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Recently, it has been proposed that space-based atomic sensors may be used to detect gravitational waves.
These proposals describe the sensors either as clocks or as atom interferometers. Here, we seek to explore the
fundamental similarities and differences between the two types of proposals. We present a framework in which
the fundamental mechanism for sensitivity is identical for clock and atom interferometer proposals, with the key
difference being whether or not the atoms are tightly confined by an external potential. With this interpretation
in mind, we propose two major enhancements to detectors using confined atoms, which allow for an enhanced
sensitivity analogous to large momentum transfer used in atom interferometry (though with no transfer of
momentum to the atoms), and a way to extend the useful coherence time of the sensor beyond the atom’s
excited-state lifetime.
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I. INTRODUCTION

The recent observation of gravitational waves (GWs) [1,2]
has established gravitational-wave detection as an exciting new
observational tool for cosmological phenomena. Terrestrial
optical interferometers are sensitive to gravitational radiation
at frequencies above roughly 10 Hz [3]. In order to extend these
techniques to lower frequencies where there is expected to be
an abundance of signals, space-based optical interferometers
such as the Laser Interferometer Space Antenna (LISA)
have been proposed, and are currently under technological
development [4,5].

More recently, space-based gravitational-wave detectors
based on optical transitions in cold atoms have been proposed
as an alternative architecture [6–14]. These proposals rely on
a combination of optical and atomic coherence to provide
sensitivity to gravitational waves. While optical interferom-
eters require three satellites to cancel laser phase noise,
these proposals require only two. We will focus here on
two categories of the atom-based proposals: those described
as “atom interferometers” (AIs) typified by [12], and those
described as “optical lattice clocks” [9]. These two types of
proposal are illustrated in Fig. 1.

AI-type proposals based on two-photon Raman transitions
have also been proposed as a means of detecting gravitational
waves, both in space-based and ground-based applications
[7,15,16]. However, these proposals are not inherently insen-
sitive to laser phase noise, and thus require noise cancellation
techniques similar to a purely optical interferometer, such
as the use of three interferometers. AI detectors based on
two-photon Raman transitions may prove to be powerful
tools for detecting gravitational waves, but here we will
focus exclusively on proposals that leverage long-lived optical
atomic coherence on a single detection baseline with intrinsic
insensitivity to laser phase noise.

In both clock- and AI-type proposals, two ensembles of
atoms with a long-lived optically excited state are prepared
in two satellites separated by a large distance. Laser pulses
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transmitted between the two satellites interact with the atoms
in order to imprint the effects of a passing gravitational wave
onto atomic observables. In both cases, the atoms are in a freely
falling reference frame. In AI proposals, this is accomplished
by simply preparing the atoms in a high vacuum environment.
In clocks, the atoms are tightly trapped in an optical lattice
formed by reflecting a laser off of a freely falling mirror
that serves as an inertial reference, as in the proposed LISA
interferometer [5]. In AI proposals, the interaction between the
atoms and the laser leads to recoil momentum kicks imparted
to the atoms, while in clock proposals the photon momentum
is absorbed by the much more massive inertial reference.

In the clock community, gravitational-wave detection has
been described as a frequency measurement of Doppler shifts
that result from the stretching of space between the satellites
[9,10]. In the AI community, the stretching of space has been
described as causing a phase shift between the laser phase
and the atomic coherence [14]. A key element of AI proposals
is enhanced sensitivity to gravity waves through the use of
large momentum transfer (LMT) pulses in which the atoms
acquire many photon recoil momentum kicks. In contrast, the
tight confinement of the atoms relative to the inertial reference
mass in an optical lattice clock causes the photon recoil to
be suppressed. This difference in particular, as well as the
language used to describe the devices, would seem to indicate
that the two sensors are somehow fundamentally different.

In Secs. II and III we provide a comparison of these two
sensors to show that the fundamental mechanism for sensitivity
is in fact the same for the clock- and AI-type detectors. In
both types of sensors, laser pulses that couple a ground and
long-lived optically excited state imprint their local phase onto
an internal quantum superposition state of each atom. The
atoms primarily act as a highly coherent phase memory that
keeps track of these phase imprints and allows them to be read
out through atomic observables.

By viewing clocklike detectors as phase memories, rather
than simply as clocks the sole capability of which is to
measure frequency, we show in Sec. IV that they support
the implementation of LMT-like protocols with enhanced
sensitivity even when negligible momentum is transferred to
the atom. We further show in Sec. V that the relevant phase
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FIG. 1. Optical lattice clock and atom interferometer detectors for gravitational waves. Each type of proposal relies on two ensembles of
atoms, one in each satellite. Lasers transmitted between the satellites encode phase shifts due to changing optical path lengths caused by a
gravitational wave. The key difference between clock and atom interferometer proposals is that in clocks atomic recoils due to the momentum
of absorbed or emitted photons are suppressed by tightly confining the atoms, while in atom interferometers the atoms are free to recoil.

information can actually be stored in stable ground states that
evolve phases at acoustic rather than optical frequencies. This
enables useful coherent evolution times beyond the lifetime of
the optically excited state.

II. OPTICAL PATH-LENGTH CHANGES DUE TO
GRAVITATIONAL WAVES

For both types of proposals, the important effect of a
gravitational wave is its modification of the optical path length
L between the two satellites. We will describe the effects of
a gravitational wave at angular frequency ωg by replacing the
gravitational wave with a phase modulator that fills the space
between the two satellites (e.g., an electro-optic modulator)
sinusoidally driven at frequency ωg . The drive applied to the
modulator leads to a phase shift α(t) on laser light that is
launched from one satellite and detected at the other satellite.
The light is launched from the first satellite at time t , but arrives
at the second satellite where it is detected at time t + Td , where
Td is the nominal delay or transit time between satellites.

The total phase shift α(tj ) for a pulse launched at time tj is
calculated by integrating along the optical path. We can define
a net effective path length for the pulse L + Lj = L + α(tj )/k

where the small change in optical path length is

Lj = hc

2ωg

{sin [ωg(tj + Td )] − sin (ωgtj )}. (1)

We have made the approximation that the gravitational
wave’s strain is very small h � 1. In this expression, c is
the speed of light in the undriven modulator, k = 2π/λ is the
wave number of the laser light, and λ is the laser wavelength.

III. DETECTING CHANGES IN OPTICAL PATH LENGTH

The goal of this section is to understand how AI and
clocklike sensors can be used to precisely estimate changes

in the optical path length Lj . In our model, shown in Fig. 2,
we consider two atoms labeled a and b that are separated by
distance L. The atoms may either be cooled in free space (atom
interferometers) or tightly confined (clocks). The atoms have
a long-lived optical transition, such as those in alkaline-earth
and similar atoms (for example, Sr and Yb atoms). A laser
located near atom a launches pulses of light that interact with
both atoms with equal intensity.

The laser pulses interact with the atoms by applying so-
called π/2 and π pulses between ground |g〉 and excited |e〉
states. We will assume that the coupling or Rabi frequency
is much larger than the atomic decay rate from |e〉 and any
relevant Doppler shifts due to atomic motion. We will also
assume for simplicity that the laser frequency is exactly equal
to the atomic transition frequency. These assumptions rule
out some of the capabilities of atom interferometers (such
as addressing atoms that have experienced different recoils
independently), but retain the basic mechanism for sensitivity.
The effect of the laser pulses on the atoms written in a rotating
frame at the atomic transition frequency can then be expressed
using the operators

R̂π/2(φ) = 1√
2

[
1 −e−i(φ+kx)

ei(φ+kx) 1

]
, (2)

R̂π (φ) =
[

0 −e−i(φ+kx)

ei(φ+kx) 0

]
. (3)

These operators act on the basis states

|g〉 ⊗ �g(x) =
[

1
0

]
⊗ �g(x), (4)

|e〉 ⊗ �e(x) =
[

0
1

]
⊗ �e(x) (5)

that are a product of an internal state labeled |e〉 or |g〉, and
an external state wave function �e,g(x). Here x represents the
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FIG. 2. A toy model for gravitational-wave detection. (a) Two atoms (a and b) are addressed by a single laser resonant with a transition
between the ground state |g〉 and a long-lived excited state |e〉. A phase modulator mimics the effect of a gravitational wave by modifying the
optical path length between the two atoms. (b) For tightly confined atoms (clocks), a simple Ramsey sequence can be used to detect changes
in optical path length. A first π/2 pulse imprints the laser phase on the two atoms when the path length is shifted by L1, and a second π/2
pulse acts when the path length is shifted by L2. Random variations in the laser phase (φ1 and φ2) are common to the two atoms, while phase
shifts resulting from changes in path length are not. The signal from the phase modulator manifests as phase shift �s = k(L2 − L1) between
the excited-state probability oscillations of the two atoms. (c) For unconfined atoms (atom interferometers), transitions between |g〉 and |e〉
are accompanied by momentum kicks, which necessitate an additional laser π pulse in the middle of the sequence. The phase shift between
excited-state oscillations of the two atoms is now �s = k(L3 − 2L2 + L1).

distance from a fixed plane where the laser’s phase is defined as
φ. The effect of these interactions is both to transfer amplitude
between the internal states of the atoms and also to imprint the
laser’s local phase upon the transferred portion of the atom’s
wave function. The fact that �g(x) may differ from �e(x)
indicates the possibility of entanglement between the internal
and external degrees of freedom of the atom.

For simplicity, we account for laser frequency noise by
allowing the laser phases to vary between pulses, but taking
the actual laser frequency to be fixed at the atomic transition
frequency such that k is constant [17].

First, we consider the effect of these rotations for a clocklike
sensor in which the atoms are confined to much less than the
laser wavelength (known as the Lamb-Dicke regime.) In this
limit, we can think of the ei(φ+kx) term as imprinting a spatially
constant phase onto the atom, the value of which is determined
by the location of the atom along the laser’s path. For example,
a π pulse applied to an atom tightly confined in a trap centered
at position x = A and in the ground state |�0〉 = |g〉 ⊗ �0(x)
transfers the atom to the state |�〉 ≈ |e〉e−i(φ+kA) ⊗ �0(x). The
external state wave function is to very good approximation
unmodified by the pulse, but its internal wave function has
acquired a net phase φ + kA.

In contrast, in AI sensors the atoms are not confined and
a change in the internal state is accompanied by a change
in the external state. In particular, one cannot neglect the
variation of the optical phase factor over the spatial extent
of the atomic wave function. For concreteness, a π pulse
applied to an unconfined atom centered at x = A and in the
ground state |�0〉 = |g〉 ⊗ �0(x) transfers the atom to the state
|�〉 = |e〉e−iφ ⊗ e−ikx�0(x). As written, the internal portion

of the wave function appears identical to that of the confined
case, but now the external wave function has a spatially varying
phase corresponding to one photon’s worth of momentum
recoil.

A change in the optical path length Lj between the atom
and the laser producing the π pulse manifests in the confined
case as |�〉 = e−i[φ+k(Lj +A)]|e〉 ⊗ �0(x) and in the unconfined
case as |�〉 = e−i(φ+kLj )|e〉 ⊗ �0(x)e−ikx . The sensitivity to
changes in path lengths from gravitational waves is due to
the imprinting of an additional phase kLj , which is the same
whether the atoms are confined or not. In the case of AI sensors
one must add additional pulses to become insensitive to the
terms associated with the photon recoil.

A. Clocklike detectors

A clocklike gravitational-wave detector with confined
atoms could be used to detect the gravitational-wave phase
shift using a basic Ramsey sequence [9], pictured in Fig. 2(b).
A change in the optical path length Lj leads to a modification
of the laser phase experienced by atom b of kLj . The phase
experienced by atom a is unmodified by the change in optical
path length. In this sequence, the role of atom a is then simply
to record any variation of the phase of the laser itself due to
technical sources of noise so that this laser phase noise can be
subtracted out from the final measurement.

Stepping through the Ramsey measurement, atoms in both
locations are initially prepared in |g〉. At time t1, the laser
drives the first π/2 pulse with phase φ = φ1. We keep track of
this phase only to demonstrate insensitivity to its value. The
rotation applied to atom a is Ra = Rπ/2(φ1). When the same
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pulse arrives at atom b it creates a rotation Rb = Rπ/2(φ1 +
kL1). At a later time t2, a second π/2 pulse is applied to
atom a with a laser phase φ = φ2: Ra = Rπ/2(φ2). The same
pulse of light travels to atom b to drive a π/2 pulse Rb =
Rπ/2(φ2 + kL2).

The final signal that is detected is the difference in the
probability for finding the atom in its excited and ground states.
For atom a this observable can be parametrized as Sa = Pea −
Pga = cos �as and for atom b it can be parametrized as Sb =
Peb − Pgb = cos �bs . For the above Ramsey sequence, the
signal phases are given as �as = (φ2 − φ1) and �bs = kL2 −
kL1 + (φ2 − φ1). The gravitational-wave signal is given by
extracting the difference of the phase of these two signals [18]:

�s = �bs − �as = k(L2 − L1). (6)

The key result is that the technical laser phase noise is
canceled by having been recorded on both atoms and only the
gravitational wave’s signal remains.

B. Atom interferometer detectors

In an atom interferometer, the atoms are unconfined and a
slightly more complicated sequence is needed. The initial π/2
pulse entangles internal and external degrees of freedom of
the atom by imparting a momentum kick to the portion of the
atomic wave function transferred to |e〉. If this momentum kick
is not reversed, the portions of the atomic wave function will
not be spatially overlapped to interfere at the time of the second
π/2 pulse. The simplest solution is to add a π pulse in the
middle of the sequence [Fig. 2(c)]. More complex sequences,
with enhanced performance in different regimes, are presented
in [12,14], though the core mechanism for sensitivity is the
same as this simple version.

Stepping through the simplest AI sequence, the first π/2
pulse, π pulse, and second π/2 pulse are launched from the
laser at times t1, t2, and t3, respectively. When the three pulses
arrive at atom b they will have experienced optical path-length
differences L1, L2, and L3.

The signal that is extracted is the same as above, and
depends only on the optical path lengths as

�s = k(L3 − 2L2 + L1) (7)

where the random fluctuations in laser phase φ3, φ2, and φ1

are again canceled because they are common to both atoms. A
similar analysis for the atom interferometer is presented in [8].

IV. ENHANCED SENSITIVITY ANALOGOUS TO LARGE
MOMENTUM TRANSFER

We now propose a mechanism by which the signal recorded
by the clocklike sensor can be enhanced. In atom interferom-
etry in general, and AI based GW detectors in particular [12],
large momentum transfer is a crucial tool used to enhance
the size of measured signals. Our enhancement mechanism
is very similar to LMT, but is applied to confined atoms, so
no momentum is actually transferred to the atoms. Instead,
by allowing for multiple interactions between the lasers and
atoms, a phase is repeatedly written in to the atomic coherence
in a constructive manner to enhance the signal size �s .
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FIG. 3. LMT-like enhancement with confined atoms. (a) Atoms
are addressed by counterpropagating lasers, both of which pass
through the phase modulator that sits between the atoms. (b) Two
blocks of M pairs of π pulses (blue boxes) are inserted between the
π/2 pulses of the standard Ramsey sequence. Each pair of π pulses
contains a pulse originating from each direction. The duration of each
block is assumed here to be short relative to the GW period, while
a long evolution time (gray box) between the two blocks may be
comparable to the GW period. (c) The additional pulses lead to a
factor of 4M + 1 enhancement in the signal phase �s compared to
simple Ramsey sequence.

The key to this enhancement sequence is to apply the laser
pulses from alternating sides (as is proposed for LMT protocols
for single-photon transitions with unconfined atoms [12–14])
using one laser near atom a and one laser near atom b, as
illustrated in Fig. 3. Because the sign of the laser phase shift
imprinted on the atoms is opposite in sign when the atoms are
driven from |e〉 to |g〉 versus |g〉 to |e〉, if the same laser were
used to try to imprint its phase multiple times, it would simply
unwrite the phase that it had just written in. By interleaving π

pulses from a second laser, which does not encode the same
gravitational-wave phase shift as the first, we can ensure that
the phase shift corresponding to the GW is always written in
with the same sign. The phases of the laser pulses are always
referenced to a plane near the laser from which they originate
so that there is negligible GW contribution to this phase.

For simplicity, we treat the case where a set of pulses
is applied in quick succession at the beginning of the
measurement sequence, with launch times roughly equal to t1
and with optical path-length changes all equal to L1. During a
subsequent free evolution period Te, much longer than the time
over which the rotations were applied, the optical path length
may change. At time t2 = t1 + Te, a second set of rotations is
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quickly applied with launch times all roughly equal to t2 such
that all pulses experience an optical path-length change equal
to L2 (a discussion of the effects of time delays is included in
the Appendix).

Consider the first group of pulses. From the perspective
of one of the two atoms, the laser pulse that arrives from the
distant laser encodes in its phase kL1 the change in path length.
This phase is then imprinted on the atomic superposition with a
different sign between the portion that was transferred from |e〉
to |g〉 versus |g〉 to |e〉 such that the difference phase is 2kL1.
The next laser pulse that is launched from the locally situated
laser resets the two portions of the atomic superposition to their
original internal states. It imprints a phase shift of its own, but
this phase does not encode information about the change in
optical path length L1, and the laser’s phase noise cancels in
the final differential signal phase �s . Because the two portions
of the atomic superposition have been reset to their original
internal states, a subsequent rotation from the distant laser will
imprint a phase encoding the same path-length difference kL1

that adds constructively with the previously imprinted phase
so that the total imprinted phase on the atom is now 2 × 2kL1.

If we apply M pairs of π rotations after the first π/2 pulse
and M pairs of π rotations before the last π/2 pulse (i.e., 4M

total launched π pulses), with each pair containing a rotation
originating from both the left and right sides, the differential
phase shift between the two output channels is enhanced by
a factor of (4M + 1) relative to the simple Ramsey sequence
presented above so that now

�s = (4M + 1)k(L2 − L1). (8)

In the regime we consider here, even a single pair of LMT
pulses (i.e., four total π pulses) improves the estimate of (L2 −
L1) by a factor of 25 in variance. As a result, the same precision
can be achieved with a reduction in required resources such as
atom number or averaging time by a factor of 25. Alternatively,
one could achieve the same sensitivity to gravitational waves
with a factor of 5 shorter satellite separation or evolution time
Te for reduced technical complexity or enhanced bandwidth
for detecting gravitational waves, respectively.

This enhanced protocol is insensitive to laser phase noise for
the same reason that the simple protocols presented in Sec. III
are: each laser pulse interacts with both interferometers, so any
phase noise on the laser cancels in the differential signal.

Previous proposals for detectors using confined [9] and
unconfined [14] atoms include so-called dynamical decoupling
(DD) sequences. A DD sequence would amount to applying
a π pulse from the same laser every time tj at which the
magnitude of the optical path-length change |Lj | is maximal.
Because the sign of Lj alternates between pulses, the resulting
imprinted phase shifts add constructively. This is conceptually
similar to our LMT-like enhancement mechanism, except that
we can switch the sign of the phase shift by alternating which
laser applies the pulse instead of waiting for the sign of the
GW to switch.

Dynamical decoupling is useful when the evolution time
Te greatly exceeds the GW period Tg . In this regime, the
enhancement in signal scales as Te/Tg � 1. This reflects the
fact that the phase shifts from Te/Tg cycles of the gravitational
wave may be added constructively. There is no constraint on
delay time Td .

LMT-type sequences are useful when the period of the
GW Tg and total evolution time Te are long compared to
the pulse transit time Td . This is necessary in order to send
multiple pulses back and forth between the two satellites
before the path-length change caused by the gravitational wave
switches sign. The full signal response versus gravitational-
wave frequency is considered in the Appendix. The main
result is that one can build a long baseline experiment and set
Te = Td using a straightforward Ramsey sequence, or one can
use LMT-type sequences to dramatically shorten the baseline
such that Te is the same but now Te � Td . In either case, the
sensitivities are comparable. LMT-like enhancement allows
one to address technical constraints that might be relaxed by
operating with shorter baselines, at the expense of potentially
introducing technical errors associated with the additional
laser pulses.

Finally, as analyzed in [14], LMT can be combined with
DD when both Te � Tg and Tg � Td . Doing so amounts to
varying from which satellite the π pulses are sent.

V. EVOLUTION TIMES LONGER THAN THE
EXCITED-STATE LIFETIME

We now present a further enhancement that can be realized
by treating the atoms as a phase memory, rather than a
clock. In a typical clock, the atoms are considered to be a
two-state system. Because external degrees of freedom ideally
remain unchanged, clocks lack additional quantum labels to
specify other states. Any pulse that interacts with one “arm”
of the clock interferometer (|g〉) also interacts with the other
(|e〉): the quantum-mechanical amplitudes may be swapped
between ground and excited states, but the portion of the wave
function in the ground state cannot be manipulated without also
modifying the portion of the wave function in the excited state.
In an AI, the external degrees of freedom of the atom provide
additional labels that allow the two arms to be manipulated
independently.

While in clock-type proposals a fraction of the atomic
wave function must always be in the excited state to achieve
sensitivity, AI-type detection sequences may include useful
periods where both arms of the interferometer are in the
ground state [12], allowing for evolution times greater than
the excited-state lifetime. This technique is particularly useful
for enhancing the signal in the regime where the period of the
GW exceeds the lifetime of the excited state.

In a recoil-free GW detector, additional internal states of
the atoms can provide additional quantum labels that allow
for the independent manipulation of only one arm of the
interferometer. Here, we consider an atomic species like 171Yb
with nuclear spin I = 1/2. There are two ground states with
nuclear spin projections mI = ±1/2 that we we will label
as |g1〉 and |g2〉. For our purposes, we care about a single
excited state |e〉, as shown in Fig. 4(a). A small magnetic field
is applied to define a quantization axis. Transitions may be
driven between either |g1〉 and |e〉 or |g2〉 and |e〉 by applying
laser light with different polarizations or frequencies.

An experimental sequence for such a protocol is shown
in Fig. 4(b). A superposition is prepared by driving a π/2
pulse originating from the left between |g1〉 and |e〉. A π

pulse originating from the right then transfers the population
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FIG. 4. Use of three-state system to allow atoms to stay in the ground state for much of the evolution time. (a) Our procedure utilizes two
ground states, |g1〉 and |g2〉, and a single long-lived optically excited state |e〉. |g1〉 and |g2〉 can independently be coupled to |e〉 using laser
pulses with different frequency and/or polarization (red and blue arrows). (b) After preparing an atomic superposition of |g1〉 and |e〉 using a
π/2 pulse from the left (atoms begin in |g1〉), the portion of the atoms in |e〉 is transferred to |g2〉 using a π pulse from the right. The atoms are
then in a superposition of |g1〉 and |g2〉 with phase dictated by the lasers and the path length L1. The sequence of pulses is reversed after a long
evolution time, during which time the atoms are not susceptible to excited-state decay. The phase shift in the excited-state probabilities of the
two atoms �s = 2k(L2 − L1) now encodes changes in the optical path length that occurred while the atoms were in the ground states.

of |e〉 to |g2〉. The atoms remain in this configuration while
the path length is allowed to change during an evolution time
Te, which we take to be much larger than the delay time Td .
The pulse sequence is then reversed and the change in path
length is read out via a population measurement. The resulting
signal is �s = 2k(L2 − L1), again with no contribution from
laser phase noise. Memory storage in ground states could be
combined with LMT-type enhancement by inserting π pulses
on the |g1〉 to |e〉 transition in between the π pulses on the |g2〉
to |e〉 transition and the initial and final π/2 pulses to realize
further enhancement.

Because the atoms are in superpositions of ground states,
there is no spontaneous emission during Te. Instead, the
relative phase that would normally exist between |g1〉 and
|e〉 is now stored between |g1〉 and |g2〉 during the evolution
period Te. In addition to extending the evolution time beyond
the spontaneous-decay limited coherence time of the atoms,
this technique of shelving the atoms in ground states provides
insensitivity to collisional effects that may limit the atomic
density or coherence time achievable in practice. Inelastic
collisions between excited-state atoms, which contribute to
atom loss in dense systems, would be eliminated by storing the
atoms in the ground states [19,20]. Because elastic collisional
properties of alkaline-earth-like atoms are independent of
nuclear spin state [21,22], mean-field shifts due to elastic
collisions are common to the two ground states and will
not lead to noise or dephasing. Other bias errors in clocks
such as blackbody, electrostatic, and lattice polarizability and
hyperpolarizability shifts would also be suppressed. As in
the AI case, this technique is applicable when the evolution
time Te would otherwise be limited to much less than the
gravitational-wave period Tg .

The key result is that it is not necessary for the phase
memory to exist in a frame accumulating phase at an optical
frequency. It is only necessary that the interactions with the
laser pulses happen between optical transitions, but these
interactions can in principle represent a small fraction of the
total evolution time.

This protocol may appear similar to those that use two-
photon Raman transitions in that the atoms occupy two
ground states during a long evolution time. However, Raman
transitions require a laser pulse from each satellite to interact
with an atomic ensemble at the same time in order to perform
a rotation without populating the short-lived excited state.
As with single-photon transitions, each laser pulse must
also interact with both interferometers in order to obtain
a signal that is insensitive to laser phase noise. These two
requirements lead to a conflict for detectors that use Raman
transitions: to our knowledge, there is no protocol based on a
two-satellite configuration in which each rotation is performed
by simultaneously incident pulses from both satellites, and
in which each pulse leads to the desired rotation in both
interferometers. Because the use of single-photon transitions
as discussed here allows population to be stored in the excited
state for a time of order Td or longer, the laser pulses from
the two satellites need not be simultaneously incident on the
atoms, enabling phase-noise insensitive protocols that do not
appear to be possible with Raman transitions.

VI. CONCLUSION

Gravitational waves create phase shifts on optical pulses,
which we would like to detect as sensitively as possible. At
the most basic level, one would like to store an optical pulse of
light sent at time t1 with phase shift kL1 until a second pulse
of light arrives with a different phase shift kL2 at time t2, then
compare the phases of the two pulses. Note that this is a related
mechanism to that employed by purely optical GW detectors,
which compare the phase shifts experienced by light traveling
on two different paths that experience opposite GW-induced
phase shifts, rather than light that traveled along the same path
at two different times. By providing a highly coherent phase
memory with which the two pulses may interact, the atoms
allow one to make time-separated phase comparisons of the
two pulses in a manner that is insensitive to laser phase noise.
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This capability eliminates the need in atomic detectors for a
third satellite that is required in purely optical interferometers.

Further, multiple pulses can be made to constructively
imprint their phases onto the atoms by properly alternating
their launch direction (LMT) or by synchronizing their launch
times with the frequency of the gravitational wave one wishes
to detect (DD). From a fundamental perspective, the ability
to achieve LMT-type signal enhancement does not appear to
require the transfer of momentum to the atoms or that the two
lasers originate from different directions (although the latter
is required for cancellation of technical sources of noise). In
certain regimes, LMT allows the signal size to be increased
such that the uncertainty in the estimate of the optical phase
of interest k(L2 − L1) can be greatly reduced to well below
the atomic standard quantum limit 1/

√
N rad on atomic phase

resolution.
For gravitational-wave detection, we do not need to measure

the absolute frequency of a laser relative to an atomic transition
frequency, as one would do in a clock. As we have shown, this
allows for the construction of a ground-state shelving protocol
with reduced sensitivities to perturbations and evolution times
Te greater than the optical transition lifetime.

Ultimately, the decision to use confined or unconfined
atoms will depend on a myriad of technical considerations
that are beyond the scope of this paper. From a fundamental
perspective, both methods have the same mechanism for sen-
sitivity: atom interferometers and clocks both sense changes
in phase that result from changes in optical path length
between the two satellites. This interpretation should help
distinguish to what degree differing expected sensitivities for
future proposals are due to the choice of sensor architecture
versus the specific parameters considered.
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APPENDIX: ACCOUNTING FOR TIME DELAYS

In the main text, we considered an LMT pulse sequence
in which the time delay Td is much shorter than both the
evolution time Te and gravitational-wave period Tg . Rather
than launching a series of LMT pulses at the beginning and at
the end, one could in principle launch a continuous series of
alternating π pulses during the entire period of time between
the π/2 pulses. For continuous LMT, we find that the signal
size averaged over all phases of the gravitational wave is (to
good approximation) given by

�̄s = 4
√

2h
ωl

∣∣sin(ωgTd/2)
∣∣

ω2
gTd

sin2(ωgTe/4) (A1)

where ωl is the laser angular frequency. When Td � Tg , the
sensitivity falls off rapidly as 1/ω2

g . However, in the limit
Td � Tg the scaling changes to

�̄s ≈ 2
√

2h
ωl

ωg

sin2(ωgTe/4). (A2)

For comparison, if the spacing of the satellites is increased until
Td = Te, then one cannot use LMT and the Ramsey sequence
yields an averaged signal:

�̄s =
√

2h
ωl

ωg

sin2(ωgTe/2). (A3)

The oscillations in the signal versus ωg differ by a factor of
2 and the envelope of the signal size is larger by a factor of 2
for LMT. Most importantly, approximately the same signal can
be obtained using continuous LMT with order Te/Td π pulses
and an approximately factor of Te/Td shorter satellite spacing.
It is likely that decreasing the spacing of the satellites will be
advantageous for technical reasons; for instance, it allows for
reduced requirements on laser power and pointing stability.
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