3φaφbφ
2
c

L3I 2∗
. (4)

The system can then be effectively described by two directly
coupled modes, as shown in Fig. 1(c).

If the system parameters are chosen such that the dressed
modes a and b are resonant in the reference frame co-rotating
with the pump tone and the matching condition

4g2
0n

2
p

κμwκmm
= 1 (5)

is satisfied, the incoming fields ain and bin resonant with the
modes are perfectly converted into bout and aout, respectively.

To further evaluate the coupling g0, we need to know the
product φaφbφ

2
c of vacuum fluctuation amplitudes of φ̂ for

the three modes. Instead of calculating it for any specific
circuit configuration, we will derive a very general result
about vacuum fluctuation amplitudes in an arbitrary linear
circuit and use it to find the maximum achievable value of
φaφbφ

2
c . We believe this result may be very useful in the

process of designing quantum circuits and we therefore show
its derivation in some detail in the following section.

IV. SUM RULE FOR VACUUM FLUCTUATION
AMPLITUDES

The process of electrical circuit quantization is usually
presented in the context of Lagrangian and Hamiltonian
dynamics [31]. Although the procedure to arrive at the
quantized model is straightforward, it is not immediately
obvious if there is a connection between its parameters such
as the vacuum fluctuation amplitudes and classical parameters
of the circuits such as the impedance matrix. The answer to
this question turns out to be positive and provides a convenient
shortcut from the circuit diagram to the quantum Hamiltonian.
It can be derived either from considering a specific canonical
form of the circuit, as for example in Ref. [32], or more
generally as follows:

An arbitrary lossless linear circuit can be represented as a
network of capacitors and inductors described by a capacitance
matrix C and an inductance matrix L. The impedance matrix
is then given by

Z(ω) = [iωC + (iωL)−1]−1.

This matrix is singular for ω equal to any of the resonance
frequencies ω1,ω2, . . . of the circuit. A simple algebraic
manipulation shows that Z(ω) can be written as

Z(ω) = iωC−1/2U(D − ω2)−1UTC−1/2,

where U is an orthogonal transformation which brings the
symmetric matrix C−1/2L−1C−1/2 into its diagonal form D =
diag(ω2

1,ω
2
2, . . .). From here it follows that the residues of the

impedance matrix poles are given by

resωk
Zij = − i

2
(C−1/2U)ik(C−1/2U)jk.

The matrix U is closely related to the canonical transfor-
mation which diagonalizes the circuit’s Hamiltonian H =

1
2 qTC−1q + 1

2φTL−1φ written in terms of the vectors q and φ

of node charges and fluxes. Indeed, if we define

âk = ω
1/2
k (C1/2U)ikφ̂i + iω

−1/2
k (C−1/2U)ik q̂i√

2h̄
,

we can easily verify that Ĥ = ∑
k h̄ωk(â†

kâk + 1/2) and the
operators âk satisfy the canonical commutation relations
[âi ,â

†
j ] = δij , assuming that [φ̂i ,q̂j ] = ih̄δij . By inverting this

relation, we obtain

φ̂i =
∑

k

φ
(k)
i (âk + â

†
k),

where the vacuum fluctuation amplitudes φ
(k)
i associated with

node i and normal mode k are given by (C−1/2U)ik
√

h̄/2ωk .
Combining this result with the expression for the impedance
matrix residues, we get

resωk
Zij = − iωk

h̄
φ

(k)
i φ

(k)
j . (6)

This equation provides a simple way to directly access
the vacuum fluctuation amplitudes of the node fluxes from
the impedance of the circuit. The residues of the impedance
matrix in general depend on the capacitive as well as inductive
elements of the circuit. In typical superconducting circuits,
the nonlinear elements are the inductors and it is therefore
natural to ask if there is any fundamental relation linking
the inductance matrix to the vacuum fluctuation amplitudes,
independently of the capacitance matrix. To derive such a
relation, we divide Eq. (6) by ω2

k and sum over all modes k.
The resulting sum on the left-hand side can be evaluated using
Cauchy’s integral theorem. The form of Z(ω) implies that the
complex integral of Z(ω)/ω2 along a circle of radius R → ∞
asymptotically approaches zero. This means that the sum of
residues of Z(ω)/ω2 vanishes. These residues are res±ωk

Z/ω2
k

due to the poles of Z at ±ωk plus the additional residue at
ω = 0 introduced by the 1/ω2 term. This last residue is equal
to Z′(0) = iL. We therefore get

∑
k

φ
(k)
i φ

(k)
j

h̄ωk

= 1

2
Lij .

The nonlinear terms in the Hamiltonian are directly related
to the vacuum fluctuation amplitudes �φ

(k)
ij ≡ φ

(k)
i − φ

(k)
j

of flux differences across the nonlinear components [see
Fig. 2(a)]. For these, the last equation implies

∑
k

(
�φ

(k)
ij

)2

h̄ωk

= 1

2
L

(eff)
ij , (7)

where L
(eff)
ij ≡ Lii + Ljj − Lij − Lji is the equivalent induc-

tance we would measure between nodes i and j , as shown
schematically in Figs. 2(b) and 2(c).

This equation relates elements of the inductance matrix to
the vacuum fluctuation amplitudes of a flux difference between
an arbitrary pair of nodes. In particular, if two nodes are directly
connected by an inductance L, as in Fig. 2, then L

(eff)
ij � L

(with equality if and only if there is no path of inductors
linking the two nodes except for this direct connection) and
Eq. (7) therefore gives us an upper bound on a weighted sum
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(k)

FIG. 2. (a) Schematic representation of an arbitrary linear circuit
and the vacuum fluctuation amplitude �φ

(k)
ij in a normal mode k

of the flux difference across an inductance L (highlighted in purple)
connecting its two nodes i and j . According to the sum rule expressed
by Eq. (7), this vacuum fluctuation amplitude is related to the effective
inductance L

(eff)
ij (b) we would measure by an ideal impedance meter

in a circuit from which the capacitive elements have been removed (c).
This inductance is in turn bounded from above by L. (d) An example
of a circuit in a Cauer topology in which the product φaφbφ

2
c of

vacuum fluctuation amplitudes across the inductance L is maximized
for given mode frequencies ωa/2π = 7 GHz, ωb/2π = 300 GHz,
ωc = (ωb − ωa)/2, and for L = 1 nH.

of the squared vacuum fluctuation amplitudes over all modes.
Since we are typically interested in their products rather than
sums, we can use the inequality between the geometric and
arithmetic mean to write

∏
k

(
�φ

(k)
ij

)mk �
(

L

2M

)M/2 ∏
k

(h̄ωkmk)mk/2,

where M = m1 + m2 + · · · . (8)

This inequality, which is valid for arbitrarily chosen non-
negative exponents mk , is the main result of this section. It puts
an upper bound on products of vacuum fluctuation amplitudes
across an inductor only in terms of its inductance and the
frequencies of the modes. It therefore allows us to estimate
coupling rates achievable with a given nonlinear element
between modes at specific frequencies, with no reference to
the details of the underlying circuit. The bound is sharp—it is
saturated when L

(eff)
ij = L and (�φ

(k)
ij )2/h̄ωkmk is identical for

all k, that is if

(
�φ

(k)
ij

)2

h̄ωk

= mkL

2M
.

Using Eq. (6), we can rewrite this condition in terms of the
impedance Z

(eff)
ij measured between nodes i and j :

resωk
Z

(eff)
ij = − iω2

kmkL

2M
. (9)

Circuits which saturate inequality (8) can be implemented
with passive circuits. This follows from the classical realiz-
ability condition in network synthesis theory [33,34] which
states that a function Z(ω) can be realized as an impedance of
a passive circuit if and only if Z(−is) is a positive real function
of s. The condition given by Eq. (9) prescribes the values rk of
the impedance residues at its positive real poles ωk . A function
satisfying it can be written as Z

(eff)
ij (ω) = ∑

k rk/(ω − ωk) −
r∗
k /(ω + ωk). Since the residues rk are purely imaginary with a

negative imaginary part, Z(eff)
ij (−is) is a positive real function.

The requirement that L
(eff)
ij = L, in other words that there is

no path of inductors shunting L, can be satisfied by choosing a
suitable topology for the circuit, for example, Foster’s second
form or a Cauer topology, as shown in Fig. 2(d).

V. MAXIMUM COUPLING BETWEEN THE MODES

We can use the results of Sec. IV to evaluate the maximum
achievable beam-splitter coupling in our converter system. The
quantity of interest is φaφbφ

2
c , where φa , φb, and φc are the

vacuum fluctuation amplitudes of the microwave, mm-wave,
and pump mode, which become �φ

(a)
ij , �φ

(b)
ij , and �φ

(c)
ij in

Eq. (8). In this particular case, we have ma = mb = 1 and
mc = 2 which gives us

φaφbφ
2
c �

(
L

8

)2√
h̄ωa

√
h̄ωb(2h̄ωc). (10)

The maximum value of φaφbφ
2
c given by the right-hand side

is reached if a, b, and c are the only modes coupling to L,
there is no inductive path shunting the kinetic inductor and if
φ2

a/h̄ωa = φ2
b/h̄ωb = φ2

c /2h̄ωc.
We then find that the maximum achievable exchange

coupling strength g0 given by Eq. (4) is

g0 = −3h̄(ωmm − ωμw)
√

ωμwωmm

64LI 2∗
.

The other important parameters of this system are the Kerr
couplings of mode c—the coefficients of terms such as ĉ†ĉ†ĉĉ,
â†âĉ†ĉ, . . . , as defined by (for a derivation, see Appendix B)

Ĥ = Ĥ0 + 1
2χcĉ

†ĉ†ĉĉ + χacâ
†âĉ†ĉ + χbcb̂

†b̂ĉ†ĉ + · · · .

In the configuration which optimizes the vacuum amplitude
product φaφbφ

2
c , these are related to g0 by

χc = g0(ωmm − ωμw)/
√

ωmmωμw, (11)

χac = 2g0

√
ωμw/ωmm, (12)

χbc = 2g0

√
ωmm/ωμw. (13)

To estimate their numerical values, we consider a 5-nm
thick, 50-nm wide, and 2-μm long kinetic inductor with L =
1 nH [35]. Assuming the same crossover current density as
determined in Ref. [30] for a 20-nm thick and 2.5-μm wide
wire, our inductor should have I∗ = 0.05 mA. Here and in the
rest of the text, we will assume a microwave frequency of ωμw/

2π = 7 GHz and a mm-wave frequency ωmm/2π = 300 GHz.
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For these values we get

g0/2π = − 170 kHz,

χc/2π = − 1.1 MHz,

χac/2π = − 51 kHz,

χbc/2π = − 2.2 MHz.

The corresponding circuit, which is characterized by the
given resonance frequencies and the associated impedance
residues expressed by Eq. (9), can be built up from lumped
elements using standard circuit synthesis techniques. An
example implementation in a Cauer topology for the values
stated above is shown in Fig. 2(d).

VI. ENERGY DISSIPATED PER CONVERTED QUBIT
AND DEPHASING EFFECTS

Heat generation in the converter is caused predominantly by
the strong pump signal whose power in turn depends linearly
on the number of pump photons np = √

κμwκmm/2g0 required
to reach unit cooperativity. To estimate the dissipated power,
we use a simplified model of the pump line shown in Fig. 1(d).
We assume the section of the line in thermal contact with the
base stage of the cryostat is characterized by a transmittivity
η. This will most likely be limited by losses in the line and the
elements connecting it to the superconducting circuit. Note that
unlike for standard microwave drive lines, strong attenuation
at base temperature to thermalize the field is not necessary
here. The pump tone frequency is in the 100 GHz range and
the noise in the field is therefore close to quantum limited even
if it is thermalized only at 4 K, where far greater cooling power
is available.

If the incoming and reflected pump photon flux at the
sample are |cin|2 and |cout|2 and the intrinsic loss rate of
the mode is κint, the total power dissipated at the base stage
can be expressed as a sum of the three terms highlighted
in red in Fig. 1(d). The photon fluxes are related to np by
np = κext|cin|2/(δ2 + κ2

p /4) and |cout|2 = |cin|2 − npκint. Here
κext is the external coupling rate of the mode which we can
control by design, κp = κext + κint its total linewidth, and
δ is the detuning of the pump from the mode’s resonance
frequency. The dissipated power therefore depends on the loss

rates as

Pheating = h̄ωpnp

(
κintη + δ2 + κ2

p /4

κext
(1/η − η)

)
. (14)

We can now see that since the bandwidth � does not depend
on the parameters of the pump mode, we should choose δ = 0
and κext = κint to minimize Eqbit = Pheating/�. In this case of
matched internal and external coupling rates, the pump signal
is fully absorbed by mode c and we get Pheating = h̄ωpnpκint/η.
There are, however, several other factors that constrain κp and
δ and we need to determine if we can in fact let κext = κint

under these constraints.
First of all we would like to work in the regime where mode

c behaves as a harmonic oscillator. If the nonlinear frequency
shift χcnp due to the self-Kerr term ĉ†ĉ†ĉĉ becomes large
enough to significantly change the response of the mode, it
can no longer be treated as an approximately linear system.
Then the approximation we made by replacing ĉ with

√
np in

the âb̂†ĉĉ coupling term may not be justified.
A calculation of the perturbation expansion of the res-

onator’s steady state ρ in the Kerr nonlinearity χc, as outlined
in Appendix E, shows that to lowest order in χc, the state’s
overlap with the closest coherent state |α〉 is reduced by an
amount on the order of n2

pχ
2
c /(4δ2 + κ2

p ). We will therefore
require that 4δ2 + κ2

p � Fn2
pχ

2
c , where F is a dimensionless

factor quantifying the linearity of the pump mode. For linear
operation, we will assume F � 1.

After substituting for χc from Eq. (11) and for np from the
unit cooperativity requirement (5), the linearity condition can
be written as

4δ2 + κ2
p � Frκμwκmm, (15)

where r denotes the ratio (ωmm − ωμw)2/4ωmmωμw (for
ωmm/2π = 300 GHz and ωμw/2π = 7 GHz we have approx-
imately r ≈ 10). This inequality presents a lower limit for δ

and κp. If the expression on the right-hand side is smaller
than 4κ2

int, then we can set δ = 0 and κext = κint to reach the
global minimum of the dissipated power Pheating in Eq. (14).
Otherwise, the constrained minimum of Pheating is reached for
δ = 0 and κp which saturates Eq. (15). We can then write the
energy per bit as

Eqbit = h̄ωp
√

κμwκmm

2|g0|� ×
⎧⎨
⎩

κint/η for Frκμwκmm < 4κ2
int,

κintη + Frκμwκmm(1/η − η)/4√
Frκμwκmm − κint

for Frκμwκmm � 4κ2
int.

(16)

We elucidate this result with the help of Fig. 3(a) which
shows a plot of Eqbit as a function of the two linewidths κμw

and κmm based on Eq. (16). In this example, we again assume
the mode frequencies to be ωμw/2π = 7 GHz, ωmm/2π =
300 GHz, and ωp = (ωmm − ωμw)/2. For the transmittance η

of the pump line at the cryostat’s base temperature, we choose
η = 0.9 and for the linearity parameter F = 100. To estimate
the intrinsic losses κint of mode c, we assume an internal
quality factor Qmm ≈ 1000, consistent with values previously
observed in measurements of NbTiN mm-wave resonators by

Endo et al. [36]. This gives us a value κint/2π = 150 MHz to
use in Eq. (16).

For combinations of linewidths below the blue diagonal
line in Fig. 3(a), the required number of pump photons
np ∝ √

κμwκmm is small and the resulting frequency shift of
mode c is small compared with its intrinsic linewidth. We can
therefore choose for the pump mode κext = κint to minimize
Eqbit with respect to κext. In this case, Eqbit depends on the
two linewidths κμw and κmm through np/� ∝ √

κμwκmm/�, as
expressed by the first line in Eq. (16). The lines of constant Eqbit
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FIG. 3. (a) Plot of the dissipated energy per qubit Eqbit as a
function of the linewidths of modes a and b, optimized with respect
to the linewidth of mode c, as given by Eq. (16). The dashed red
lines represent different values of the converter efficiency T limited
by the ratio between the external coupling of the modes and their
internal losses. Close to the dashed black line, corresponding to unity
quality factor of the microwave mode, the discrete mode model of
the system becomes invalid. The solid black line indicates a value of
the mm-wave linewidth equal to the microwave frequency, implying
breakdown of the rotating wave approximation. The solid blue line
shows the boundary between the two regimes in Eq. (16). Below the
line, the nonlinearity of mode c is low enough to let us set κext = κint

while above the line, Eq. (15) forces κext > κint. (b) and (c) Loss of
photon state purity due to (b) dephasing by the pump shot noise and
(c) heating due to its back-action. Evaluated using Eqs. (C2) and
(D4), respectively, with the linewidth of mode c chosen to maximize
Eqbit, as in (a). The red dot indicates the operating point chosen in our
example as a compromise between the dephasing and heating effects.

in this regime occur for κμwκmm = const. From the general
expression for the bandwidth � derived in Appendix A, we
see that Eqbit depends only on the ratio of the two linewidths
and reaches its minimum for κμw = κmm.

Increasing the linewidth to values above the blue line
forces us to increase the linewidth of mode c above the
ideal value κp = 2κint to keep its response approximately
linear. This makes the mode overcoupled and further increases
the pump power required to reach the necessary number of
pump photons. The amount of power dissipated in the pump
input line then increases, changing the scaling of Pheating

with the linewidths of modes a and b from
√

κμwκmm to
roughly κμwκmm. In the regime where either κμw � κmm or
κmm � κμw, the bandwidth � becomes simply proportional

to the lower of the two linewidths and therefore Eqbit scales
linearly with the larger linewidth. This explains why deep in
the upper region of Fig. 3(a) the lines of constant Eqbit become
roughly parallel with the horizontal axis.

Thus, in the absence of any other constraints, we would
minimize Eqbit by choosing κμw = κmm while the actual
values of the linewidths do not matter as long as they satisfy
Frκμwκmm < 4κ2

int. In practice, the two linewidths need to be
significantly larger than the intrinsic losses of modes a and b to
achieve a conversion efficiency T close to unity. This is shown
in Fig. 3(a) by the red dashed lines of constant efficiency which
we approximate by

T ≈ 1 − max(κμw,int/κμw,κmm,int/κmm). (17)

To estimate the intrinsic losses κμw,int and κmm,int, we again
assume a mm-wave unloaded quality factor of 1000 and a
microwave quality factor of 105. At the same time, both κμw

and κmm must be small compared with the respective mode
frequencies (quality factors need to be much higher than 1),
otherwise our analysis of the converter as a system with three
discrete modes is not valid. In fact, as explained below, the
mm-wave linewidth needs to be small even in comparison to
the microwave frequency to justify our use of the rotating wave
approximation when deriving the effective Hamiltonian of the
converter. The contour of Qμw = 1 is shown in the plot by
the black dashed line and the contour κmm = ωμw by the solid
black line.

In addition to the reduction in efficiency due to intrinsic
dissipation of the modes captured by the parameter T , we
must also take into account decoherence from quantum
noise processes arising from strongly pumping a fourth-order
nonlinearity. We group these into type (1) and type (2)
processes in accordance to whether the terms giving rise to
them in the Hamiltonian scale with pump intensity as O(

√
np)

or O(np), respectively. We treat these two types of decoherence
independently. Type (1) processes arise from terms such as
ĉâ†â and ĉâb̂† and are energy conserving. The effect of these
terms can be interpreted as the shot noise of the pump signal
causing fluctuations in the phase of the converted photons,
or equivalently as measurement-induced dephasing due to the
pump getting entangled with the converter modes a and b. A
perturbation theory analysis of this process is carried out in
Appendix C. The calculated loss of the photon state purity as a
function of the microwave and mm-wave linewidth is plotted
in Fig. 3(b). Type (2) processes are due to terms like â†b̂† that
are energy nonconserving by ωμw but can lead to spontaneous
emission of correlated photons when κmm becomes comparable
to ωμw leading to a slight violation of RWA. This type of
noise is analogous to the quantum limits found in three-wave
mixing nonlinear converters and the quantum back-action limit
to sideband cooling [37–40]. The calculated loss of purity for
the type (2) process is plotted in Fig. 3(c).

Taking into account these additional constraints, we choose
a typical operating point of a converter that compromises
between the effects of the two main decoherence channels
shown in Figs. 3(b) and 3(c). At this point which is indicated
in the plots by the red dot, we have κμw/2π = 10 MHz and
κmm/2π = 2 GHz. The conversion efficiency approaches 85%
with subattojoule dissipated energy per converted qubit. This
is more than nine orders of magnitude less energy dissipation
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TABLE I. Summary of the relevant device parameters at the
example operating point (red dot in Fig. 3).

Quantity Value cf.

microwave frequency ωμw/2π 7 GHz
microwave linewidth κμw/2π 10 MHz

mm-wave frequency ωmm/2π 300 GHz
mm-wave linewidth κmm/2π 2 GHz
pump mode frequency ωp/2π 146.5 GHz
pump mode linearity F ≡ (κp/npχc)2 100
pump line transmittivity η 0.9
Derived quantities
conversion bandwidth �/2π 20 MHz (A11)
pump mode linewidth κp/2π 4.5 GHz (15)
number of pump photons np 420 (5)
coupling strength g0np/2π 70 MHz
pump mode Kerr shift npχc/2π −450 MHz
dissipated power Pheating 100 pW (14)

in mode c 37 pW (14)
in pump line 63 pW (14)

energy per qubit Eqbit 0.8 aJ (16)
conversion efficiency T 0.843 (17)
shot noise dephasing δTr ρ̂2 0.0020 (C2)
back-action heating δTr ρ̂2 0.0051 (D4)

than current microwave-optical converters. These values are
summarized in Table I outlining the parameters of the example
operating point.

VII. LOSSES AND ADDED NOISE IN
THE QUANTUM LINK

A lossy link with a transmittance t at a temperature T can
be modeled as a beam splitter with the same transmittance
whose second input port is connected to a thermal bath. It
therefore adds N = (1 − t)n thermal photons to each mode
of the transmitted signal, where n = 1/[exp(h̄ω/kBT ) − 1] is
the Bose-Einstein thermal photon occupation per mode at the
signal’s frequency ω. The number of noise photons added by
the link is an important figure of merit since quantum informa-
tion can be only transmitted without significant coherence loss
if N � 1. The transmittance t itself is a less critical quantity
because even with low t , quantum information can be sent
coherently using heralding techniques at the cost of effectively
reduced transmission rate.

The transmittance of the link varies exponentially with its
length l as t = exp(−αl), where α is the attenuation constant.
For a given photon frequency ω, link temperature T , and
attenuation constant α, we can calculate the length of the link
at which the number of added noise photons (1 − t)n reaches
a given threshold. The calculated lengths for microwave,
mm-wave, and optical links at a few selected temperatures
are shown in Table II.

At dilution cryostat temperatures, all three links can be
cooled very close to their quantum ground state and the length
of the link is therefore not limited by added thermal noise. At
4 K, a temperature which can be reached with significantly
less resources, the microwave link becomes unusable because
a length of mere 40 cm introduces 0.1 thermal photon. On the

TABLE II. Thermal photon occupations n, expected link losses
per meter α, and link lengths l0.01, l0.1 for which the number of added
thermal photons reaches 0.01 and 0.1, respectively, at microwave,
mm-wave, and optical frequencies at a range of selected temperatures.
The ≈0 thermal occupation entries stand for values lower than
10−10. The microwave waveguide losses are taken from Ref. [4],
the mm-wave losses estimated assuming a PTFE waveguide with a
loss tangent of 10−4 at room temperature [41], 2 × 10−6 below 20
K, and 4 × 10−6 at 70 K [42]. The latter source only provides loss
tangent values up to 20 GHz at cryogenic temperatures. We assume
these to be good estimates for losses up to 300 GHz since other
sources [43,44] do not show a significant variation of the PTFE loss
tangent over this frequency range at room temperature.

20 mK 4 K 70 K 300 K

7 GHz n 5 × 10−8 11 210 890
(microwaves) α (dB/m) 0.01 0.1 �0.1 �0.2

l0.01 (m) ∞ 0.04 �0.002 �0.0002
l0.1 (m) ∞ 0.4 �0.02 �0.002

300 GHz n ≈0 0.03 4.4 20
(mm waves) α (dB/m) 0.08 0.08 0.15 3.8

l0.01 (m) ∞ 22 0.07 0.0006
l0.1 (m) ∞ ∞ 0.7 0.006

200 THz n ≈0 ≈0 ≈0 ≈0
(optics) α (dB/m) 0.0005 0.0005 0.0005 0.0005

l0.01 (m) ∞ ∞ ∞ ∞
l0.1 (m) ∞ ∞ ∞ ∞

other hand, a mm-wave link at 300 GHz remains useful—the
added noise is below 0.01 photon for distances up to about 20 m
and never exceeds 0.1 photon since the thermal occupation per
mode at this temperature and frequency is only 0.03. At 70 K,
the distance reachable with less than 0.1 added noise photon
in a 300 GHz link drops to 70 cm. An optical link does not
suffer from added thermal noise at all because the equilibrium
thermal occupation per mode is extremely low all the way up
to room temperature.

This comparison shows that the mm-wave link presents
an appealing alternative to direct microwave links operable
at liquid helium temperatures. The significant loss in the
link means that the expected energy cost per successfully
transmitted qubit is scaled up from the value given by Eq. (16)
by the inverse of the link transmittance t . However, since the
conversion energy cost is much lower than for electro-optic
converters, the theoretical energy-limited transmission rate of
a mm-wave link at 4 K still exceeds that of an optical link for
distances up to several hundred meters.

VIII. FOOTPRINT OF THE QUANTUM LINK

Another aspect in which mm-wave quantum links can
be advantageous when compared with direct microwave
connections is the size of the waveguide. While WR-90
microwave waveguides operating around 10 GHz are relatively
large with a cross section of approximately 1 cm × 2 cm, the
dimensions of dielectric waveguides at mm-wave frequencies
[45] can be smaller by a factor of more than 10 determined
by the frequency ratio and the dielectric constant of the used
material. This means that the number of quantum channels
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which can be established in a given cross section is more than
hundred times higher in the mm-wave domain. By the same
token, a given number of channels requires a smaller space
and thermal mass which makes cooling the link to cryogenic
temperatures easier.

IX. CONCLUSIONS

We have theoretically analyzed the potential of quantum
interconnects at mm-wave frequencies in the range of several
hundred gigahertz. In contrast with direct microwave connec-
tions, mm-wave quantum links using dielectric waveguides
could be operated at or even above liquid helium temperature.
We have studied one particular strategy for conversion from
microwave to mm-wave frequencies using four-wave mixing
by a kinetic inductance nonlinearity. We derived a general
upper bound for couplings between modes achievable in
electrical circuits with weakly nonlinear elements and found
that if the coupling in our proposed converter is optimized
with respect to this bound, the conversion process is expected
to require less than 1 aJ per converted qubit. This is about nine
orders of magnitude lower than conversion to optical photons
and therefore much more suitable for operation in dilution
cryostats.
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APPENDIX A: IDEAL OPERATION OF THE CONVERTER

Here we derive the unitary evolution of the two converter
modes a and b and their associated input-ouput fields within
the single-photon subspace. We neglect all coupling to the
pump mode c except for the effective exchange term â†b̂ + âb̂†

induced by its displacement. The Hamiltonian we consider is

Ĥ = g(â†b̂ + b̂†â) + √
κa[â†âf (t) + ââ

†
f (t)]

+ √
κb[b̂†b̂f (t) + b̂b̂

†
f (t)].

The energy terms â†â and b̂†b̂ are absent since we assume
the modes are resonant in the rotating frame of the pump.
The operators âf (t) and b̂f (t) represent the continuum of field
modes coupled to â and b̂, respectively.

In the single-photon subspace, we can write the state of the
system in general as

|�〉 =
(

uaâ
† + ubb̂

† +
∫

ατ â
†
f (τ ) + βτ b̂

†
f (τ ) dτ

)
|0〉,

where ατ and βτ are functions describing the shape of the
photon wave packet in the input and output fields. The
Schrödinger equation for |�〉 then reads

d

dt
ua = − igub − i

√
κaαt , (A1)

d

dt
ub = − igua − i

√
κbβt , (A2)

d

dt
ατ = − i

√
κacaδ(t − τ ), (A3)

d

dt
βτ = − i

√
κacbδ(t − τ ). (A4)

We define the input and output wave packets as

αin(τ ) = lim
t→−∞ ατ ,

αout(τ ) = lim
t→+∞ ατ ,

βin(τ ) = lim
t→−∞ βτ ,

βout(τ ) = lim
t→+∞ βτ .

Integration of Eqs. (A3) and (A4) yields the input-output
relations

αout(τ ) = αin(τ ) − i
√

κaca(τ ),

βout(τ ) = βin(τ ) − i
√

κbcb(τ ),

as well as αt (t) = αin(t) − i
√

κaca(t)/2 and analogously for
βt (t). Substituting these relations into evolution Eqs. (A1) and
(A2) allows us to write a closed set of equations for only ua

and ub in terms of the input wave packet functions:

d

dt
ua = − igub − 1

2
κaua − i

√
κaαin, (A5)

d

dt
ub = − igua − 1

2
κbub − i

√
κbβin. (A6)

We will solve these equations in frequency space under the
assumption of C = 4g2/κaκb = 1. This results in

ua(ω) = √
κa

(
ω + iκb

2

)
αin(ω) + 1

2κbβin(ω)(
ω + iκa

2

)(
ω + iκb

2

) − κaκb

4

, (A7)

ub(ω) = √
κb

(
ω + iκa

2

)
βin(ω) + 1

2κaαin(ω)(
ω + iκa

2

)(
ω + iκb

2

) − κaκb

4

, (A8)

αout(ω) = ω
(
ω − i(κa−κb)

2

)
αin(ω) − iκaκb

2 βin(ω)(
ω + iκa

2

)(
ω + iκb

2

) − κaκb

4

, (A9)

βout(ω) = ω
(
ω − i(κb−κa )

2

)
βin(ω) − iκaκb

2 αin(ω)(
ω + iκa

2

)(
ω + iκb

2

) − κaκb

4

. (A10)

For signals on resonance (ω = 0) with a small bandwidth
this results in principle in perfect conversion with αout = iβin

and βout = iαin.
The full-width half-maximum bandwidth � of the converter

defined by |∂αout/∂αin|2ω=±�/2 = 1/2 is given by

�2 = 2

⎡
⎣

√
κ2

a κ2
b +

(
κa − κb

2

)4

−
(

κa − κb

2

)2
⎤
⎦ (A11)

≈ 2κa if κa � κb

≈ 2κb if κb � κa.
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APPENDIX B: THE FULL RWA HAMILTONIAN

For reference, we show the full form of the φ̂4 term in the
Hamiltonian after performing the rotating wave approxima-
tion:

Ĥ = Ĥ0 − 1

4L3I 2∗
:
[
6φ4

a â
†â†ââ + 6φ4

b b̂
†b̂†b̂b̂ + 6φ4

c ĉ
†ĉ†ĉĉ

+ 24φ2
aφ

2
b â

†âb̂†b̂ + 24φ2
aφ

2
c â

†âĉ†ĉ + 24φ2
bφ

2
c b̂

†b̂ĉ†ĉ

+12φaφbφ
2
c (âb̂†ĉĉ + â†b̂ĉ†ĉ†)

]
:

= Ĥ0 − 1

4L3I 2∗

[
6φ4

a â
†â†ââ + 6φ4

b b̂
†b̂†b̂b̂ + 6φ4

c ĉ
†ĉ†ĉĉ

+ 24φ2
aφ

2
b â

†âb̂†b̂ + 24φ2
aφ

2
c â

†âĉ†ĉ + 24φ2
bφ

2
c b̂

†b̂ĉ†ĉ

+ 12φaφbφ
2
c (âb̂†ĉĉ + â†b̂ĉ†ĉ†)

+ 12
(
φ2

a + φ2
b + φ2

c

)(
φ2

a â
†â + φ2

b b̂
†b̂ + φ2

c ĉ
†ĉ

)
+ 3

(
φ2

a + φ2
b + φ2

c

)2]
.

Here : [. . .] : denotes symmetric ordering of the ladder oper-
ators. Transforming all the terms into normal order results in
the second expression. Terms quadratic in the ladder operators
can be absorbed into Ĥ0 and the remaining higher order terms
written in an abbreviated form as

Ĥ = Ĥ0 + 1

2

∑
A∈{a,b,c}

χAÂ†Â†ÂÂ +
∑

A<B∈{a,b,c}
χABÂ†ÂB̂†B̂

+ g0(âb̂†ĉĉ + â†b̂ĉ†ĉ†),

where

χA = − 3φ4
A

L3I 2∗
,

χAB = − 6φ2
Aφ2

B

L3I 2∗
,

g0 = − 3φaφbφ
2
c

L3I 2∗
.

After replacing ĉ by ĉ + √
np with np chosen such that

terms linear in ĉ and ĉ† exactly cancel the terms in Ĥ0 due to
the coherent pump, and after absorbing terms proportional to
â†â, b̂†b̂, and ĉ†ĉ into Ĥ0, we get

Ĥ = Ĥ0 + 1
2χaâ

†â†ââ + 1
2χbb̂

†b̂†b̂b̂ + χabâ
†âb̂†b̂

+ npg0(âb̂† + â†b̂) + npχc(ĉ†ĉ† + ĉĉ)

+ √
np[(χacâ

†â + χbcb̂
†b̂ + gâ†b̂)ĉ† + H.c.]

+ 2
√

npχc(ĉ†ĉ†ĉ + H.c.) + 1
2χcĉ

†ĉ†ĉĉ

+ χacâ
†âĉ†ĉ + χbcb̂

†b̂ĉ†ĉ.

If npχc � κp, mode c can be approximated as a linear
system in its (displaced) ground state and the squeezing terms
ĉ†ĉ† + ĉĉ as well as ĉ†ĉ†ĉ + ĉ†ĉĉ and ĉ†ĉ†ĉĉ may be neglected.
From the terms which couple a and b to c, we only keep the
ones of highest order in np. Moreover, we will assume that at
most a single photon exists in modes a and b at any time. This
also allows us to neglect the Kerr terms â†â†ââ, b̂†b̂†b̂b̂, and

â†âb̂†b̂. We are then left with

Ĥ = Ĥ0 + npg0(âb̂† + â†b̂)

+ √
np[(χacâ

†â + χbcb̂
†b̂ + g0â

†b̂)ĉ† + H.c.]. (B1)

The terms on the first line describe the ideal operation of
the converter while the second line represents in principle
unwanted coupling between the converter modes a and b and
quantum fluctuations of the pump mode c.

APPENDIX C: DERIVATION OF CONVERTER
DEPHASING DUE TO PUMP SHOT NOISE

To estimate how the shot noise of the pump tone affects
the performance of the converter, we need to take into account
some of the terms from the φ̂4 nonlinearity which we have
neglected when analyzing the ideal operation of the device.
The largest among them is the coupling term proportional to√

np shown on the second line of Eq. (B1). This term describes
back-action of the converted photons on the pump field. This
results in some degree of entanglement between the two and
therefore dephasing of the converter’s reduced density matrix.

To describe this effect, we first note that the characteristic
relaxation time scale of mode c, determined by its linewidth
κp, will typically be much faster than the evolution of modes
a and b. This means that we can approximate mode c as a
Markovian bath and write an effective master equation for a

and b and their input-ouput modes. We will neglect the weak
nonlinearity of mode c and approximate its steady state by
the vacuum in the displaced reference frame. We will further
assume that the dynamics of modes a and b can be neglected
on time scales over which the correlation functions of c relax
to their steady-state values. We can then perform the standard
master equation derivation with a system-bath coupling given
by K̂ĉ† + K̂†ĉ, where

K̂ = √
np(χacâ

†â + χbcb̂
†b̂ + g0â

†b̂).

This results in

d

dt
ρ̂ab = − i[H0 + g(âb̂† + â†b̂),ρ̂ab]

− K̂†K̂ρ̂ab

1

κp/2 + iδ
− ρ̂abK̂

†K̂
1

κp/2 − iδ

+ K̂ρ̂abK̂
†
(

1

κp/2 + iδ
+ 1

κp/2 − iδ

)

= − i[Ĥ0 + g(âb̂† + â†b̂) + �Ĥ,ρ̂ab]

+ DqK̂ [ρ̂ab],

where

q =
√

κp

δ2 + κ2
p /4

,

�Ĥ = − δ

δ2 + κ2
p /4

K̂†K̂.

Here δ is the detuning of mode c in the pump reference frame.
Instead of solving this master equation for the full density

matrix ρ̂ab, we will consider the purity Tr ρ̂2
ab as a useful figure

of merit quantifying the decoherence of the converted photons.
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It evolves according to

d

dt
Tr ρ̂2

ab = 2Tr
dρ̂ab

dt
ρ̂ab

= 2q2Tr(K̂ρ̂abK̂
†ρ̂ab − K̂†K̂ρ̂abρ̂ab).

We will calculate the purity to lowest order in K̂ by
integrating this equation and approximating ρ̂ab on its right-
hand side by the pure state |�〉 unitarily evolving under
the Hamiltonian Ĥ0 + g(âb̂† + â†b̂). The final state purity at
t → +∞ is then

Tr ρ̂2
ab = 1 − 2q2

∫ +∞

−∞
〈K̂†K̂〉 − 〈K̂†〉〈K̂〉 dt. (C1)

As derived in Appendix A, the state of the system has the
form

|�〉 = (uaâ
† + ubb̂

† + · · · )|0〉,
where the omitted terms contain photons in the input and
output fields which do not contribute to the expectation values
of K̂ and K̂†K . The evolution of the coefficients ua and
ub is given in frequency space by Eqs. (A7) and (A8). We
will assume that the converted photon has a very narrow
bandwidth. Under this assumption, the frequency dependence
of the converter’s response can be neglected and we have

ua(t) = − [βin(t) + iαin(t)]/
√

κa,

ub(t) = − [αin(t) + iβin(t)]/
√

κb.

Note that this means that each of the expectation values
in the expression for the purity is a quadratic function of the
the input wave packet functions. Due to the normalization
condition

∫ |αin|2 dt + ∫ |βin|2 dt = 1, the two functions scale
as 1/

√
T with the characteristic time scale T of the wave

packets. This implies that 〈K̂†K̂〉 ∼ 1/T and 〈K̂†〉〈K̂〉 ∼
1/T 2, so we can neglect the term 〈K̂†〉〈K̂〉 in the limit of
narrow-band wave packets.

By substituting

〈K̂†K̂〉 = npχ
2
ac|ua|2 + np

(
χ2

bc + g2
0

)|ub|2
+ npg0χac(u∗

aub + u∗
bua)

into Eq. (C1), we get

Tr ρ̂2
ab = 1 − 2npκp

δ2 + κ2
p /4

(
χ2

ac

κa

+ χ2
bc + g2

0

κb

)
. (C2)

Here we made the assumption that either αin(t) = 0 or βin(t) =
0 for all t . In other words, that we are sending a photon either
from the microwave or mm-wave side but not both at the
same time. The terms in this expression can be understood
intuitively as follows. The decoherence is due to the pump
field carrying away information about the state of the converter
modes a and b. A leaky resonator coupled to a quantum system
causes a measurement-induced dephasing at a rate given by
κp|δc|2/2, where δc is the difference in the displacements of
the pointer states caused by a change in the quantum system’s
state. In our case, addition of a photon into mode a results in
a frequency shift χac of mode c which leads to a displacement
shift of |δc| = χac

√
np/

√
δ2 + κ2

p /4. The converted photon
spends on average a time on the order of 1/κa in mode a,

accumulating a dephasing proportional to npκpχ
2
ac/κa(δ2 +

κ2
p /4) due to measurement of mode a by the pump. This is

exactly the first term in the purity loss expression on the right-
hand side of our equation above. Similarly, the second term in
the brackets results from measurement-induced dephasing in
mode b. The additional term with g2

0 is due to the third type of
dephasing process where a photon can be swapped from b to
a while two additional photons are created in the pump field.

APPENDIX D: BACK-ACTION NOISE HEATING

In addition to the terms considered above that are energy
conserving and cause dephasing and scale as

√
np, there

are terms which were neglected as they are approximately
nonenergy conserving (by ≈ωμw), but may still be significant
since they scale as np. We consider the spontaneous emission
process which may only be partially filtered by the cavity
and becomes significant at larger κmm/ωμw [37–39]. In
the full RWA Hamiltonian we neglected the term Ĥnoise =
exp(2iωμwt)gb̂†â† + H.c. Consider a highly simplified con-
version Hamiltonian Ĥ = g(â†b̂ + b̂†â) + Ĥnoise, which can
be written in a time-independent way as

Ĥ = ωμw(â†â + b̂†b̂) + g(â† + â)(b̂† + b̂). (D1)

By solving the Heisenberg-Langevin equations, we find that
the spectral density of the microwave mode with vacuum bath
inputs at the matching condition 4g2 = κmmκμw in the limit
where κmm � κμw,g is given by [46]

Sââ(ω) = ∫ ∞
−∞ dω′〈â†(ω)â(ω′)〉 (D2)

= 2κμw

(ω+ωμw)2+(κμw)2 nheating. (D3)

with nheating = 1
2 ( κmm

4ωμw
)2. The converter’s microwave mode

temperature with vacuum inputs approaches a steady-state
photon occupation of 〈â†â〉 = nheating due to the emission into
the lower frequency sideband of the mm-wave resonator. This
means that microwave output for a vacuum input will be ther-
mal radiation at this temperature. This allows us to calculate
the purity of the converted state for vacuum input. For very
small heating rates, ρ̂out = (1 − nheating)|0〉〈0| + nheating|1〉〈1|
so Tr ρ̂outâ

†â = nheating. The purity of this state is

Tr ρ̂2
out ≈ 1 −

(
κmm

4ωμw

)2

. (D4)

APPENDIX E: PERTURBATIVE EXPANSION OF A
NONLINEAR RESONATOR’S STEADY STATE

To find how the steady state of a driven lossy nonlinear
resonator deviates from a coherent state with increasing mean
photon number, we perform a perturbative expansion in the
Kerr nonlinearity χc. We write the Liouvillian of the system as
L = L0 + δL, where L0 is the generator of a linear resonator’s
dissipative evolution and δL[ρ̂] = −iχc[ĉ†ĉ†ĉĉ,ρ̂]/2. If we
expand the density matrix ρ̂ in powers of χc as ρ̂ = ρ̂0 +
ρ̂1 + · · · , and require the steady-state equation L[ρ̂] = 0 to be
satisfied to all orders, we get the following recursive relations

042305-11



MAREK PECHAL AND AMIR H. SAFAVI-NAEINI PHYSICAL REVIEW A 96, 042305 (2017)

for ρ̂j :

L0[ρ̂0] = 0, (E1)

L0[ρ̂j+1] = −δL[ρ̂j ] for j > 0. (E2)

ρ̂0 is therefore the steady state of a linear resonator—a coherent
state |α0〉〈α0|. The higher order corrections can then be found
one by one by successively solving Eq. (E2). This equation
does not have a unique solution because the superoperator L0

has a nontrivial null space spanned by ρ̂0. We can, however,
find ρ̂j+1 uniquely by further requiring that Tr ρ̂ = 1 to all
orders, that is, Tr ρ̂j = 0 for j > 0.

To find the solution of Eq. (E2), we note that if we define
displaced ladder operators Ĉ = ĉ − α0, L0 preserves each of
the subspaces Sm (for m = 0, ± 1, ± 2, . . .) spanned by the
basis Bm = {(Ĉ†)kρ̂0Ĉ

l : k − l = m}. In fact, it maps each
(Ĉ†)kρ̂0Ĉ

l with the exception of k = l = 0 onto a linear
combination of itself and (if k,l > 0) (Ĉ†)k−1ρ̂0Ĉ

l−1. In other
words, the matrix corresponding to L0 in the basis Bm is upper
triangular (with only a single off-diagonal band) and has a zero
on the first diagonal position for m = 0. This means that we

can always find a solution σ̂ such thatL0[σ̂ ] matches any given
right-hand side up to some multiple of ρ̂0. The coefficient of
this multiple is fixed by the property TrL0 = 0 and therefore
a solution exists for any traceless right-hand side. Since the
expression on the right-hand side of Eq. (E2) is a commutator,
this requirement is satisfied identically.

The calculation of the individual corrections ρ̂j is then
rather straightforward but leads to very long expressions. We
have used the SymPy package for Python [47] to calculate
the first- and second-order corrections ρ̂1 and ρ̂2. We could
then evaluate the overlap 〈α|ρ̂|α〉 as a function of α and χc to
second order in χc. Since the overlap has a global maximum
for α = α0 and χc = 0, we expanded it around this point into
〈α|ρ̂|α〉 = 1 − K(α − α0,χc), where K is quadratic in α − α0

and χc. Finally, we found the minimum of K with respect to
α − α0 for fixed χc which then yielded an approximation for
the maximum overlap

max
α

〈α|ρ̂|α〉 = 1 − 3n2
pχ

2
c

2
(
4δ2 + κ2

p

) .
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