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The solution space of many classical optimization problems breaks up into clusters which are extensively distant
from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon
takes place in the ground-state subspace of a certain quantum optimization problem. This involves extending the
notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum
clusters correspond to macroscopically distinct subspaces of the full quantum ground-state space which grow
with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum
satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their
internal entropy. The former are given by the number of hard-core dimer coverings of the core of the interaction
graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We
additionally provide numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with
the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.
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I. INTRODUCTION

The concept of a “rugged energy landscape” plays a central
role in many parts of statistical physics and optimization
theory. The idea is that in glassy systems, this energy landscape
in configuration space becomes labyrinthine and difficult to
explore with local dynamics. Optimal configurations disappear
into deep, narrow valleys which are hard to find amidst the
hills and numerous shallow valleys. Classically, this geometric
intuition has been at least partially quantified by studying
the statistical “clustering” of low-energy configurations into
distinct locally connected regions separated by a macroscopic
Hamming distance (which measures distance between two
solution strings by looking at the number of characters
which differ). Such clustering has been used to understand
a large range of classical phenomena including the slow down
of combinatorial optimization algorithms in certain regimes
[1-4], dynamical freezing in spin glasses [5], stable associative
memories in neural networks [6], and even improved error
correction algorithms in classical codes [7].

Although clustering has been argued to play a role in
quantum-mechanical systems (see below), it is less clear how
to construct an intrinsic geometric understanding of clustering
in Hilbert space. There are several essential difficulties. A
low-energy quantum-mechanical state space is a continuous
linear vector space where the simplest notion of distance is
the Fubini-Study metric which measures the overlap between
two states. However, this ascribes the same distance to
states which differ by a single spin flip as to those which
are macroscopically rearranged. This clearly fails to capture
the much larger distance between the states according to
local dynamics and local physical expectation values. On the
other hand, a purely discrete distance such as the Hamming
weight defined by the minimal support of operators mapping
between two states is far too sensitive to small continuous
deformations in Hilbert space. Moreover, quantum mechanics
allows superpositions of macroscopically distinct states. How
should one measure the distances between such “cat” states?
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Finally, one would like to extend these notions to allow “local
degeneracy” within a cluster.

To overcome these difficulties, we propose to focus on
short-range correlated states [8] whose connected correlations
decay at large physical separation [5]. That is,
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for local operators O; and O; centered on sites i and
Jj, where |i — j| measures the interaction graph distance
between i and j. Such states are as far as possible from cat
states (macroscopic superpositions). In order for a low-energy
subspace to be clustered, we take as prerequisite that it must
contain a large number of such short-range correlated states
which are macroscopically distinct, i.e., for which all local
operators have vanishing off-diagonal matrix elements when
the number of qubits N — oo (which we refer to as the
thermodynamic limit in the following). This definition is
analogous to that used to identify distinct symmetry breaking
vacua (such as in ferromagnets), but here we do not expect that
the short-range correlated states be related by symmetries.

This set of reference states may not provide a complete or
unique basis for the low-energy subspace, especially if there
are local degeneracies. Rather, it is natural to consider the
state space clustered if it can be decomposed into a sum of
macroscopically distinct subspaces (which become orthogonal
in the thermodynamic limit as we describe below), each of
which can be constructed from local operations acting on a
reference short-range correlated state.

A prominent setting where classical clustering arises is in
random ensembles of the canonical N P-complete problem
of satisfiability (k-SAT). Satisfiability consists of determining
whether a given k-body classical Hamiltonian composed of
a sum of classical projectors has zero-energy (“satisfying”)
states [1]. Quantum satisfiability (k-QSAT) generalizes classi-
cal k-SAT by allowing the terms to be general noncommuting
projectors [9]. Random k-QSAT thus provides a natural place
to look for quantum clustering. Random k-QSAT is known
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FIG. 1. Illustration of clusters of solutions (grey discs) in Hilbert
space at the product satisfiability transition «, in 3-QSAT. Random
quantum satisfiability exhibits a satisfiable phase with nonentangled
satisfying states (PRODSATSs) at small clause density o and an
unsatisfiable (UNSAT) phase at large clause density. For k sufficiently
large, these are separated by a satisfiable phase with only entangled
satisfying states, but for k£ = 3, the numerics in Sec. IV suggest that
the transition from PRODSAT to UNSAT is direct at c«r,, &~ 0.91.

to exhibit both satisfiable (SAT) and unsatisfiable (UNSAT)
phases as in classical satisfiability. However, the phases show
finer structure due to the possibility of quantum entanglement.
More precisely, the SAT phase in general contains two distinct
phases—one where the ground states include product states
(PRODSAT) [10,11] and another where the only ground states
present are entangled (ENTSAT) [12]. For a more detailed
review of this phase diagram, see [13—15].

In this paper, we show that quantum clustering arises in
the zero-energy space of 3-QSAT at the critical point out of
the PRODSAT phase. Our argument is constructive, as we
associate the cluster subspaces with discrete product state
reference states on an appropriately defined core of the critical
instances. These reference states are further in correspondence
with dimer coverings of the core, which we show are
both exponentially numerous and macroscopically distinct—
leading to the same properties for the reference states. Finally,
each reference state extends into its own exponentially large
satisfying subspace when additional degeneracy associated
with the noncore qubits (the “hair”) is taken into account.

In the bulk of the paper, we make these arguments more
precise. In Sec. II, we review QSAT and its various phases,
and explain the mapping of product ground states to dimer
coverings. We then show how this leads to quantum clustering
in the 3-QSAT ground space at the PRODSAT critical point. In
Sec. IV, we provide numerical evidence suggesting that there
is a direct transition to an UNSAT phase from the PRODSAT
phase in 3-QSAT—that is, that the ENTSAT phase does not
exist at k = 3 (see Fig. 1). This helps to motivate our focus on
the PRODSAT transition, and is also of independent interest in
pinning down the phase diagram of random k-QSAT. In Sec. V,
we compute the entropy of clusters Score (i.€., the logarithm
of the number of cluster subspaces) using cavity techniques
on the associated dimer covering problem. In Sec VI, we
provide an estimate of the internal entropy of a cluster Spair
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by considering the contribution of the noncore degeneracy.
Finally, we conclude briefly in Sec. VIIL.

There have been several streams of previous work on
clustering in random quantum-mechanical systems. The most
direct connections are provided by introducing weak quantum
terms in classical models. The clustering properties of the
classical energy landscape then provide the backdrop for
the tunneling induced by the quantum terms, with con-
sequences for quantum spin-glass dynamics [16-19] and
the adiabatic algorithm [20-24]. These treatments take the
classical clustering properties as a starting point and do
not try to extend them to an intrinsic notion of clustering
with finite transverse field. On the other hand, the replica
treatment of certain mean-field spin-glass models exhibits
replica symmetry breaking in imaginary time even at finite
fields [16,25]. In the classical case, replica symmetry breaking
is often identified with clustering in configuration space, so
this provides a possible approach to identifying clustering in
quantum models. However, this microscopic interpretation of
replica symmetry breaking is not self-evident, especially in the
quantum case. Finally, the solvable AKLT spin-glass model
lifts the classical clustering exhibited by a finite temperature
vector spin glass into a quantum-mechanically degenerate set
of macroscopically distinct ground states [26]. This work bears
the closest resemblance to the structure that we report in this
paper.

Several recent works have explored the computational
difficulty of identifying whether two given low-energy states of
a local Hamiltonian can be connected by a sequence of k-local
operations which remain at low energy [27,28]. The essential
result is that determining whether such low-energy paths exists
is quite difficult in the worst case—QCMA complete, to be
precise. While this notion of path traversal is closely related to
clustering, it requires more detailed control of the excitation
energetics than we have in random QSAT. It would be very
interesting to develop a statistical picture of such paths in this
model.

II. TECHNICAL BACKGROUND
The rank 1, k-QSAT Hamiltonian on N qubits is given by

M M
H=3 T=)I¢un)(dul. 2
m=1

m=1

where each clause, I1,, is a rank 1 projector acting on a
group of k qubits labeled by m = (m,ms, ...,my). Pictorially,
we represent H graphically through an interaction graph G
where the clauses are represented by squares and the qubits
by circles, as in Fig. 2. Each clause I1,, projects onto one
state |@,,) in the local 2¥-dimensional Hilbert space, imposing
an energy cost on any state which overlaps that direction.
Such a Hamiltonian has a zero energy state |W) if and only
if |W) is simultaneously annihilated by all of the projectors
I1,,. In this case, we say that H is satisfied by the state |WV).
Deciding whether a given k-QSAT Hamiltonian is satisfiable
is QMA, complete for k > 3 [9,29], modulo certain technical
restrictions.

We focus on the prototypical random k-QSAT ensemble
introduced in [11]. There are two sources of randomness:
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FIG. 2. Interaction graph representation of an instance of 3-
QSAT. Projectors (blue squares) act on the three qubits (brown circles)
to which they are connected. In a product satisfiable instance, dimers
(salmon ovals) cover every projector but may leave some qubits free
(monomers, circled). On a critical core (inside green dashed loop),
however, a dimer covering leaves no qubit free. The only free qubits
(circled) lie on the hair of the graph (outside green dashed loop).

(1) the discrete choice of interaction graph G and (2) the con-
tinuous choice of projectors IT" associated to each interaction.
The latter choice is particularly powerful: generic choices [30]
of projectors reduce quantum satisfiability to a graph, rather
than Hamiltonian, property [11]. More precisely, for fixed
G, the dimension Rg = | ker H| of the satisfying subspace is
almost always minimal with respect to the continuous choice
of " € CP¥~!. We refer to this as the “geometrization”
property. The satisfying dimension R may be lower bounded
using the quantum Shearer formula [13] and in certain limits it
is conjectured that this formula gives a tight, and thus generic,
result.

For generic QSAT instances, zero energy product states
exist if and only if the graph G admits “dimer coverings,’
which match qubits (circles) to interactions (squares) covering
all of the interactions (see Fig. 2) [10]. When the graph is
fully packed, every interaction is covered by exactly one
dimer. Away from full packing, there are uncovered qubits
or interactions which are “monomers” on the interaction
graph. The correspondence between product ground states and
dimer coverings is clearest in the case of product projectors
n" =107 ®---®II}. Such projectors are satisfied if and
only if one of the single qubit factors I1" is satisfied, which
in turn specifies that the qubit on which I} acts is in a
local state orthogonal to IT/". A dimer covering provides a
matching between projectors m and the choice of qubit that
satisfies m. More detailed arguments are required to show that
these satisfying product states may be extended to generic
(nonproduct) projectors [10]. The upshot is that there is a
mapping from dimer coverings DCs of the interaction graph
to product states |DC).

We follow previous work and choose the random interaction
graph G according to an Erdos-Renyi ensemble with clause
density « = M/N. That is, each of the possible (]Z ) interac-
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tions is placed with independent probability p = M/(}). In
this ensemble, each clause has exactly k neighboring qudits
while qudit i has d; neighboring squares where d; is a random
degree which is Poisson distributed with mean d; = ka. The
clause density o provides a tuning parameter to explore
k-QSAT instances ranging from extremely underconstrained
at small o to severely overconstrained at large o.

One of the most important geometric features of the
Erdos-Renyi interactions graphs is the existence of a core
above a critical . The core G’ C G is the maximal subgraph
of G such that every qubit has degree at least two [31]. The
core may be constructed efficiently from a given graph G by
recursively removing the “dangling” degree 1 qubits along
with the neighboring interactions until no degree 1 qubits
remain [32]. We refer to the part of the graph removed by
this process (i.e., G — G') as the hair of G (see Fig. 2).

III. QUANTUM CLUSTERING AT THE PRODSAT
TRANSITION

In this section, we show the ground space of random QSAT
is clustered at the critical point o, out of the PRODSAT phase.

To recap, for quantum clustering, we seek a set of short-
range correlated reference states each of which generate
macroscopically distinct subspaces through local operations
at zero energy. More specifically, we need the following:
(i) a set of reference states whose connected correlators of
local operators vanish and from which subspaces can be
generated through local operations. In QSAT, these reference
states correspond to product states as described below; (ii) local
operators should have vanishing off-diagonal matrix elements
between states in different subspaces.

We construct the reference states in two steps. First, we
choose a product state |[DC) on the core of the interaction
graph. These are in one-to-one correspondence with dimer
coverings (DCs) of the core. Second, we extend this dimer
covering to the full interaction graph and correspondingly
extend the reference state to a product state on the full graph.
The extension is not unique, even among product states, but
this nonuniqueness corresponds to local degeneracy. It is
precisely this degeneracy which generates the subspace K}?alcr
associated to each reference state. This leads to a clustering
decomposition of the full ground space K as

K = IDCeore X Kisi- 3)
DC

Since the reference states are product states, their connected
correlators vanish, i.e., (O; Oj) — (Oi)(éj) whenever O, and
0)_,- have nonintersecting support, and certainly when |i —
Jj| — oo. These then satisfy the first condition for clustering.

If we consider the situation when the dimer covering is fully
packed on the core (M, = N, i.e., B = B. = 1), the only way
to go from one dimer configuration on the core to another is
to rearrange along a loop on the graph due to the absence of
monomers (free qubits). Itis important to note that the presence
of monomers on the hair (Fig. 2) does not allow us to rearrange
the fully packed dimer configuration on the core (analogous
to a “backbone”). Then the typical overlap between two states
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IDC,) and |DC,) is
log(DC,;|DC,) ~ —y LIDC;,DC,], 4)

where L[DC;,DC;] is the length of the loops formed by
superposing the two dimer coverings onto each other, and
y is related to the O(1) overlap of two random vectors on the
Bloch sphere. Now if the length of the loops increase with
system size, then the overlap vanishes in the thermodynamic
limit and the states are orthogonal. More importantly, the
expectation values of local operators also similarly decay and
have vanishing off-diagonal components between the states in
the thermodynamic limit.

So the question is whether there is a regime in 3-QSAT
where we only have large loops. In fact, this occurs at the
transition point out of the PRODSAT phase. Although there is
a finite extent of clause density where we have only large loops,
it is only at the transition point that we have fully packed dimer
coverings of the core. These cannot be rearranged to each
other through local changes such as hopping unpaired spins
(monomers) to neighboring positions. We show in Sec. V that
there is an extensive number of dimer coverings on the core
(IDC)core) With a corresponding entropy (Score) at the transition
point. When we add the hair back to the core, it generates a
continuous manifold of states around each dimer covering,
thus enlarging each point to a cluster (K, ﬁﬁ). We estimate the
internal entropy of this cluster (Sp,ir) in Sec. VI.

IV. NEW NUMERICAL BOUNDS ON UNSAT
TRANSITION FOR k =3

The question of the properties of the end point of the
PRODSAT phase goes hand in hand with that about the
nature of the adjacent phase. The two generic possibilities are
that there is either an (entangled) satisfiable phase, ENTSAT,
as happens for k-QSAT for sufficiently large k£ [12,13], or
in its absence, a phase which is unsatisfiable, UNSAT, as
happens for k =2 [11]. For numerical studies, small k are
more tractable than large ones, so that the question of the
existence of an ENTSAT phase for k = 3 is of considerable
practical relevance.

For k = 3-QSAT, satisfying product states are known to
persist up to the threshold o ~ 0.91, where the core of the
interaction graph has density 8. = M./N. = 1 [10]. Previous
numerical diagonalization studies have reported that the SAT
phase might persist slightly further to a transition at « ~ 1 £
0.06 (quoted error bars) [10].

Here, we report a more focused study which reinforces
the possibility that the UNSAT transition actually coincides
with the disappearance of product states. More precisely, our
numerical results below suggest an upper bound on the UNSAT
transition 8 < B.(1 4+ 1/17), which corresponds to « < 0.97,
while we were not able to resolve a stable ENTSAT regime
intermediate between the PRODSAT and UNSAT ones.

The exponential dependence of Hilbert space dimension
on size N remains a significant barrier to finite-size exact
diagonalization studies—even with Moore’s law, this only
leads to a linear increase in tractable system size with (human
rather than CPU) time.

In order to make progress, we exploit monotonicity, which
states that a given QSAT instance is UNSAT if any subgraph is
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FIG. 3. Probability that a random k& = 3 core with M. = N, + 1
is UNSAT. Circles indicate probability across all decidable generated
instances; instances with minifans (squares) are essentially always
satisfiable at these sizes so that those without (stars) contain all of
the UNSAT instances. Inset: A minifan motif: two projectors (red
squares) share two qubits (green circles).

UNSAT. This holds because adding a projector increases the
number of constraints to be satisfied, and so cannot heal the
violation of any existing projectors.

Since we are interested in separating a. from «,, we
focus on random instances whose cores are just barely
overconstrained as far as product states are concerned, i.e.,
M. = N, + 1. These may be generated by repeatedly sampling
(N,M) graphs and stripping them to their cores until such
instances are found. By monotonicity, reattaching the stripped
projectors can only make SAT instances UNSAT, and not vice
versa.

We use a sparse diagonalization routine on instances of
generic projector Hamiltonians in order to determine whether
or not these cores are satisfiable—by geometrization, the
outcome does not depend on the realization of the generic
projectors with high probability, so that our averaging focuses
on generating different random cores.

The resulting data for N = 10-25, N, = 8-17, with
Nsamp = 50-500 samples per (N,N.) are shown in Fig. 3.
Note that, as N, increases, we find that the probability of
the core being UNSAT increases monotonically. There is no
additional dependence on N within statistical fluctuations.
This is particularly striking as the effective density of the
core B =1+ 1/N, is monotonically decreasing with N, so
that upon increasing N, one moves closer to the critical value
Be=1.

Although for the system sizes available, N, < 17, the
fraction of UNSAT instances never reaches above pynsar ~
0.5, there is a considerable finite-size dependence of pynsar
which shows no clear sign of asymptotically reaching a plateau
for these system sizes.

Further evidence that the core goes UNSAT at § =1 is
provided by the observation that a large fraction of the SAT
instances owe their existence to the presence of a geometrical
motif in the random graph which we call a “minifan,” a
subgraph of G in which a pair of clauses shares two qubits
(see Fig. 3, inset).
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The density of minifans in the random graph vanishes with
increasing N as o« 1/N and thus disappears in the thermo-
dynamic limit. Nonetheless, at accessible sizes, minifans are
still quite common and even at N, = 17 roughly 30% of the
generated cores have at least one minifan as a subgraph.
Crucially, at these sizes, when a core contains a minifan, it
is satisfiable (squares, Fig. 3) and thus filtering them out to
better approximate the behavior of the large N ensemble raises
the probability of UNSAT significantly (stars) and by itself
reduces the fraction of SAT instances by about two-fifths for
the instances with the largest V. It seems reasonable to expect
that identifying and culling more complex finite-size motifs
will further lead to an enhancement of pynsar-

Taken together, this does leave a tiny sliver in clause density
a for the possible existence of an ENTSAT phase at £ = 3.
However, these results provide little evidence of an ENTSAT
phase for the systems sizes studied, while being fully consistent
with an UNSAT phase setting in at the critical value quoted
above.

V. ENTROPY OF CLUSTERS

In this section, we estimate the entropy of dimer coverings
Score On the core of a random interaction graph G, as this
provides an estimate of the entropy of reference product states
on the core. The core is itself a random interaction graph with
degree distribution given by a truncated Poisson distribution
with mean A(«) (see Appendix for more details) [33].

A. Pauling estimate

Let us construct a simple Pauling-type estimate of Score
on a core with N, nodes of fluctuating degrees d;,i =
1...N,, M, k clauses, and an appropriate core clause density,
B = M_./N.. There are a total of kM. links which can be
either occupied or unoccupied. Since each clause must be
covered by one dimer, we have k allowed configurations out
of the 2% configurations at each clause and d; + 1 allowed
configurations out of 2% configurations at each node. Thus,
the total number of allowed configurations can be estimated

kM 1+d
# 2 (?) 1_[ ( 2di ) )
1+d;
szcH< ; ) (6)

i

Taking a logarithm and using kM, = kBN. = ), d;,

Score 1 1+dz
Tczﬂlogk+ﬁc2i:log< o > (7

When 8 > 1, we no longer have any product state solutions
since there are more nodes than clauses and hence no more
dimer coverings. Plugging in numbers, the entropy of product
state solutions at the transition point for k =3 (see the
Appendix) and 8 = 1 is Score /N =~ 0.37.

B. Cavity calculation

As the core is itself a random interaction graph, its local
structure is treelike and we use the cavity method to count the
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FIG. 4. The cavity method introduces messages between ele-
ments of the graph which correspond to probabilities. We introduce
additional degrees of freedom on the bonds (triangles) which indicate
whether or not the bond is covered by a dimer.

number of dimer coverings. The following treatment is similar
to the counting of matchings in random graphs undertaken in
[34], suitably generalized to the interaction graph structure of
k-QSAT. Recall that in a valid dimer covering, we require that
every constraint a is covered but not every spin i needs to be
covered. We define variables S, on the bonds o which denote
whether a particular bond is covered by a dimer (S, = 1) or
not (S, = 0), and also a fugacity A to the dimer [Fig. 4(b)].
Hence we associate a partition function to the system
through

2= T Do se <> sp<t

(Sa} | ai \Beda Bedi

A2 S

)

®)

where the term inside the [ ] enforces the hard-core constraint
on dimers. In the limit of large A, the partition function is
dominated by terms corresponding to valid dimer coverings
provided they exist.

We evaluate the free energy corresponding to this partition
function through the cavity method since the interaction graph
is locally treelike near the transition. We define the appropriate
cavity probabilities

P, IS0= Y T[> S, <1|a%]]PsilSpl.
B

{Sg} yedi
B € di\a
9)
P, [l = PussalSal, (10)
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P, I80=" > T[> S, <1|a%]]PsilSpl.
5

{Sg}, yeda
B € da\a
(1)
PyesalSal = PisalSal. (12)
After normalizing, we define the messages [Fig. 4(b)]
Giova = Prosal1] = A
IT+4+ Zﬂeai\a fl_:_,
losi i= Pasoll]l = Gusas (14)
A

Ga—a = Passoll] = T+t T % (15)
lysa = Pysg[1] = Gisa- (16)

Here, ¢, and [,_,, denote the probability for bond « to be
occupied (= 1) in the absence of a; and the other two messages
ly—; and g, denote the probability for « = 1 in the absence
of i. Although two of the messages are redundant, we have
retained them as the resulting equations are more symmetric.

The free energy of the system can be expressed in terms
of these messages and consists of five contributions coming
from the three kinds of vertices (¢ =, i = ), o« = A) and
the two types of bonds (i = O — A, ae =1 — A),

F, = log l_[ (1—lga)

peaa
+ Z lﬁ_>a l_[ (1 _ly—>a) ) (17)
peda yeda\p
F; = log H (1 —l,g_”-)
Bedi
=+ Z lﬂﬁi l_[ (1_1;/»[) s (18)
Bedi yedi\p
qa—adi—a
Fu =log[(1 = gua)(1 = gie) + 22022 ] (19)
la—>iqi—>a
Fig =log [ (1 = lo—i)(1 — gimsa) + — | (20)
lot—mQa—mt
Foo = 10g (1 - la—m)(l - Qa—m) + T . (21)

The total free energy is then given by
FZZFa+ZE+ZFa_ZEa_ZFaa~ (22)

We can also express the average occupation of a constraint a
by a dimer ({n,) := N§.__./M¢) through

dimer

Zﬁeaalﬂ%anyeaa\ﬁ(l - l}’ﬁa)

B Zﬁeaalﬁ—ﬂlnyeaa\ﬂ(l - ly—m) + Hﬂeaa(l - lﬁ—m)
(23)

(na)
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FIG. 5. Cavity estimate of core entropy per core spin variable
(top) and average occupation of constraints (bottom) as a function of
core density B at various fugacities A [increasing (decreasing) from
top to bottom in top (bottom) figure].

and hence we can obtain the entropy density of dimer coverings
at a given clause density on the core § as

S F N§e F
;’f =~ %logk =~ Bing)logh. (24

For regular random graphs with k = d = 3 (corresponding
to B = 1), we can solve the equation exactly to obtain

(ng) = 1 — 04779 £ 0.061~" + 0(A71), (25)

SCOI‘C

N c

For Erdos-Rényi random graphs, we use population dy-
namics to find a fixed-point solution to the cavity equations.
We initialize a population of 10* random messages and iterate
the cavity equations for 4000 steps after which convergence
is achieved and we obtain a fixed-point distribution. The free
energy is then sampled from this fixed-point distribution to
obtain the entropy density Scoe//N. and average occupation
(ng). The entropy density corresponding to exact dimer
coverings is obtained in the limit of large fugacity A (see Fig. 5).
In principle, one can bypass the fugacity and instead
directly impose a hard constraint in the partition function
that every interaction is covered by a dimer. This treatment
leads to instabilities in the cavity equations and the associated
population dynamics. This is unsurprising as the partition

~0.29 4+ 0.9427% —0.061"" + 07, (26)

042303-6



CLUSTERING IN HILBERT SPACE OF A QUANTUM ...

0.6 2
o oblin hl fa0 0y |
051 %i%,\.
3 |
=
N 0.4 1
. W
E
HU 03 7] ..r.
2 0s-
g
0 0.1 4
¢ Cavity
0.0 T T T T
0.7 0.8 0.9 1.0
ﬁ = MC/NC
0.6 T
0.5 S ami
¥R
r R
, 0.4 7 ' x
Z
~
£ 0.3 1
5
0.2 1 Enumeration
Mean Enumerated
0.1 === Fit
Be=1 ¢ Cavity
0.0

T T T T
000 005 010 015 020 025
1/N,

FIG. 6. Entropy of dimer coverings of the core as a function of
core density S (top) and at the critical point (8 = 8. = 1) asafunction
of core size N, (bottom). Top: The different color markers correspond
to instances from cores of sizes up to N. = 35. At a given density,
larger sizes flow to smaller S.qe, although this is hard to see in the
figure. The cavity estimate is the value extrapolated in the limit of
infinite fugacity A. Bottom: The finite size scaling of S.q./ N, at the
critical point is consistent with a fit linear in 1/N..

function itself is exponentially large at the critical point 8 = 1
and formally zero beyond it since there are no coverings. The
introduction of a finite fugacity allows the system to find the
maximal covering that fits even for 8 > 1 and accordingly
undergo a simple first-order transition at the critical point.
Analogous instabilities arise in the treatment of the matching
problem on random graphs [34].

Finally, for small system sizes, we also use an exhaustive
enumeration procedure to find all possible dimer coverings.
We find agreement between the two algorithms and compute
Score for various values of «, (see Fig. 6). For 8 < . = 1, the
covering problem on the core is under constrained. There are
a number of dimer coverings that leave spins uncovered and
hence many small dimer flips can connect differing possible
dimer coverings through monomers representing uncovered
qubits. This situation can be contrasted with the one at 8 = 1
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where we have equal numbers of constraints and qubits so
that every node in the core is covered by a dimer (Fig. 2). In
this fully packed situation, there is still a macroscopic number
of macroscopically distinct dimer coverings with an entropy
density S/N,. =~ 0.23. Any two dimer coverings differ along
large loops in the graph. Finally, for 8 > 1, there are more
clauses than variables and the entropy corresponds to dimer
coverings which leave some clauses uncovered and result in a
density of monomers. In this situation there are no valid dimer
coverings of the graph. (We note in passing that while there
are no dimer coverings beyond this point, it has been found
that product states can still give good approximations to the
ground states of QSAT [14].)

VI. INTERNAL ENTROPY OF A CLUSTER

Now that we have estimated the entropy due to the
macroscopically distinct product states on the core (analogous
to backbones), we can construct the full state by reattaching
the hair and satisfying the projectors on it by constructing
dimer coverings on the hair [Eq. (3)]. Unlike dimer coverings
on the core, there are free spins on the hair which allow local
rearrangements (Fig. 2). However, these free spins do not allow
rearrangement on the core since the core is fully packed. The
total zero energy entropy at the critical point is thus given by
sum of the entropy of clusters and the internal entropy of each
cluster due to degeneracy associated to the hair,

Stotal = Score + Shair~ (27)

For a given dimer covering on the core, the hair entropy
has two components—a discrete geometric component due
to rearrangement of the dimer coverings and a “zero mode”
contribution due to the continuous manifold of satisfying
product states associated even to a fixed dimer covering due
to the free spins. A naive estimate of the geometric entropy is
given by

Siar = S2ll = (M = Mo)/(N = Nol ~ 05N, (28)

hair

where N, is the number of spins on the hair.
Below, we estimate the zero mode entropy corresponding
to a fixed dimer covering on the full graph.

Zero mode entropy

Restricting the allowed states to be product states in QSAT
gives us PSAT [14]. Zero modes in the PSAT problem
correspond to finite dimensional, zero energy submanifolds of
product state space (CP')V. In the quantum world, arbitrary
superpositions of the zero energy product states satisfy the
related QSAT problem. Thus, the linear span of the (nonlinear)
product state manifold is contained in the satisfying space for
QSAT and its dimension provides a lower bound on the QSAT
degeneracy of a cluster.

In this section, we provide an entropic estimate for the
dimension of the quantum zero energy space due to the
presence of PSAT zero modes. To warm up, we consider
a connected instance of QSAT whose clauses project onto
product states and select a zero energy state associated with a
particular dimer covering. In this case, the N — M uncovered
spins are completely free while the M covered spins are
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completely fixed by the dimer covering. The span of this
manifold of product states is thus precisely the Hilbert space
of d = N — M free qubits, with dimension 24,

Let us now try to count this 2¢ dimensional space by local
arguments. We take a particular zero energy state |2) and
choose local bases such that it corresponds to the all 1 state,
[€2) = [1M1...1). Let {w{'}4=1..« be an orthonormal basis for
the d = N — M dimensional kernel of the linearized zero
energy condition. The satisfying product states in a small
neighborhood of |€2) are then parametrized by d complex
coordinates §c,:

N
W(ca)) = l_[(IT) + dcqw))

j=1

= |2) + 8ca Yy wibl|Q)
J

+ %5ca5cﬁp > wtwfpipliQ) +-- . (29)
Jik
where we have introduced a collection of bosonic spin flip
operators bj- = |{)j{1| and the projector P implements a hard-
core constraint on the bosons. In this language, each order n
in the expansion in dc lives in the n boson sector of the full
Hilbert space.

Since each order is algebraically independent in §c, the span
of the product states in the neighborhood of |€2) is the direct
sum of the span of the n-boson states at each order. A generic
state at order n can be written

1 o (0%
— (Z Ysedca - .. 5%) Pw? . wbl bl Q) (30)
: Sc

where the sum runs over an arbitrary finite collection of
8¢ vectors. This expression has two parts: the left-hand
bracketed expression is a symmetric rank n tensor over C¢
(i.e.,an element of Sym”(Cd). This tensor of coefficients is a
completely general symmetric tensor since the product tensors
of the form §c ® 8¢ - - - ® 8¢ span this space [35]. The second
part is a state constructed from n bosons placed into any of d
modes with a hard-core constraint imposed by P.

In the special case of product projectors with d free spins,
the mode functions w® are completely localized on lattice sites.
By relabeling the sites, we can write this w¢ = é7 and then
simplify the product state expansion

D Vsl W(s0) o Q) + (Z wacaca>b2|sz> 31)

Sc Sc

1
+ E(Z x/fgcacaacﬂ> PBLbLIQ) + - . (32)
Sc

With this expansion, we see that the state space at order n is
precisely that of n hard-core bosons on d lattice sites. This has

dimension
d
n

and we find a total dimension

D=) " D, =2 (34)
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recovering precisely the counting found for d free spins
above.

More generally, for generic nonproduct projectors, we
expect the mode matrix w} to have nonzero entries for all
o and j on the hair. The mode matrix might also show
some additional structure due to the presence of disconnected
clusters of hair, but we do not consider this aspect here. In
this case, the dimension of the space spanned at order n is
no larger than the space Sym”C? spanned by the coefficient
tensor in §¢* and the space of n hard-core bosons in N, sites.
The relevant number of sites here is the number of sites on the
hair (NV},) since the core is fully packed and rearrangements on
the core and hair do not affect each other,

Dngmin{<n+d_]),<Nh>}. (35)
n n

Since the binomial coefficients monotonically increase with
the top argument, the minimizer is given by ("+Z_1) for n +
d — 1 < N,,. Thus, the total dimension is

Np—d N
D=ZDn<Z<n+Z_1>+ 3 <Nn”) (36)
n=N,—d+1

If we now assume that d = y N, we may estimate this
dimension to leading exponential order in N;, by steepest
descent. The first term is

N—d

Z(n+d_1> ~Nhf1ydx ((x+J/)Nh)
n 0 XNy,

n=0

1—y )
~ N, / dx "N/, (37)
0

where the exponent function follows from Stirling’s formula
as

X 14
fx) = —[x log + y log —i| (38)
+vy X

X +y

As f(x) is monotonically increasing on the range of the
integral, the integral is dominated by the right end point:

eNnf=y) — eNhSZ(}’)’ (39)

where S;(y) is the entropy of a single coin flip with
probability y.
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Similarly, the second term is

() fos()

n=N,—d+1
1
~ N, / dx N5 (40)
l—y

The entropy function S, has a maximum at x = % correspond-

ing to an entropy log(2). If y > %, the integral includes this
saddle point and the result is ~2"V to leading exponential
order. If y < %, the integral is dominated by its left end point
and we have

1
Nh/ dx NSO~ GNiS:1-y) @l
I-y

Putting this together, we find the QSAT entropy per spin due
to the zero modes to be

Sew _ L 1op < {loge) y >

(42)

B—= B|—

[ A Sy) v <

The result is nonrigorous as it relies on analyzing only
a leading-order expansion near a given product state, but it
provides a nontrivial conjecture for the dimension of the space
of states spanned by the PSAT zero modes. The estimated
entropy per spin is significantly greater than the log(2)y
associated with having d = y Ny, strictly free spins.

VII. CONCLUSIONS AND OUTLOOK

We have generalized the notion of clustering to quantum
systems. Unlike the classical definition involving solutions
far separated by a Hamming distance, here we define a
space as clustered if it can be decomposed into a set of
orthogonal subspaces which are macroscopically distinct.
That is, matrix elements of local operators vanish between
states in the different subspaces. On the other hand, each
of these subspaces can be constructed from local operations
on a reference short-range correlated state whose connected
correlations decay at large distances. We thus identify each
subspace as a cluster in the quantum ground space.

We have provided evidence that there is a direct transition
from the PRODSAT to UNSAT phase in 3-QSAT. Moreover,
quantum clustering occurs in the ground-state space at the
critical point separating these two phases. Our argument is
essentially constructive as we can identify reference product
states from which the cluster subspaces may be generated.
These reference product states are in one-to-one correspon-
dence with dimer coverings on the core of the interaction
graph.

The entropy of clusters is

Score & 0.14N. (43)

Each cluster carries an additional internal entropy Shair, Which
arises from two contributions. First, for a fixed reference dimer
covering, there is entropy due to the zero modes,

Szero = Np$2(0.2) =~ 0.2N (44)
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(using N, /N = 0.4). This is significantly more than would be
expected from the naive estimate that each free spin on the
hair contributes log(2) which would give an entropy ~0.06N.

The second contribution to the internal entropy arises due
to monomer rearrangements on the hair. While it is possible to
estimate this hair entropy from calculations analogous to those
presented in Sec. V B on the full interaction graph geometry,
it is clear that the zero mode entropy and this additional
geometric entropy interact. It would be very interesting to
develop a theory of this interaction. Here, we content ourselves
with a simple upper bound for the total entropy due to the
hair by considering all of the hair spins to be completely
unconstrained,

Shair < Np, 10g(2) ~ (0.28N. 45)

The quantum clustering in this model is particularly
striking as it provides a precise quantum parallel between
the structure of solution space for 1RSB classical models,
such as k-XORSAT [33], and the structure of the zero energy
Hilbert space for k-QSAT. More broadly speaking, we have
used the discrete nature of the solution space of k-QSAT
to identify a classical quantity—dimer coverings of the core
of the interaction graph—based on which clustering appears
naturally in the space of satisfying solutions embedded in the
full Hilbert space. It will be interesting to see in what further
settings clustering appears.

In particular, it is intriguing to ask if there exists a more
“intrinsically” quantum-mechanical definition of clustering.
One natural approach would be to aim for a prescription of
equivalence classes of ground states based on their connect-
edness via a set of natural local operations. Given the wide
range of possible “landscapes” in—and the continuous nature
of—Hilbert space, this may very well turn up much richer
structures than even the hierarchical clustering discussed for
the solution spaces of classical optimization problems [5].
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APPENDIX: CORE DATA

We summarize a few results derived in [33] regarding the
core of random interaction graphs G. The core is the maximal
subgraph of G on which all qubit nodes have degree at least 2.
The quoted results follow from analyzing the leaf removal
algorithm applied to the random interaction graph. In the
notation of [33], the clause density « is y and the number
of spins per clause k is p.
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The degree distribution (per node of G) on the core is
Poissonian for degrees d > 2:

0 ford = 0,1

e—x*(a)% ford >2 (AD)

Pe(d) = {

where the parameter A* corresponds to the largest solution of

the equation:
w0\ 1/(k=1)
e -1+ (-) =0. (A2)
ko
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The total number of nodes in the core is

N.(ax)=N Z P.(d)= N[l —(1+2e™] (A3)
d>2
and the total number of clauses
A* .
M.(a) = Nf(l —e ). (A4)

For large o, the core takes over most of the graph up to
exponentially small corrections: A* ~ ko and N, = N[l —
(1 + ka)e ™ ], M, = Na(l — e~*®).

For reference, at the critical point for k = 3,

(e & 0.917) ~ 2.149. (AS)
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