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Quenched dynamics of entangled states in correlated quantum dots
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The time evolution of an initially prepared entangled state in the system of coupled quantum dots has been
analyzed by means of two different theoretical approaches: equations of motion for all orders localized electron
correlation functions, considering interference effects, and kinetic equations for the pseudoparticle occupation
numbers with constraint on the possible physical states. Results obtained by means of different approaches
were carefully analyzed and compared to each other. Revealing a direct link between concurrence (degree of
entanglement) and quantum dots pair correlation functions allowed us to follow the changes of entanglement
during the time evolution of the coupled quantum dots system. It was demonstrated that the degree of entanglement
can be controllably tuned during the time evolution of quantum dots system.
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I. INTRODUCTION

One of the most interesting problems in present-day
nanophysics is the controllable formation of entangled elec-
tronic states for use in quantum information processing and
cryptography. Coupled quantum dots (QDs) systems recently
seem to be promising candidates for quantum information
applications, as single and two-electronic states can be well
initialized, processed, and read out in such ultrasmall structures
[1–8].

The properties of entangled states are usually analyzed in
the stationary case. However, the time evolution of spin and
charge configurations, initially prepared in coupled QDs, is
also of great interest as nonstationary characteristics could
reveal new information about the physical properties of
nanoscale systems in addition to the stationary ones [9–16].
The kinetics of initially prepared charge and spin states in
quantum dots systems is strongly governed by the high-
order localized electrons correlation functions due to the
presence of Coulomb interaction [17] and is also influenced
by the interference effects between electrons traveling through
different paths [18–20].

One of the challenges in the area of nonstationary electron
transport through coupled QDs is to prepare interacting few-
level systems with different initial states [21–24], from simple
product states to complex entanglements. Various ideas for
the entangling of spatially separated electrons were proposed,
such as, by splitting Cooper pairs [25] or by spin manipulation
in QDs [26,27]. In double correlated QDs the entangled state
can appear as an eigenstate with a particular number of
electrons [4,28] or by sending an electrical current through the
nanoscale structure [29]. There are many possible applications
of entangled states in nanoelectronics [30], including quantum
information processing [31]. Most of the proposed schemes
for quantum computation deal with the spin control due to
the localized spins long decoherence times [32]. As it was
recently shown, entangled states in correlated QDs could
reveal long relaxation times due to the particular symmetry
of the investigated system. Moreover, entangled states in
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correlated quantum dots can be well controlled by applied bias
voltage changing [33,34] or by external laser pulses [35,36].

Recently the potential of quantum information processing
and quantum computation results in numerous proposals of
specific material systems for creation and manipulation of
entanglement in a solid state. The system based on the
coupled quantum dots with Coulomb correlations has several
appealing features: (1) single spin is a natural qubit, (2)
presence of strong Coulomb interaction within the system
creates entanglement even in the most easily experimentally
obtained ground state, (3) entangled quantum states in the
coupled QDs can be experimentally realized without such
restrictions as for the two-impurity Kondo model. Moreover,
the degree of entanglement can change during the relaxation
of the initially prepared charge state in double QD coupled to
a reservoir [8].

In the present paper we analyze the time evolution of an
initially prepared entangled state in the correlated double
QD due to the interaction with an electronic reservoir. Two
different approaches were considered: the first one is based
on the equations of motion for all orders localized electron
correlation functions and the second one deals with the
kinetic equations for pseudoparticle occupation numbers,
considering constraint on the possible physical states. The
results, obtained by means of these approaches were carefully
analyzed and compared to each other. It was demonstrated
that both approaches allow one to follow the changes of the
system entanglement during time evolution due to the direct
link between concurrence and quantum dots pair correlation
functions. For different initial mixed states entanglement could
reveal nonmonotonic behavior and even increase considerably
during the relaxation processes in coupled quantum dots in
the particular time interval. So, one can tune the degree of
entanglement during the time evolution of correlated QDs. The
proposed system is a good candidate for quantum information
protocol (QIP) realization with the help of scanning tunneling
microscopy and spectroscopy technique.

II. THEORETICAL MODEL

We consider a system of two coupled correlated QDs
connected to an electronic reservoir. The Hamiltonian ĤD ,
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describing interacting quantum dots reads

ĤD =
∑

l=1,2,σ

εlc
+
lσ clσ +

∑
l=1,2

Uln
σ
lln

−σ
ll

+
∑

σ

T (c+
1σ c2σ + c1σ c+

2σ ), (1)

where εl (l = 1,2) are the spin-degenerate single-electron
energy levels and Ul is the on-site Coulomb repulsion for the
quantum dots double occupation. The creation or annihilation
of an electron with spin σ = ±1 within the dot is denoted
by operators c+

lσ /clσ and nσ
ll is the corresponding occupation

number operator. The coupling between the dots is described
by tunneling transfer amplitude T which is considered to be
independent on momentum and spin.

The reservoir is modeled by the Hamiltonian

Ĥres =
∑
kσ

εkc
+
kσ ckσ , (2)

where the operator c+
kσ /ckσ creates or annihilates an electron

with spin σ and momentum k in the lead. Coupling between
both dots and reservoir is described by the Hamiltonian

Ĥtun =
∑
kσ

t(c+
kσ clσ + c+

lσ ckσ ). (3)

The tunneling amplitude t is independent of momentum
and spin. When coupling between QDs exceeds the value
of interaction with the reservoir, one can use the basis of
exact eigenfunctions and eigenvalues of coupled QDs without
interaction with the leads. In this case all energies of single-
and multielectron states are well known.

Two single electron states are present in the system and can
be described by the wave function

�σ
i = μi |0↑〉|00〉 + νi |00〉|0↑〉, (4)

where basis functions |0↑〉|00〉 and |00〉|0↑〉 describe the
existence of a single electron with a given spin in each quantum
dot. Single electron energies

εa(s) = ε1 + ε2

2
±

√
(ε1 − ε2)2

4
+ T 2 (5)

and coefficients μi and νi are determined by the eigenstates of
the matrix (

ε1 −T

−T ε2

)
. (6)

Six two-electron states exist in the system: two states with
the same electrons spin in each dot are given by the wave
functions T + = |↑0〉|↑0〉 and T − = |↓0〉|↓0〉. Such states can
be formed only by electrons localized in the different dots. Four
states with the opposite spins can be described by the wave
function

�σ−σ
j = αj |↑↓〉|00〉 + βj |↓0〉|0↑〉

+ γj |0↑〉|↓0〉 + δj |00〉|↑↓〉, (7)

where basis wave functions |↑↓〉|00〉; |00〉|↑↓〉 correspond to
electrons localized in the same quantum dot (the first one or
the second one and functions |↓0〉|0↑〉); |0↑〉|↓0〉 describe
the situation when electrons are localized in different dots.

Two electron states energies and coefficients αj , βj , γj , δj are
determined by the eigenvalues and eigenvectors of the matrix⎛⎜⎜⎜⎝

2ε1 + U1 −T −T 0

−T ε1 + ε2 0 −T

−T 0 ε1 + ε2 0

0 −T −T 2ε2 + U2

⎞⎟⎟⎟⎠. (8)

These are low-energy singlet S0 and triplet T 0 states and
excited singlet (S0∗) and triplet states (T 0∗). The low-energy
triplet state T 0 with energy ε1 + ε2 exists for any values
of QDs energy levels εl and Coulomb interaction Ul . The
corresponding coefficients in Eq. (7) are α = δ = 0 and
β = −γ = 1√

2
.

Two three-electron states with the wave function

�σσ−σ
m = pm|↑↓〉|↑0〉 + qm|↑0〉|↑↓〉, m = ±1 (9)

are present in the system. In this case, basis functions |↑↓〉|↑0〉
and |↑0〉|↑↓〉 describe the situation, when one of the dots
is fully occupied by two electrons with opposite spins and
only a single electron with a given spin is present in another
dot. Coefficients pm, qm and energies are determined by the
eigenvectors and eigenvalues of the matrix(

2ε1 + ε2 + U1 −T

−T 2ε2 + ε1 + U2

)
. (10)

Finally, a single four-electron state exists in the system with
the wave function

�n = |↑↓〉|↑↓〉. (11)

In this case both quantum dots are fully occupied.

A. Equations of motion for localized electron
correlation functions

Coupling to reservoir leads to the changing of the dots’
occupation due to the tunneling processes. We now derive
kinetic equations for bilinear combinations of the Heisenberg
operators c+

lσ /clσ , which allow to analyze the dynamics
of localized electron occupation numbers and high-order
correlation functions due to the coupling to the reservoir

c+
1σ c1σ = n̂σ

11(t); c+
2σ c2σ = n̂σ

22(t);

c+
1σ c2σ = n̂σ

12(t); c+
2σ c1σ = n̂σ

21(t). (12)

We consider the time evolution of the initially prepared
state in the case of an “empty” reservoir in a wide band limit
approximation and for deep energy levels ( |εi−εF |



� 1, where


 = πν0t
2, ν0 is the unperturbated density of states in the

reservoir) when the applied bias is equal to zero.
By means of Heisenberg equations of motion one can get a

closed system of equations for localized electrons occupation
numbers by exactly taking into account correlations of all
orders [12,13] (for weak tunneling coupling between QDs and
the reservoir). Kinetic equations describe time evolution of the
electron occupation numbers in the proposed system:

∂

∂t
n̂σ

11 = −

(
n̂σ

21 + n̂σ
12

) + iT
(
n̂σ

21 − n̂σ
12

) − 2
n̂σ
11,

∂

∂t
n̂σ

22 = −

(
n̂σ

21 + n̂σ
12

) − iT
(
n̂σ

21 − n̂σ
12

) − 2
n̂σ
22,
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∂

∂t
n̂σ

21 = −

(
n̂σ

11 + n̂σ
22

) + iT
(
n̂σ

11 − n̂σ
22

) − i(ξ − 2i
)n̂σ
21

− iU11n
σ
21n

−σ
11 + iU22n

σ
21n

−σ
22 ,

∂

∂t
n̂σ

12 = −

(
n̂σ

11 + n̂σ
22

) + iT
(
n̂σ

11 − n̂σ
22

) + i(ξ + 2i
)n̂σ
12

+ iU11n
σ
12n

−σ
11 − iU22n̂

σ
12n

−σ
22 , (13)

where ξ = ε1 − ε2 is the detuning between energy levels in
the dots. The first term in each right-hand part of Eqs. (13)
[
(n̂σ

21 + n̂σ
12) or 
(n̂σ

11 + n̂σ
22)] appears due to the interference

effects caused by the charge relaxation to the reservoir through
different possible channels, similar to the Fano effect. These
terms are absent if only one quantum dot is coupled to the
reservoir. The system of Eqs. (13) contains pair correlation
operators K̂σσ

′

lrl
′
r
′ = n̂σ

lr n̂
σ

′

l
′
r
′ , which also determine relaxation

and, consequently, should be calculated. If one is interested in
the relaxation dynamics of the two-electron initial state, only
pair correlation functions should be retained as the situation
of the “empty” reservoir is considered.

Let us introduce the correlations operators K̂σσ
′

lrl
′
r
′ averaged

values Kσσ
′

lrl
′
r
′ = 〈c+

lσ crσ c+
l
′
σ

′ cr
′
σ

′ 〉, which are elements of the

K̂ 4 × 4 matrix. The system of equations for the pair
correlation functions can be written in the compact matrix
form (the symbol [ ] means commutation and the symbol
{ } means anticommutation)

i
∂

∂t
K̂ = [K̂,Ĥ

′
] + {K̂,
̂}, (14)

where matrix Ĥ
′
has the following form:

Ĥ
′ =

⎛⎜⎜⎜⎝
0 T + i
 T − i
 0

T − i
 ξ + U1 0 T − i


T + i
 0 −ξ + U2 T + i


0 T + i
 T − i
 0

⎞⎟⎟⎟⎠ (15)

and 
̂ is the relaxation diagonal 4 × 4 matrix with nonzero
elements 
nn = −2i
.

The system of equations (13) and (14) for the two-
electron pure state |�σ−σ

j 〉 time evolution can be solved with
the following initial conditions: nσ

11(0) = α2 + β2; nσ
12(0) =

nσ
21(0) = αγ + βδ; nσ

22(0) = δ2 + γ 2; Kσ−σ
1111 = α2; Kσ−σ

2222 =
δ2; Kσ−σ

1122 = β2; Kσ−σ
2211 = γ 2; Kσ−σ

1221 = Kσ−σ
2112 = βγ ; Kσ−σ

2121 =
Kσ−σ

1212 = αδ; Kσ−σ
1211 = Kσ−σ

2111 = γα; Kσ−σ
1112 = Kσ−σ

1121 = αβ;
Kσ−σ

1222 = Kσ−σ
2122 = βδ; Kσ−σ

2221 = Kσ−σ
2212 = γ δ, where coeffi-

cients α, β, γ , and δ are given by the eigenvectors of
matrix (8).

For an initial mixed two-electron state with density
matrix ρ(0) = ∑

j,σ,σ ′ N
σσ ′
j (0)|�σσ ′

j 〉〈�σσ ′
j |, where Nσσ ′

j (0)
(j = S0,T 0,S0∗,T 0∗,T ±) is the occupation number of j two-
electron state at t = 0, the initial conditions for second-
order correlation functions and for first-order correlators
are

Kσ−σ
lrl′r ′ (0) = Sp

[
ρ̂(0)K̂σ−σ

lrl′r ′
]

(16)

and

nσ
lr (0) = Sp

[
ρ̂(0)̂nσ

lr

]
. (17)

We will consider the time evolution of singlet S0 and
triplet T 0 initial states because excited S0∗ and T 0∗ states are
separated by a Coulomb gap. One can also exclude states T ±
at low temperature by introducing weak exchange interaction
with exchange constant Jz > 0:

Ĥex = Jz

(
nσ

11 − n−σ
11

)(
nσ

22 − n−σ
22

)
. (18)

Consequently, the initial two-electron density matrix can be
written as

ρ(0) = NS0 (0)|S0〉〈S0| + NT 0 (0)|T 0〉〈T 0|. (19)

For the singlet initial state S0 coefficients α, β, γ , and δ are
determined as an eigenvector of matrix (8) corresponding to
its minimal eigenvalue, NS0 (0) = 1 and NT 0 (0) = 0. For the
triplet initial state T 0 coefficients α = δ = 0 and β = −γ =

1√
2
, NS0 (0) = 0 and NT 0 (0) = 1.

B. Entangled states in correlated quantum dots

Electron states in the correlated quantum dots can be
entangled. An entangled state is characterized by the nonzero
value of concurrence C [37]. The concurrence for pure state
|�σσ ′

j 〉 is determined as C = |〈�σσ ′
j |�̃σσ ′

j 〉|, where |�̃σσ ′
j 〉 is

the “spin flipped” state |�σσ ′
j 〉. For mixed state concurrence

C = max{0,λ1 − ∑
i λi}, where {λi} are square roots of matrix

ρ̃ρ (ρ̃ is the “spin flipped” matrix ρ) eigenvalues arranged in
the decreasing order. For the initial two-electron entangled
pure state |�σσ ′

j 〉 with opposite spins [8]

C = |α2 + δ2 + 2βγ |. (20)

During the time evolution of the initial state system
entanglement changes. To follow these changes concurrence
could be expressed through the time-dependent correlation
functions. We will demonstrate that for an arbitrary mixed
state of two correlated quantum dots the concurrence C can be
determined through the mean value of a particular combination
of pair correlation functions K̂σ−σ

lrl
′
r
′ :

C = 〈
K̂σ−σ

1111 + K̂σ−σ
1221 + K̂σ−σ

2112 + K̂σ−σ
2222

〉
. (21)

Let us introduce operator K̂
′
, which can be written as a

combination of pair correlation functions operators

K̂
′ = K̂σ−σ

1111 + K̂σ−σ
1221 + K̂σ−σ

2112 + K̂σ−σ
2222 . (22)

Acting by the operator K̂
′

on the wave function |�σσ ′
j 〉 one

obtains the “spin flipped” wave function |�̃σσ ′
j 〉:

K̂
′ ∣∣�σσ ′

j

〉 = ∣∣�̃σσ ′
j

〉
. (23)

For any wave function |�σσ ′
j 〉:∣∣〈�σσ ′

j

∣∣K̂ ′ ∣∣�σσ ′
j

〉∣∣ = ∣∣〈�σσ ′
j

∣∣�̃σσ ′
j

〉∣∣ = C. (24)

If {|�σσ ′
j 〉} are the two-electron eigenfunctions of the

Hamiltonian Ĥ , the two particle density matrix can be
written as ρ = ∑

j |�σσ ′
j 〉〈�σσ ′

j |Nσσ ′
j . For simplicity we will

further omit spin indexes in |�σσ ′
j 〉. The following relations

take place: |〈�j |K̂ ′ |�̃i〉| = δij and |〈�i
′ |K̂ ′2|�i〉| = δii

′ =∑
j 〈�i

′ |K̂ ′ |�̃j 〉〈�̃j |K̂ ′ |�i〉.
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Let us prove that

〈�j |ρ̃ρ|�i〉 = 〈�j |K̂ ′
ρK̂

′
ρ|�i〉. (25)

Really

〈�j |(K̂ ′
ρ)2|�i〉 =

∑
i1

〈�j |K̂ ′ |�i1〉〈�i1 |K̂
′ |�i〉NiNi1

=
∑
i1

〈�j |�̃i1〉〈�i1 |�̃i〉NiNi1 (26)

and

〈�j |ρ̃ρ|�i〉 =
∑
i1

NiNi1〈�j |�̃i1〉〈�̃i1 |�i〉

= δij

∑
i1

NiNi1 |〈�j |�̃i1〉|2. (27)

Comparing expressions (26) and (27), one can find that
statement (25) is valid and matrices ‖ρ̃ρ‖ji and ‖(K̂

′
ρ)2‖ji

′

have the same eigenvalues. If λ̃p are the eigenvalues of matrix
‖ρ̃ρ‖ji and λi are the eigenvalues of matrix ‖K̂ ′

ρ‖ji
′ , then

λ2
i = λ̃p. So,

〈K̂ ′ 〉 = T r(K̂
′
ρ) =

∑
ij

〈j |K̂ ′ |i〉〈i|j 〉λi =
∑

i

λi〈i |̃i〉. (28)

The relative sign of λi = ±
√

λ̃p is determined by the sign of

〈i |̃i〉 = ±1 for singlet and triplet states.
Moreover, for the eigenstates

|〈S0|S̃0〉| = |〈T 0|T̃ 0〉| = |〈T ∓|T̃ ±〉| = 1. (29)

Thus 〈K̂ ′ 〉 can be expressed through λ̃p, arranged in decreasing

order: 〈K̂ ′ 〉 = (
√

λ̃1 − ∑
i>1

√
λ̃i). So, the common definition

of concurrence C (see Ref. [37]) can be rewritten as

C = max{0,〈K̂ ′ 〉}. (30)

The behavior of the time-dependent quantum-dot system
concurrence calculated by means of Eqs. (13), (21), and (30)
for different initial conditions is demonstrated in Figs. 1
to 3. Figures 1 and 2 demonstrate an important fact, that

FIG. 1. Concurrence time evolution for different values of
Coulomb interaction U1/
 = U2/
 = U/
. ε1/
 = ε1/
 = 7,
T/
 = 2, and 
 = 1. Initial conditions are as follows: NS(0) = 0.5,
NT (0) = 0.5.

FIG. 2. Concurrence time evolution for different values of
Coulomb interaction U1/
 = U2/
 = U/
. ε1/
 = ε1/
 = 7,
T/
 = 2, and 
 = 1. Initial conditions are as follows: NS(0) = 0.55,
NT (0) = 0.45.

concurrence (the degree of entanglement) can increase during
the relaxation processes in the system of coupled QDs,
caused by the presence of on-site Coulomb correlations and
interaction with the reservoir. The results depicted in Fig. 3
reveal the possibility of system switching between entangled
and unentangled (concurrence is equal to zero) states during
the relaxation process.

C. Kinetic equations in pseudoparticle formalism

Another method of quantum-dot system dynamics anal-
ysis is based on the pseudoparticles’ formalism [38]. Each
pseudoparticle corresponds to a particular eigenstate of the
system. Transitions between the states with different numbers
of electrons caused by coupling to the reservoir can be
analyzed in terms of pseudoparticle operators with constraint
on the possible physical states (the number of pseudoparticles).
Consequently, the electron operator c+

lσ (l = 1,2) can be

.

.

FIG. 3. Concurrence time evolution for different values of
Coulomb interaction U1/
 = U2/
 = U/
. ε1/
 = ε1/
 = 7,
T/
 = 2, and 
 = 1. Initial conditions are as follows: NS(0) = 0.45,
NT (0) = 0.55.
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written in terms of pseudoparticle operators [8]:

c+
lσ =

∑
i

Xσl
i f +

iσ b +
∑
j,i

Y σ−σ l
j i d+σ−σ

j fi−σ

+
∑

i

Y σσ l
i d+σσ fiσ +

∑
m,j

Zσσ−σ l
mj ψ+

m−σ dσ−σ
j

+
∑
m

Zσ−σ−σ l
m ψ+

mσd−σ−σ +
∑
m

Wσ−σ−σ l
m ϕ+ψmσ ,

(31)

with constraint on the possible physical states

n̂b +
∑
iσ

n̂f iσ +
∑
jσσ

′
n̂σσ

′

dj +
∑
mσ

n̂ψmσ + n̂ϕ = 1, (32)

where f +
σ (fσ ) and ψ+

σ (ψσ ) are pseudofermion creation (anni-
hilation) operators for the electronic states with one and three
electrons correspondingly. b+(b), d+

σ (dσ ), and ϕ+(ϕ) are slave
boson operators, which correspond to the states without any
electrons, with two electrons or four electrons. Operators ψ+

m−σ

describe a system configuration with two spin up electrons
σ and one spin down electron −σ in the symmetric and
asymmetric states.

Further we will consider only single- and low-energy
double-occupied states because the excited double-occupied
states, three-, and four- particle states are separated by the
Coulomb gap. Consequently, all the terms containing ϕ+ and
ψ+

m−σ in expression (32) are omitted. Matrix elements Xσl
i ,

Y σ−σ l
j i , and Y σσl

ji can be defined as

Xσl
i = 〈

�σ
i

∣∣c+
lσ |0〉,

Y σ−σ l
j i = 〈

�σ−σ
j

∣∣c+
lσ

∣∣�−σ
i

〉
,

Y σσ l
ji = 〈

�σσ
j

∣∣c+
lσ

∣∣�σ
i

〉
. (33)

So, taking into account constraint on the possible physical
states the following nonstationary system of equations can
be obtained for the pseudoparticle occupation numbers Nσ

i ,
Nσ−σ

j , Nσσ
j , and Nb by means of Heisenberg equations:

∂Nσ−σ
j

∂t
= −2


∑
iσ

∣∣Y σ−σ
ji

∣∣2
Nσ−σ

j ,

∂Nσ
i

∂t
= 2


∑
j

∣∣Y σ−σ
ji

∣∣2
Nσ−σ

j

− 2

∣∣Xσ

i

∣∣2
Nσ

i + 2

∑

j

∣∣Y σσ
ji

∣∣2
Nσσ

j ,

∂Nb

∂t
= 2


∑
iσ

∣∣Xσ
i

∣∣2
Nσ

i ,

∂Nσσ
j

∂t
= −2


∑
i

∣∣Y σσ
ji

∣∣2
Nσσ

j , (34)

where matrix elements can be easily expressed through the
elements of matrices (6), (8), and (10) eigenvectors∣∣Xσ

i

∣∣2 = |νi + μi |2,∣∣Y σ−σ
ji

∣∣2 = |αjμi + βjνi + γjμi + δj νi |2,∣∣Y σσ
ji

∣∣2 = |νi + μi |2. (35)

Depending on the tunneling barrier width and height typical
tunneling rate 
 can vary from 10 μeV [39] to 1 ÷ 5 meV [40].
These equations conserve the total number of pseudoparticles

Nb +
∑
iσ

Nσ
i +

∑
jσσ

′
Nσσ

′

j = const. (36)

So, Eqs. (34) provide the fulfillment of constraint

Nb +
∑
iσ

Nσ
i +

∑
jσσ

′
Nσσ

′

j = 1 (37)

during time evolution, if it occurs at the initial time moment.
The system of Eqs. (34) can be solved analytically with

initial conditions Nσσ
′

j (0) = Nj , Nσ
a (0) = 0, Nσ

s (0) = 0, and
Nb(0) = 0 (

∑
j Nj = 1). For initial generally mixed singlet-

triplet state (19)

Nσ−σ
j (t) = Nje

−2λj t ,

Nσ
a (t) =

∑
j

[
λja

2λj − λa

(e−λat − e−2λj t )

]
Nj,

Nσ
s (t) =

∑
j

[
λjs

2λj − λs

(e−λs t − e−2λj t )

]
Nj,

Nb(t) = 1 − Nσ−σ
dj (t) −

∑
σ

Nσ
a (t) −

∑
σ

Nσ
s (t), (38)

where

λa(s) = 2
|μa(s) + νa(s)|2,
λja(s) = 2
|αjμa(s) + βjνa(s) + δj νa(s) + γjμa(s)|2,

λj =
∑
i=a,s

λji . (39)

Electron occupation numbers Nel can be determined
through the pseudoparticle occupation numbers considering
spin degrees of freedom by the following expression:

Nel(t) =
∑

j

Nj

[
2e−2λj t + 2

∑
i=a,s

λij

2λj − λi

(e−λi t − e2λj t )

]
.

(40)

According to the concurrence definition through the eigenval-
ues of matrix ρ̃ρ for initial state (19):

C(t) = max(0,|NS0 (t) − NT 0 (t)|), (41)

where

NS0 (t) = NS0 (0)e−2λS0 t ,

NT 0 (t) = NT 0 (0)e−2λT 0 t ,

λS0 = |α + β|2(λs + λa),

λT 0 = 1
2 (λs + λa). (42)

The concurrence time evolution for different initial condi-
tions and values of Coulomb correlations is shown in Figs. 1
to 3. The results obtained by both approaches exactly coincide
for the same system parameters.

If at the initial time moment concurrence is not equal to
zero [C(0) �= 0] there can exist a time moment t = t0, when
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concurrence turns to zero [C(t0) = 0] (see Fig. 2)

t0 = 1

2(λS0 − λT 0 )
ln

(
NS0

NT 0

)
. (43)

A further system time evolution leads to the concurrence
increasing reaching its maximum value

C(tmax) = NT 0e

−λ
T 0

λ
S0 −λ

T 0
ln(

N
S0 λ

S0
N

T 0 λ
T 0

)

−NS0e

−λ
S0

λ
S0 −λ

T 0
ln(

N
S0 λ

S0
N

T 0 λ
T 0

)
(44)

at time moment

tmax = t0 + 1

2(λS0 − λT 0 )
ln

(
λS0

λT 0

)
. (45)

So, concurrence could reveal nonmonotonic behavior for
mixed two-electronic initial state with opposite spins. We
would like to mention that despite the fact that both theoretical
approaches give the same result for the considered system of
two coupled quantum dots with Coulomb correlations there is
some difference between them. The theoretical approach based
on the equations of motion for localized electrons occupation
numbers (see Sec. II A) provides the possibility for the
analysis of concurrence and spin correlations time-dependent
behavior in the complicated systems of many correlated
coupled quantum dots taking into account all orders localized
electron correlation functions and considering interference
effects. A closed system of equations can be obtained for
an arbitrary number of quantum dots in the situation of weak
coupling to reservoir, but these equations will have a rather
cumbersome form and can be hardly solved analytically. The
theoretical approach based on the pseudoparticles formalism
(see Sec. II C) is more straightforward and provides the
possibility to analyze analytically time evolution of the degree
of entanglement in the system of quantum dots with a small
number of available electronic states in the case of weak
interaction between correlated quantum dots and reservoir.

To conclude, both methods can be applied for the localized
charge and spin kinetics analysis in coupled quantum dots with
Coulomb correlations, but for the complicated systems method
based on the equations of motion for localized electrons
occupation numbers is more preferable. However, systems
with a small number of available electronic states could be
better analyzed by means of the pseudoparticles formalism as
it provides the possibility to obtain explicit expressions for the
time evolution of system characteristics.

III. CONCLUSION

The time evolution of an initially prepared entangled state
in the system of correlated coupled quantum dots has been
analyzed by means of two different approaches. The first one
is based on the equations of motion for all orders localized
electron correlation functions taking into account interference
effects. The second approach deals with the kinetic equations
for pseudoparticle occupation numbers considering constraint
on the possible physical states. Both approaches allow us to
follow the changes of the entanglement during time evolution
of the two coupled quantum dots system due to the concurrence
direct link with quantum dots pair correlation functions.
For different initial mixed states the concurrence (degree of
entanglement) could reveal nonmonotonic behavior and even
considerably increase during the time evolution of quantum
dots system. The obtained results reveal the possibility of
system switching between entangled and unentangled (concur-
rence is equal to zero) states during the relaxation process. This
fact provides the method of controllable tuning of the degree
of entanglement for the electronic quantum dots systems based
on the analysis of its nonstationary characteristics.
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