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Dirac electron in a chiral space-time crystal created by counterpropagating circularly
polarized plane electromagnetic waves
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The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the
chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At
any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions
describing electron states with different energies and mean values of momentum and spin operators. The inversion
of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are
uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building
blocks of the relations describing the electron properties. These properties are illustrated in graphical form over
a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states
and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and
(ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also
treated.
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I. INTRODUCTION

The motion of electrons in natural crystals is described by
the Schrödinger equation with a periodic electrostatic scalar
potential. Electromagnetic fields with periodic dependence
on space-time coordinates can be treated by analogy with
the crystals of solid-state physics, so it is natural to refer
to these field lattices as electromagnetic space-time crystals
(ESTCs) [1–6]. In this context, the idea of a space-time crystal
was first presented in [1] and the electron wave functions
for the ESTC, created by two linearly polarized plane waves,
were calculated by using the first-order perturbation theory
for the Schrödinger-Stueckelberg equation. The terms “time
crystal” and “space-time crystal” have been used previously in
other contexts, in particular, in the recent discussion around the
question of whether time-translation symmetry might be spon-
taneously broken in a time-independent, conservative classical
system [7] and a closed quantum mechanical system [8], such
as ions confined in a ring-shaped trapping potential with a static
magnetic field [9,10] or a one-dimensional chain of ytterbium
ions [11].

An electron in an electromagnetic field with the four-
dimensional potential A = (A,iϕ) is described by the Dirac
equation [

γk

(
∂

∂xk

− iAk

e

ch̄

)
+ κe

]
� = 0, (1)

where κe = mec/h̄, c is the speed of light in vacuum, h̄ is the
Planck constant, e is the electron charge, me is the electron
rest mass, γk are the Dirac matrices, � is the bispinor, x1, x2,
and x3 are the Cartesian coordinates, x4 = ict , and summation
over repeated indices is carried out from 1 to 4.

In [3–6], we obtained the fundamental solution of Eq. (1)
and presented tools for its numerical analysis in the case when
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A4 ≡ iϕ = 0 and

A′ ≡ e

mec2
A =

6∑
j=1

(Aj e
i K j ·x + A∗

j e
−i K j ·x). (2)

This ESTC is created by six plane waves with unit wave
normals ±eα , where eα are the orthonormal basis vectors,
x = (r,ict), r = x1e1 + x2e2 + x3e3. All six waves have the
same frequency ω0 and

Kα = (k0eα,ik0), Kα+3 = (−k0eα,ik0), (3)

where α = 1,2,3, and k0 = ω0/c = 2π/λ0. They may have
any polarization, so that their complex amplitudes are specified
by dimensionless real constants ajk and bjk as follows:

Aj =
3∑

k=1

(ajk + ibjk)ek, j = 1,2, . . . ,6, (4)

where ajj = bjj = aj+3 j = bj+3 j = 0, j = 1,2,3.
In the general case, Eqs. (2)–(4) describe a four-dimensional

ESTC (4D-ESTC), i.e., with periodic dependence on all four
space-time coordinates. The condition A3 = A6 = 0 reduces
it to a 3D-ESTC with periodic dependence on x1,x2,x4,
whereas the condition A2 = A3 = A5 = A6 = 0 results in a
2D-ESTC periodic in x1,x4. In the simplest case, when A1

is the only nonzero amplitude, Eq. (1) has the well-known
Volkov solution [12]. There exist different representations of
this solution [6,13,14].

The new technique presented in [2–6] is applied in [5] to
the 4D-ESTCs created by the linearly polarized waves with
the amplitudes

A1 = −A4 = Ame2,

A2 = −A5 = Ame3, (5)

A3 = −A6 = Ame1,

and the circularly polarized waves with the amplitudes

A1 = A4 = Am(e2 + ie3)/
√

2,

A2 = A5 = Am(e3 + ie1)/
√

2, (6)

A3 = A6 = Am(e1 + ie2)/
√

2,
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respectively, where Am is a real scalar amplitude. It is shown
that the second one possesses the spin birefringence. In [6],
this technique is illustrated by the analysis of the ground state
and the spin precession of the Dirac electron in the field
of two counterpropagating plane waves with left and right
circular polarizations, i.e., in the 2D-ESTC with the nonzero
amplitudes

A1 = A4 = Am(e2 + ie3)/
√

2. (7)

In the present paper, we treat the electron motion in
the chiral 2D-ESTC defined by the amplitudes A1 = A∗

4 =
Am(e2 + ie3), so that

A′ = 4Am cos ϕ4eA(ϕ1), (8)

where

eA(ϕ1) = e2 cos ϕ1 − e3 sin ϕ1, (9)

and ϕj = 2πXj , j = 1,2,3,4; Xk = xk/λ0, k = 1,2,3,

X4 = ct/λ0. The interplay between the fundamental solution
of Eq. (1) and particular solutions, specified by given
initial amplitudes, for the general 4D-ESTC and the chiral
ESTC is discussed in Sec. II. The four basic solutions
which describe two different spin states of the Dirac
electron moving in the 2D-ESTC along the X1 axis in the
positive and negative directions are presented in Sec. III. In
Sec. IV, we treat superpositions of two basic wave functions
describing different spin states and corresponding to (i)
the same quasimomentum (unidirectional electron states)
and (ii) the two equal-in-magnitude but oppositely directed
quasimomenta (bidirectional electron states). In the general
4D-ESTC, the Dirac equation reduces to an infinite system
of matrix equations, where the interconnections between
equations are defined [5,6] by 12 matrix functions and 56
scalar coefficients. The Appendix gives the expressions for
them in an explicit form. In the chiral 2D-ESTC, the number
of these interconnections decreases drastically, resulting in
specific interrelations between the basic solutions discussed
in Sec. III A.

II. BASIC RELATIONS

A. Fundamental solution

The electron wave function in the 4D-ESTC can be written
as follows [3,6]:

� = �0e
ix·K , �0 =

∑
n∈L

c(n)eix·G(n), (10)

where K = (k,iω/c) is the four-dimensional wave vec-
tor, k = k1e1 + k2e2 + k3e3, G(n) = (k0n,ik0n4),n = n1e1 +
n2e2 + n3e3, points n = (n1,n2,n3,n4) of the integer lattice L
have even values of the sum n1 + n2 + n3 + n4, and

c(n) =

⎛
⎜⎜⎝

c1(n)
c2(n)
c3(n)
c4(n)

⎞
⎟⎟⎠ ≡

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠

n

(11)

are the Fourier amplitudes (bispinors). The function �0 is
periodic in X1,X2,X3, and X4 with the unit period. At a given

K , the set of functions � (10) is the Hilbert space with the
scalar product

(�a,�b) =
∫ 1

0
dX1

∫ 1

0
dX2

∫ 1

0
dX3

∫ 1

0
dX4�

†
a�b

=
∑
n∈L

a†(n)b(n), (12)

and the norm

‖�‖ = (�,�)1/2 =
[∑

n∈L
c†(n)c(n)

]1/2

, (13)

where

�a = �0ae
ix·K , �0a =

∑
n∈L

a(n)eix·G(n), (14)

�b = �0be
ix·K , �0b =

∑
n∈L

b(n)eix·G(n). (15)

Let us treat the infinite set C = {c(n),n ∈ L} of the Fourier
amplitudes c(n) of the wave function � (10) as an element
of an infinite-dimensional complex linear space VC . Since for
any given n ∈ L, c(n) is the bispinor, C ∈ VC will be called the
multispinor. The basis ej (n) in VC and the dual basis θj (n) =
e
†
j (n) in the space of one-forms V ∗

C are specified as follows:

e1(n) =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

n

, e2(n) =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠

n

,

(16)

e3(n) =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠

n

, e4(n) =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠

n

,

θ1(n) = (1 0 0 0)n, θ2(n) = (0 1 0 0)n,

θ3(n) = (0 0 1 0)n, θ4(n) = (0 0 0 1)n,

(17)

that is,

〈θ i(m),ej (n)〉 = 1 for m = n and i = j,

= 0 for m 
= n and/or i 
= j, (18)

for any m,n ∈ L and i,j = 1,2,3,4. The unit operator U in VC

can be written as

U =
∑
n∈L

I (n), I (n) = ej (n) ⊗ θj (n), tr[I (n)] = 4. (19)

Substitution of A (2) and � (10) in Eq. (1) results in the
infinite system of matrix equations [3,6],∑

s∈S13

V (n,s)c(n + s) = 0, n ∈ L, (20)

where s = (s1,s2,s3,s4) satisfies the condition g4D(s) = 0,1,
g4D(s1,s2,s3,s4) = max{|s1| + |s2| + |s3|,|s4|}, i.e.,

s ∈ S13 = {sh(i),i = 0,1, . . . ,12}
= {(0,0,0,0),(0,0,−1,−1),(0,−1,0,−1),
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(−1,0,0,−1),(1,0,0,−1),(0,1,0,−1),(0,0,1,−1),

(0,0,−1,1),(0,−1,0,1),(−1,0,0,1),

(1,0,0,1),(0,1,0,1),(0,0,1,1)}. (21)

At i = 1, . . . ,12, the function sh specifies the shifts s = sh(i)
of multi-indices n, defined by the Fourier spectrum of the field
A (2), which satisfy the condition g4D(s) = 1. Because of this,
they are called the shifts of the first generation. The sequen-
tial numbering i = 0,1,2, . . . of points n = (n1,n2,n3,n4) =
sh(i) ∈ L, based on the use of g4D(n), takes into account the
specific Fourier spectra of the electromagnetic lattice A (2)
and the electron wave function � (10) and thus drastically
simplifies both numerical implementation of the presented
approach and analysis of solutions [4].

We also use another useful numeration, namely, a specific
numeration of 16 Dirac matrices �k, k = 0, . . . ,15, which
form a basis in the space of 4 × 4 matrices [3]. Any
4 × 4 matrix V = ∑15

k=0 Vk�k is uniquely defined by the set
Ds(V ) = {Vk} [Dirac set of matrix V (D set of V )]. The
advantages of direct calculations with D sets without matrix
form retrieval are discussed in detail and illustrated in [3,5,6].
Let us introduce the dimensionless parameters

Q = (q,iq4) = K/κe,  = h̄ω0

mec2
, (22)

q = q1e1 + q2e2 + q3e3 = h̄k
mec

, q4 = h̄ω

mec2
. (23)

In this notation, the matrix coefficients V [n,sh(i)] (20), in order of increasing i = 0,1, . . . ,12, have the following D sets:

Ds{V [n,(0,0,0,0)]} = {1,0,0,0,−w4,0,0,0,0,0,0,0,0,iw3,iw1,iw2},
Ds{V [n,(0,0,−1,−1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,−ia31 + b31,−ia32 + b32},
Ds{V [n,(0,−1,0,−1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia23 + b23,−ia21 + b21,0},
Ds{V [n,(−1,0,0,−1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia13 + b13,0,−ia12 + b12},

Ds{V [n,(1,0,0,−1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia43 + b43,0,−ia42 + b42},
Ds{V [n,(0,1,0,−1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia53 + b53,−ia51 + b51,0},
Ds{V [n,(0,0,1,−1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,−ia61 + b61,−ia62 + b62},
Ds{V [n,(0,0,−1,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,−ia61−b61,−ia62 − b62},
Ds{V [n,(0,−1,0,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia53−b53,−ia51 − b51,0},
Ds{V [n,(−1,0,0,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia43−b43,0,−ia42 − b42},

Ds{V [n,(1,0,0,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia13−b13,0,−ia12 − b12},
Ds{V [n,(0,1,0,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,−ia23−b23,−ia21 − b21,0},
Ds{V [n,(0,0,1,1)]} = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,−ia31−b31,−ia32 − b32}, (24)

where n = (n1,n2,n3,n4), wk = qk + nk, k = 1,2,3,4.
By taking into account Eqs. (11) and (16)–(18), the system

of equations (20) with matrix coefficients V (n,s) can be
written in terms of scalar equations

〈f j (n),C〉 ≡
∑
s∈S13

V j
k(n,s)ck(n + s) = 0,

(25)
j = 1,2,3,4; n ∈ L,

where

f j (n) =
∑
s∈S13

V j
k(n,s)θk(n + s) ∈ V ∗

C,

〈f j (n),ek(n + s)〉 = V j
k(n,s). (26)

Finally, by combining the four equations related with each
point n, one can rearrange Eqs. (25) to the basic system of
equations [3,6]

P (n)C = 0, n ∈ L, (27)

where

P (n) = [f α(n)]† ⊗ aα
β(n)f β(n) (28)

is the Hermitian projection operator in VC with trace
tr[P (n)] = 4. The Hermitian 4 × 4 matrices a(n) are given
in a explicit form in [3,6].

Each amplitude c(n) enters in 13 different matrix equations
of the infinite system (20). This relatively simple structure
of equations has made it possible to obtain the fundamental
solution of the system (27) by a recurrent process [3,4,6]
based on a fractal approach [4]. It is expressed in terms
of an infinite series of projection operators. This process
begins with the selection of an infinite subsystem consisting
of independent equations and the calculation of the projection
operators ρ0(n) = P (n), n ∈ F0 ⊂ L, which uniquely define
the fundamental solutions of these equations [3,6]. At each
new kth step of the recurrent process, we add another infinite
set P (n)C = 0,n ∈ Fk of mutually independent equations
(MIE) which, however, are related with some of the equations
introduced in the previous steps. Consequently, we obtain
an infinite set of independent finite systems of interrelated
equations [fractal clusters of equations (FCE)]. It can be
described as a 4D lattice of such clusters. Each step of the re-
current procedure expands FCE for which it provides the exact
fundamental solutions. The fractal algorithm of this expansion
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presented in [4] is devised to minimize volumes of computa-
tions and data files. Some MIE (aggregative MIE, or MIE1)
just add one equation to each cluster of the previous FCE lattice
so that these enlarged clusters remain independent. Other
MIE (connective MIE, or MIE2), by adding each equation,
interrelate a pair of neighboring clusters into a joint cluster,
and a quite different FCE lattice arises. Each fractal period
includes connections in directions of n4,n1,n2, and n3 axes,
respectively. The smaller the FCE, the smaller are the volumes
of the computations and data files, which are necessary to
find and to write the fundamental solution for this FCE. To
simplify calculations, we add a maximal possible number of
MIE1 before adding the next MIE2.

The fundamental solution S of the system (27) is the
Hermitian operator of projection onto the solution subspace
of the multispinor space VC . It is defined as follows [3,6]:

S = U − P, P =
+∞∑
k=0

∑
n∈Fk

ρk(n), (29)

+∞⋃
k=0

Fk = L, Fj

⋂
Fk = ∅, j 
= k, (30)

where ρk(n) are Hermitian projection operators with trace
tr[ρk(n)] = 4. There exist various ways [4] to split the lattice
L into sublattices Fk to fulfill conditions (30) and

ρ
†
k(n) = ρ2

k (n) = ρk(n), n ∈ L,

ρk(m)ρl(n) = 0 if k 
= l or (and) m 
= n, (31)

ρ0(n) = P (n), n ∈ F0,

which result in the relations P† = P2 = P, P (n)P =
PP (n) = P (n), and, finally, P (n)S ≡ 0,n ∈ L. Hence, for any
C0 ∈ VC , C = SC0 is the exact particular solution of Eq. (27),
specified by the multispinor C0, i.e., the function � (10) with
the set of Fourier amplitudes {c(n),n ∈ L} = SC0 satisfies
the Dirac equation (1) for the problem under consideration.
Due to these properties, P is called the projection operator of
the system of equations (27). As shown in [3], this concept can
be applied to any system of homogeneous linear equations.

It follows from Eq. (28) that

P (m)P (n) = [f i(m)]† ⊗ [a(m)N (m,n)a(n)]i j f
j (n), (32)

where

Ni
j (m,n) = 〈f i(m),[f j (n)]†〉, i,j = 1,2,3,4, (33)

a(n) = [L(n)]−1, L(n) ≡ N (n,n), and N (m,n) ≡ 0 at g4D(n −
m) > 2. Substitution of f α(n) in (33) at n = m + s gives [3,6]

N †(n,m) = N (m,n) = L(m) for n = m,

= N1(m,s) for g4D(s) = 1,

= N2(s)U for g4D(s) = 2, (34)

where U ≡ �0 is the 4 × 4 unit matrix. The D sets of 12
matrices N1(m,s) and the table of 56 scaler coefficients N2(s)
for the general 4D-ESTC are presented in the Appendix. These
major structural parameters of the ESTC specify interrelations
in the system of equations (27). They are presented as functions
of the dimensionless parameters Ajk = ajk + ibjk, wk =
qk + mk, and ± = ± + 2w4, where  and qk are defined
in Eqs. (22) and (23), k = 1,2,3,4, m = (m1,m2,m3,m4) ∈ L.

The nonzero amplitudes for A′ (8) are specified by a12 =
b13 = a42 = −b43 = Am. In this case, most of the structural
parameters in Eq. (34) are vanishing, only N1(m,s) with D
sets,

Ds{N1[m,(∓1,0,0,−1)]}
= Am{2(−w2 ∓ iw3),∓i,0,−,0,0,0,0,

0, ∓ i−,0,−−,0,0,0,0}, (35)

Ds{N1[m,(∓1,0,0,1)]}
= Am{2(−w2 ∓ iw3), ∓ i,0, − ,0,0,0,0,

0, ∓ i+,0, − +,0,0,0,0}, (36)

and N2(s) = 4A2
m with s ∈ {(0,0,0, − 2),(0,0,0,2)} are not

zero.

B. Approximate particular solutions

Numerical implementation of the obtained solution implies
the replacement of the projection operatorP (29) of the infinite
system of equations (27) by the projection operator

P ′ =
∑
k∈kL

∑
n∈nL(k)

ρk(n) (37)

of its finite subsystem

P (n)C = 0, n ∈ L′ =
⋃
k∈kL

nL(k) ⊂ L, (38)

where kL is an ordered finite list of integers, and nL(k) is a finite
list of points n ∈ Fk , taken into account. These lists define a
finite model of the electron wave function in the ESTC, i.e.,
its approximation by a bispinor function with a finite discrete
Fourier spectrum. Some such models are presented in [4–6].
The projection operator

S ′ = U − P ′ (39)

gives the exact fundamental solution of the system (38), which
is an approximate solution of the system (27).

Let D be a differential operator in a space V� of scalar,
vector, spinor, or bispinor functions, and ‖�‖ be the norm of
� on V� . The functional

R : � �→ R[�] = ‖�D‖
‖�‖ , (40)

where �D = D�, evaluates the relative residual at the
substitution of � into the differential equation D� = 0. It
provides a convenient fitness criterion to accurately compare
various approximate solutions of this equation [4–6]. For an
exact solution �, the residual �D vanishes, i.e., R[�] = 0. If
�D 
= 0, but R[�] � 1, the function � may be treated as a
reasonable approximation to the exact solution, and the smaller
is R[�], the more accurate is the approximation. In terms
of distances d = ‖�‖ and dD = ‖�D‖ of � and �D to the
origin of V� (the zero function), one can graphically describe
R[�] as shrinkage in distance R[�] = dD/d. The functional
R, as applied to a family of functions �(x,ξ ) with members
specified by a parameter ξ , results in function R[�(x,ξ )] of
ξ , denoted R(ξ ) for short.
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In the present paper, V� = VC , the norm ‖�‖ is given by
Eq. (13), and �D = D� is calculated for the dimensionless
operator

D =
3∑

k=1

αk

(
− ih̄

mec

∂

∂xk

− A′
k

)
− ih̄

mec2

∂

∂t
+ α4 (41)

of the equation D� = 0 equivalent to Eq. (1). We restrict our
consideration to the case when the amplitude C0 specifying a
particular solution is given by

C0 = a
j

0ej (no), (42)

where no = (0,0,0,0), and q2 = q3 = 0, i.e., the electron
moves along the axis X1. The fitness parameter R(ξ ) plays
a leading role in search for the best approximate particular
solution {c(n),n ∈ L} = S ′C0, available in the frame of the
selected finite model, as follows.

The analytical fundamental solution S (29) is obtained
without recourse to any dispersion relation, i.e., for any vector
Q (22). However, since the system of equations (27) is homo-
geneous, the dispersion relation manifests itself in the spectral
distribution of Fourier amplitudes c(n) for each exact particular
solution � (10). This is illustrated in [6] by the example of
the exact Volkov solution. Since the amplitude �0 (10) is
periodic in X1,X2,X3, and X4, the wave function � describes
a nonlocalized solution of the Dirac equation. In the general
case, its Fourier spectrum is also nonlocalized in the space
of the four-dimensional wave vectors. However, in numerical
calculations for a finite model, instead of an exact particular
solution, we obtain its approximation with a localized Fourier
spectrum bounded by the truncation condition g4D(n) � gmax

for all n ∈ L′. Consequently, the dispersion interrelation of
q and q4 is defined by the minimum of the fitness function
R = R1(ξ ) with graphical representation in the form of a
spectral curve of approximate solutions [5,6], where

ξ = q4 −
√

1 + q2 = h̄ω

mec2
−

√
1 +

(
h̄k
mec

)2

. (43)

Here, Rj = √
λj is specified by a generalized eigenvalue λj

which is a root of the quartic equation det(UD − λUE) = 0,
with the Hermitian 4 × 4 matrices UE and UD , defined
in [4–6]. It has real coefficients and positive roots λj indexed
below in increasing order of magnitude, R1 < R2 < R3 < R4.
At sufficiently large value of gmax, the condition R1 � 1 is
satisfied within narrow limits of ξ values, whereas R2,3,4 �
R1 and they do not satisfy the similar condition at any
value of ξ ; see numerical and graphic illustrations in [5,6].
The minimum {ξ0,R0 = R1(ξ0)} of the curve R = R1(ξ )
specifies the most accurate approximate solution provided
by the selected finite model. The corresponding amplitude
a0 = a01 (42) for this solution is specified by the generalized
eigenvector a01 defined by the equation UDa01 = λ1UEa01. It
follows from the results of the computer simulations [5,6] that
ξ0 converges to a positive limit and R0 tends to zero with
increasing gmax; in other words, this approximate particular
solution converges to the exact solution with the dispersion
relation q4 −

√
1 + q2 = ξ0.

III. ELECTRON WAVE FUNCTIONS IN
THE CHIRAL 2D-ESTC

A. Structure of wave functions

For the problem under study, the technique presented in
[3–6] and Eqs. (35) and (36) at q = q± ≡ ±|q1|e1 result in the
four partial solutions

�j (q±) = �j±ei�j± , (44)

where j = 1,2 and

�j± = x · K j± = (±|q1|ϕ1 − q4jϕ4)/, (45)

�1± =
∑

n∈S1±

a±(n)eiϕn , �2± =
∑

n∈S2±

b±(n)eiϕn ,

ϕn = n1ϕ1 − n4ϕ4, ϕ1 = 2πX1, ϕ4 = n4X4. (46)

The points n = (n1,n2,n3,n4) ∈ L with nonzero bispinor
Fourier amplitudes a±(n) and b±(n), comprising the solution
domains S1± and S2±, satisfy the conditions |n1| = 0,1; n2 =
n3 = 0. These amplitudes, calculated by the recurrent algo-
rithm [3], have specific symmetry properties which make it
possible to express �1± and �2± in terms of eight complex
scalar functions zjk = zjk(ϕ4) as follows:

�1+ = u2z12 + u4z14 + ieiϕ1 (u1z11 + u3z13),

�1− = −u1z12 − u3z14 + ie−iϕ1 (u2z11 + u4z13),
(47)

�2+ = u1z21 + u3z23 + ie−iϕ1 (u2z22 + u4z24),

�2− = −u2z21 − u4z23 + ieiϕ1 (u1z22 + u3z24),

where

u1 = 1√
2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠, u2 = 1√

2

⎛
⎜⎝

1
−1
0
0

⎞
⎟⎠,

u3 = 1√
2

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠, u4 = 1√

2

⎛
⎜⎝

0
0
1

−1

⎞
⎟⎠. (48)

The interrelations between the complex scalar functions zjk

and the bispinor amplitudes a±(n),b±(n) are described by the
Fourier expansions

Zj =
+∞∑

l=−∞
Zj,le

ilϕ4 , (49)

where j = 1,2,

Z1 =

⎛
⎜⎝

z12

z14

z11

z13

⎞
⎟⎠, Z2 =

⎛
⎜⎝

z21

z23

z22

z24

⎞
⎟⎠, (50)

Z1,l =

⎛
⎜⎝

a−l2

a−l4

0
0

⎞
⎟⎠, Z2,l =

⎛
⎜⎝

b−l1

b−l3

0
0

⎞
⎟⎠, (51)

a+[(0,0,0,l)] = al2u2 + al4u4,
(52)

b+[(0,0,0,l)] = bl1u1 + bl3u3,
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for even l, and

Z1,l =

⎛
⎜⎝

0
0

a−l1

a−l3

⎞
⎟⎠, Z2,l =

⎛
⎜⎝

0
0

b−l2

b−l4

⎞
⎟⎠, (53)

a+[(1,0,0,l)] = i(al1u1 + al3u3),
(54)

b+[(−1,0,0,l)] = i(bl2u2 + bl4u4),

for odd l. All scalar coefficients alk and blk are real. In
accordance with the above definitions, the functions zjk

are given by a+(n),b+(n). However, they also specify �1−
and �2− through the relations between a−(n),b−(n) and
a+(n),b+(n), taken into account in Eq. (47).

The bispinor functions �j (q±) are uniquely defined by
eight complex scalar functions (structural functions) zjk (j =
1,2; k = 1,2,3,4), which serve as convenient building blocks
of the relations describing the electron properties. For the
chiral 2D-ESTC under study, the finite model [see Eq. (38)] is
given by L′ = {n = (n1,0,0,n4), 0 � g4D(n) � gmax}, i.e., the
infinite series in Eq. (49) are truncated so that the real xjk and
imaginary yjk parts of zjk = xjk + iyjk can be written as

xjk = xjk0 +
pm∑

p=1

xjk(2p) cos(2pϕ4),

(55)

yjk =
pm∑

p=1

yjk(2p) sin(2pϕ4),

for jk ∈ {12,14,21,23}, and

xjk =
pm∑

p=0

xjk(2p+1) cos[(2p + 1)ϕ4],

(56)

yjk =
pm∑

p=0

yjk(2p+1) sin[(2p + 1)ϕ4],

for jk ∈ {11,13,22,24}, where

x1k0 = a0k, x2k0 = b0k,

x1kl = a−lk + alk, x2kl = b−lk + blk,

y1kl = a−lk − alk, y2kl = b−lk − blk. (57)

By selecting a sufficiently large value of gmax, one can easily
obtain approximate solutions with any desired accuracy. To
illustrate this, we fix  = 0.01, Am = √

2/200 and set gmax =
12 for which pm = 6. This results in the approximate par-
ticular solutions satisfying the fitness condition R0 < 10−17,
presented below, whose deviations from the corresponding
exact solutions are negligibly small.

B. Dispersion relations

For a given q1 
= 0, the dispersion equation has two closely
spaced solutions q4j = q40 + ξj , where j = 1,2, ξ1 < ξ2, and
q40 =

√
1 + q2

1 . They are invariant under inversion q1 �→ −q1.
The electron wave functions �j (q+) and �j (q−) describe the
motion in the positive and negative X1 directions, respectively.
The dependence of ξ1 and �ξ = ξ2 − ξ1 on q1 is shown

5 4 3 2 1 1 2
log10 q1

0.00005

0.00010

0.00015

0.00020
Ξ1

FIG. 1. Plot of ξ1 against log10 q1.

in Figs. 1 and 2, where the dots represent calculations at
q1 = 2m,m ∈ [−10,15], while the curves are obtained by
the linear interpolation.

C. Properties of functions z j k

Substitution of �j (q+) in the Dirac equation D� = 0 with
D (41) result in two evolution equations,

d

dϕ4
Zj = i


MjZj , j = 1,2, (58)

where

Mj = Nj − (−1)j 4Am cos ϕ4α1, (59)

Nj =

⎛
⎜⎝

q4j − 1 −q1j 0 0
−q1j q4j + 1 0 0

0 0 q41 − 1 q1j − 

0 0 q1j −  q4j + 1

⎞
⎟⎠, (60)

α1 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, q1j = (−1)j q1. (61)

Since M1 and M2 are real symmetrical matrices, it follows

from Eqs. (58) that d(Z†
jZj )/dϕ4 = 0. Therefore, we impose

the normalization condition

Z†
jZj ≡ �

†
j±�j± ≡

4∑
k=1

|zjk|2 = 1, j = 1,2. (62)

5 4 3 2 1 1 2
log10 q1

14

12

11

10

log10

FIG. 2. Plot of �ξ against log10 q1.
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A

B

5 4 3 2 1 1
log10 q1

1.0

0.8

0.6

0.4

0.2

x210, x230

FIG. 3. Plot of (A) x210 and (B) x230 against log10 q1.

The functions �1± and �2± also satisfy the following
orthonormality relations:

�
†
j±�j∓ = 0, j = 1,2,

�
†
1±�2± = 0, lim

q1→0
(�†

1±�2∓) = 1. (63)

In our numerical calculations with gmax = 12, variations from
these relations are negligibly small, at less than 10−16.

Substitution of Z1 and Z2 into Eqs. (58) results in two
independent systems of matrix equations in Fourier amplitudes
Z1,l and Z2,l , respectively,

(Nj − lU )Zj,l = (−1)j 2Amα1(Zj,l−1 + Zj,l+1), (64)

where j = 1,2. These amplitudes are connected by the
recurrent relations

Zj,l+1 = −Zj,l−1 + (−1)j

2Am

α1(Nj − lU )Zj,l , (65)

with l = 1,2, . . ., and

Zj,l−1 = −Zj,l+1 + (−1)j

2Am

α1(Nj − lU )Zj,l , (66)

with l = −1,−2, . . ., where

NjZj,0 = (−1)j 2Amα1(Zj,−1 + Zj,1). (67)

Therefore, by taking into account Eqs. (51), (53), and (57),
coefficients xjkl,yjkl can be calculated starting with
x120,x140,y111,y131 and x210,x230,y221,y241. These starting co-
efficients depend on q1, as illustrated in Figs. 3–6.

In the state defined by the quasimomentum p = h̄k =
mecq = 0, the equation (UD − λ1UE)a0 = 0 has the twofold

A

B

5 4 3 2 1 1
log10 q1

2.

2.

4.

6.

8.

1. 10 6

x210 x120, x230 x140

FIG. 4. Plot of (A) x210 + x120 and (B) x230 − x140 against log10 q1.

A

B

5 4 3 2 1 1
log10 q1

0.002

0.004

0.006

0.008

0.010

0.012

0.014

y111, y131

FIG. 5. Plot of (A) y111 and (B) y131 against log10 q1.

generalized eigenvalue λ1 and the two-dimensional subspace
of the corresponding generalized eigenvectors a0. Any basis
of this subspace specifies two linearly independent solutions
of the Dirac equation, for which ξ1 = ξ2 = 0.000 199 970 011.
In particular, the limiting cases of �j (q±) (44) at q1 → 0 can
be conveniently treated as the basis wave functions. At q1 = 0,
the functions zjk satisfy the identities

z11 = z22, z12 + z21 = 0, z13 = z24, z14 + z23 = 0, (68)

and hence

lim
q1→0

�1± = lim
q1→0

�2∓,

lim
q1→0

�1(q±) = lim
q1→0

�2(q∓). (69)

The coefficients, illustrated in Figs. 3–6, at this state have the
following values:

x120 = −x210 = 0.999 875,

x140 = −x230 = −4.995 94 × 10−7,

y111 = y221 = 0.014 136 8,

y131 = y241 = 0.000 070 674 5. (70)

D. Energy level splitting

Let us now compare the wave functions �j (q±), j = 1,2,
in terms of the corresponding mean values of Hamiltonian

H = c

3∑
k=1

αkpk + mec
2α4, (71)

B

A

5 4 3 2 1 1
log10 q1

0.00005

0.0001

y221 y111, y241 y131

FIG. 6. Plot of (A) y221 − y111 and (B) y241 + y131 against log10 q1.
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A B

3.0 2.0 1.0 1.0 2.0 3. 10 6
q1

0.2

0.2

0.4

0.6

0.8

1.0

1.2 10 11

E E0

FIG. 7. Difference of the normalized energy E = E±(q1) and E0

against q1: (A) E = E+(q1) and (B) E = E−(q1).

operators of kinetic momentum

pk = −ih̄
∂

∂xk

− e

c
Ak, (72)

probability current density (velocity) jk = cαk , and spin Sk =
h̄
2 �k , k = 1,2,3. Since �

†
j (q±)�j (q±) = 1, the mean value

〈L〉 of a linear operator L with respect to the wave function
�j (q±) reduces to the mean value of the corresponding
Hermitian form: 〈L〉 = 〈�†

j (q±)L�j (q±)〉. The mean values
〈jk〉, 〈pk〉, and 〈Sk〉 are zero at k = 2,3 for all these functions.
For both �1(q±) and �2(q±), the inversion q± �→ q∓ changes
the signs of 〈j1〉, 〈p1〉, and 〈S1〉, but leaves invariant 〈H 〉. It
also follows from the results of our calculations that

�
†
j (q±)�1�j (q±) ≡ �

†
j±�1�j± = ±(−1)j�10, (73)

where �10 can be expressed in terms of the functions zjk as

�10 = (−1)j (|zj1|2 + |zj3|2 − |zj2|2 − |zj4|2), j = 1,2.

(74)
It is independent of q1 and for the chiral ESTC under
consideration takes the value �10 = 0.999 600 239 84.

The functions �1(q−) and �2(q+) provide the same positive
mean value 〈S1〉 = S+ = h̄

2 �10, whereas �1(q+) and �2(q−)
provide the same negative mean value 〈S1〉 = S− = − h̄

2 �10.
Hence, �1(q∓) together with �2(q±) specify two wave
functions (S± solutions) describing two different spin states

5 4 3 2 1 1 2
log10 q1

0.2

0.4

0.6

0.8

1.0
J1

FIG. 8. Plot of J1− against log10 q1.

5 4 3 2 1 1 2
log10 q1

1.

2.

3.

4. 10 10

J1 J1

FIG. 9. Plot of J1+ − J1− against log10 q1.

and defined into the whole united q1 domain containing both
q1 < 0 and q1 � 0 values.

Let J1±(q1) = 〈j1〉/c, P1±(q1) = 〈p1〉/(mec), and
E±(q1) = 〈H 〉/(mec

2) be the normalized mean values of the
operators j1, p1, and H with respect to S± solutions at a given
q1. At q1 = 0, these solutions provide the same value of the
normalized energy E0 = E±(0) = 1.000 199 970 009, and
equal in magnitude but opposite in sign the normalized mean
values of the velocity J1±(0) = ±v10 and the momentum
P1±(0) = ∓p10, where v10 = 1.998 201 428 93 × 10−10 and
p10 = 1.998 800 799 44 × 10−6.

The mean values of momentum for S± solutions linearly
depend on the quasimomentum: P1±(q1) = q1 ∓ p10. The
dependence of E± on q1 in the vicinity of the origin is
shown in Fig. 7. In this domain, J1±(q1) can be closely
approximated by the linear functions with J1±(q1) = 0 at q1 =
∓q10, respectively, where q10 = 1.998 600 969 36 × 10−10. At
|q1| < q10, the mean values J1±(q1) and P1±(q1) are opposite
in sign for both of the solutions. Figures 8–11 illustrate
the properties of functions J1±(q1) and E±(q1) over a wide
range of q1 > 0. At any q1 
= 0, there are two different
states with the opposite in sign spins S± and different
energy levels E±(q1). This energy level splitting satisfies
the relations E−(q1) − E+(q1) = E+(−q1) − E−(−q1) � 0
for q1 � 0. The functions E±(q1) take the same minimal value
Emin = E±(±p10) = 1.000 199 970 007 at the points q1 =
±p10, where P1±(±p10) = 0. The wave functions �2(q±)
specify these two ground states with oppositely directed
spins.

5 4 3 2 1 1 2
log10 q1
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10

15

20

E

FIG. 10. Normalized energy E− against log10 q1.
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FIG. 11. Normalized energy difference E− − E+ against log10 q1.

IV. UNIDIRECTIONAL AND BIDIRECTIONAL STATES
OF THE ELECTRON

At q1 
= 0, the wave functions �j (q±),j = 1,2 are linearly
independent and form a basis for a four-dimensional subspace
of partial solutions to the Dirac equation. At q1 = 0, as a
consequence of Eq. (69), this subspace degenerates to the two-
dimensional one. In this section, we treat two families of partial
solutions which describe unidirectional and bidirectional states
of the Dirac electron. They are specified by the wave functions

�± = �1(q±)eiδ cos α + �2(q±) sin α,

�j = �j (q+)eiδ cos α + �j (q−) sin α, j = 1,2, (75)

where α ∈ [0,π/2] and δ ∈ [0,2π ]. To study these states, we
use the structural functions zjk described in Sec. III A and the
following designations:

Rikjl = 2Re(z∗
ikzjl), Iikj l = 2Im(z∗

ikzjl),

Rj = Rj1j4 + Rj2j3, Ij = Ij1j2 + Ij3j4, (76)

v1j = Rj1j3 − Rj2j4,

where i,j = 1,2 and k,l = 1,2,3,4.

A. Unidirectional states: Precession

The wave functions �+ and �− describe various electron
states specified by the parameters α and δ at the positive
quasimomentum q1 and the negative one, respectively. For any
linear operator A, the Hermitian forms �

†
±A�± are periodic

in X1 with the unit period. They are not periodic in X4 because
of the phase difference,

ϕ = �1± − �2± + δ = 2π


�ξX4 + δ. (77)

However, �ξ/ � 1, so that variations of ϕ at any unit
interval of the X4 axis are negligibly small in the calculation of
norms and mean values. In this approximation, one can obtain
the relations

P1± = I�X(�†
±p1�±)/(mec) = ±(|q1| + p10 cos 2α),

E = I�X(�†
±H�±)/(mec

2) = E1 cos2 α + E2 sin2 α,

�
†
±�± = 1, (78)

where

p10 = 

2
(1 − �10), Ej =

∫ 1

0
HjdX4, j = 1,2, (79)

Hj = Rjjjj+2 + |q1|v1j + |zj1|2 + |zj2|2

− |zj3|2 − |zj4|2 + (−1)j 4AmRj cos ϕ4, (80)

I�X(f ) ≡
∫

�X

f dX1dX4, (81)

and the domain �X is given by the unit intervals [Xk,Xk +
1], k = 1,4. The dependence of the normalized energies E1 =
E−(|q1|) and E2 = E+(|q1|) on q1 is illustrated in Figs. 7, 10,
and 11.

In the comparative analysis of electron states, it is advan-
tageous to calculate both mean values and Hermitian forms
of various operators with respect to the corresponding wave
functions. In particular, the Hermitian forms for the velocity
operator and the spin operator with respect to �± result in the
following vector fields:

j(q±) = cv±, S(q±) = h̄

2
s±, (82)

where

v± =
3∑

k=1

ek(�†
±αk�±) = e1{±(v11 cos2 α + v12 sin2 α)

+ sin 2α[Im C1 cos(ϕ ± ϕ1) − Re C1 sin(ϕ ± ϕ1)]}
+ (R1 cos2 α − R2 sin2 α)eA(ϕ1)

+ sin 2α[±Im C2eA(∓ϕ) + Re C2eB(∓ϕ)

± Im C3eA(2ϕ1 ± ϕ) + Re C3eB(2ϕ1 ± ϕ)], (83)

s± =
3∑

k=1

ek(�†
±�k�±) = e1{∓�10 cos 2α

+ sin 2α[Im D1 cos(ϕ ± ϕ1) − Re D1 sin(ϕ ± ϕ1)]}
± (I1 cos2 α − I2 sin2 α)eB(ϕ1)

+ sin 2α[±Im D2eA(∓ϕ) + Re D2eB(∓ϕ)

± Im D3eA(2ϕ1 ± ϕ) + Re D3eB(2ϕ1 ± ϕ)], (84)

C1 = z∗
11z23 + z∗

12z24 + z∗
13z21 + z∗

14z22,

C2 = z∗
12z23 + z∗

14z21, C3 = z∗
22z13 + z∗

24z11,

D1 = z∗
11z21 + z∗

12z22 + z∗
13z23 + z∗

14z24,

D2 = z∗
12z21 + z∗

14z23, D3 = z∗
22z11 + z∗

24z13. (85)

The vector eA(ϕ1) is given by Eq. (9) and

eB(ϕ1) = e1 × eA(ϕ1) = e2 sin ϕ1 + e3 cos ϕ1. (86)

Since �ξ/ � 1, we obtain the mean values

〈v±〉 = I�X(v±)

= ±e1[J−(|q1|) cos 2α + J+(|q1|) sin 2α]

−Rv sin 2αeB(∓ϕ), (87)

〈s±〉 = I�X(s±) = ∓e1�10 cos 2α − Rs sin 2αeB (∓ϕ), (88)
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FIG. 12. Precession parameter Rv against log10 q1.

where ϕ = δ + 2πνprt , δ specifies the initial precession phase,
and νpr = �ξmec

2/h is the precession frequency. The trans-
verse components of the precessing vectors of the velocity
(probability current density) and the spin are specified by α

and the coefficients

Rv = −
∫ 1

0
C2dX4, Rs = −

∫ 1

0
D2dX4, (89)

which depend on q1, as shown in Figs. 12 and 13. The inversion
of the quasimomentum q �→ −q is described by the replace-
ments v± �→ v∓ and s± �→ s∓. It inverts the signs of longitu-
dinal components and reverses the precession directions.

B. Bidirectional states

The bidirectional wave functions �1 and �2 (75) satisfy
the normalization condition �

†
j�j = 1. The Hermitian forms

�
†
jp1�j and �

†
jH�j are both periodic in X4 with the unit

period and periodic in X1 with the periods

�X1j = |1 − (−1)j qm|−1, qm = 2|q1|/, j = 1,2. (90)

The normalized momentums for the bidirectional states de-
pend on α as follows:

P1j = 1

mec
I�X1j

(�†
jp1�j ) = [|q1| − ( − 1)jp10] cos 2α,

(91)

where p10 is given by Eq. (79) and

I�X1j
(f ) ≡ 1

�X1j

∫ 1

0
dX4

∫ �X1j

0
f dX1, j = 1,2. (92)
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FIG. 13. Precession parameter Rs against log10 q1.

The normalized energies

1

mec2
I�X1j

(�†
jH�j ) = Ej (93)

are independent of α and δ; they are given by Eq. (79).
The Hermitian forms for the operators of velocity and spin

are defined by the relations

jj = cvj = c

3∑
k=1

ek(�†
jαk�j ),

(94)

Sj = h̄

2
sj = h̄

2

3∑
k=1

ek(�†
j�k�j ),

where j = 1,2, and

v1 = R1eA(ϕ1) − R1214g0− + R1113g2+,

v2 = −R2eA(ϕ1) + R2123g0+ − R2224g2−,

s1 = − 1
2 (1 + �10)g0− − I1g1+ + 1

2 (1 − �10)g2+,

s2 = 1
2 (1 + �10)g0+ − I2g1− − 1

2 (1 − �10)g2−,

g0± = cos 2αe1 ∓ sin 2αeB [±(qmϕ1 + δ)],

g1± = sin 2α cos[(1 ± qm)ϕ1 ± δ]e1 ∓ cos 2αeB (ϕ1),

g2± = cos 2αe1 ± sin 2αeB [(2 ± qm)ϕ1 ± δ]. (95)

At given qm,α, and δ, the scalar coefficients Rj ,Ij ,Rj1j3, and
Rj2j4, where j = 1,2, are periodic in X4 with the unit period.
The vectors eA,gk± are independent of X4, but they all have
different dependencies on X1. Therefore, the vector functions
vj = vj (X1,X4) and sj = sj (X1,X4) are periodic in X4 but,
in the general case, they are not periodic in X1. However,
they become periodic in X1 at some specific values of qm. In
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FIG. 14. Parametric plot of coordinate curves for v = v2e2 +
v3e3 = v1(X1,X4) at qm = 1,α = π/4, and δ = 0: X1 curves
a,b,c,d,e for X4 = 0,1/8,1/4,3/8,1/2, respectively, X1 ∈ [0,1]; X4

curves with X4 ∈ [0,1/2] begin at points numbered k = 0,1, . . . ,7,
where X1 = k/8.
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FIG. 15. Parametric plot of X1 coordinate curves for v =
v1(X1,X4) in the neighborhood of the instant of time X4 = 1/4
at p = 1; X4 = 1/4 + kδa/2,k = −3,−2,−1,0,1,2,3 for curves
a,b,c,d,e,f,g, respectively, δa = 0.028 125.

particular, the period is equal to �X1 = 2n for qm = 2−n, n =
1,2, . . ., and �X1 = 1 for any integer qm.

The relations (95) define the parametric surfaces v =
vj (X1,X4) and s = sj (X1,X4) which can be treated as specific
graphic markers of the bispinor wave functions �1 and �2

at given qm,α, and δ. By way of example, let us consider
a particular case with qm = 1, α = π/4, and δ = 0, when
P1j = 0 and e1 · vj ≡ 0, j = 1,2. In this case, the mean values
of momentum with respect to both �1 and �2 are vanishing and
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FIG. 16. Parametric plot of coordinate curves for v = v2(X1,X4)
at qm = 1,α = π/4 and δ = 0: X1 curves a,b,c,d for X4 =
0,1/12,1/6,1/4, respectively, X1 ∈ [0,1]; X4 curves with X4 ∈
[0,1/2] begin at point numbered k = 0,1, . . . ,7, where X1 = k/8.
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FIG. 17. Parametric plot of coordinate curves for s = s1e1 +
s2e2 + s3e3 = s1(X1,X4) at qm = 1,α = π/4 and δ = 0: X1 curves
with X1 ∈ [0,1] for X4 = 0, − 1/4, − 1/8,0,1/8,1/4; X4 curves
with X4 ∈ [−1/4,1/4] for X1 = k/16,k = 0,1, . . . ,15; X1 = 0 and
1/2 for points 1, 2 and 3, 4, respectively; X4 = −1/4 and 1/4 for
points 1, 3 and 2, 4, respectively.

the probability streamlines are in the phase planes X1 = const.
The families of coordinate curves illustrating the dependence
of velocity fields v1 and v2 on the spatial coordinate X1 and
the time X4 diverge considerably; see Figs. 14–16. Unlike
v1(X1,X4), the parametric surface v2(X1,X4) has the hole in
its center, namely, |v2| � 0.005 at all values of X1 and X4; see
Fig. 16. All X1 curves in Fig. 16 are similar in appearance and
X1 increases in the clockwise direction, whereas X1 curves in
Figs. 14 and 15 modify the form with time and reverse their
direction at X4 = 1/4.

The Hermitian forms s1 and s2 for the spin operator also
diverge considerably; see Figs. 17 and 18. At qm = 1 and
α = π/4, they are described by the relations

s1 = − 1
2 (1 + �10)eB(−ϕ1 − δ) − I1 cos(2ϕ1 + δ)e1

+ 1
2 (1 − �10)eB(3ϕ1 + δ), (96)

s2 = − 1
2 (1 + �10)eB(ϕ1 + δ) − I2 cos δe1

+ 1
2 (1 − �10)eB(ϕ1 − δ). (97)

The longitudinal component of s1 oscillates with time. The
oscillation amplitude depends on ϕ1 and vanishes at points
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FIG. 18. Parametric plot of coordinate curves for s = s2(X1,X4)
at qm = 1,α = π/4 and δ = 0. The values of X1 and X4 are the same
as in Fig. 17.

where cos(2ϕ1 + δ) = 0. For the vector s2, the similar oscil-
lation amplitude is independent of ϕ1. It is specified by δ and
vanishes at δ = ±π/2, but takes maximum value at δ = 0, as
shown in Fig. 18.

V. CONCLUSION

The properties of ESTCs vary widely; one can set
polarizations, intensities, initial phases of the constitutive
electromagnetic plane waves, and the frequency. To construct
a specific ESTC, it is useful to evaluate first the structural
parameters presented in the Appendix because they specify
the interconnections in the infinite system of matrix equations
and, in the final analysis, prescribe the Fourier spectrum of
the electron wave function. The presented solutions provide
an example of such approach.

At given quasimomenta q = q± ≡ ±|q1|e1, the Dirac
equation in the chiral 2D-ESTC has the four solutions �j (q±),
j = 1,2, which describe two different spin states of the
electron moving along the X1 axis in the positive and negative
directions. The bispinor functions �j (q±) = �j (q±)(X1,X4)
are uniquely defined by eight complex scalar functions (struc-
tural functions) zjk = zjk(X4), j = 1,2, k = 1,2,3,4, which
serve as convenient building blocks of the relations describing
the electron properties. These functions are obtained in

the form of Fourier expansions, where coefficients can be
calculated by making use of the recurrent relations (65)–(67)
and the starting coefficients presented in Figs. 3–6.

At any quasimomentum q1 
= 0, the dispersion equation
has two solutions which specify wave functions describing
electron states with different energy and mean values of
momentum and spin operators. The energy level splitting is
illustrated in graphical form over a wide range of q1. It is shown
that at |q1| < q10, the mean values of velocity and momentum
operators are opposite in sign for both of the spin states.

At q1 
= 0, the wave functions �j (q±), j = 1,2, form a
basis for a four-dimensional subspace of partial solutions to the
Dirac equation, but at q1 = 0, as a consequence of Eq. (69), this
subspace degenerates to the two-dimensional one. In this pa-
per, two families of partial solutions which describe unidirec-
tional and bidirectional states of the Dirac electron are treated.
In the comparative analysis of such electron states, it is advan-
tageous to calculate both mean values and Hermitian forms of
various operators with respect to the corresponding wave func-
tions, in particular the velocity operator and the spin operator.

The unidirectional electron states are specified by super-
positions of two basic wave functions �1(q±) and �2(q±)
corresponding to the same quasimomentum q± but describing
two different spin states. It is shown that such superpositions
describe the electron precession. The magnitudes of transverse
components of precessing velocity vectors v± and spin s± are
given by coefficients Rv and Rs depending on q1, as shown in
Figs. 12 and 13.

The bidirectional electron states are specified by super-
positions of two basic wave functions �j (q+) and �j (q−)
corresponding to the two equal-in-magnitude but oppositely
directed quasimomenta and also describing two different
spin states. In particular, such superpositions describe the
relativistic electron states with the zero mean value of the
momentum operator and specific probability current densities
and Hermitian forms of the spin operator.

In this paper, we present families of nonlocalized solutions
of the Dirac equation. They can be used as basis wave functions
to construct various localized states of the Dirac electron
by applying the general approach proposed in [15], where it
was illustrated for the examples of electromagnetic and weak
gravitational fields. Natural crystals prescribe the polarization
state and the refractive index of light plane waves and thus
provide a means to control the properties of light beams.
Similarly, electromagnetic space-time crystals prescribe the
spin state and the energy of the Dirac electron. This makes them
promising tools to control the quantum states of electrons.
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APPENDIX

The definitions of N1(m,s) and N2(s) are given in Sec. II.
Here, we present these major structural parameters in the ex-
plicit form that is necessary in any numerical implementation
of the general techniques developed in Refs. [3–6].
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1. Dirac sets of matrices N1(m,s)

We present N1(m,s) and N2(s) in order of the sequential numbering i = 0,1, . . . of points s = sh(i) ∈ L (see appendix in
Ref. [4]). There are 12 points with g4D(s) = 1. They are elements (from 2 to 13) of the list

S69 = {sh(i), i = 0,1, . . . ,69} = {(0,0,0,0),(0,0,−1,−1),(0,−1,0,−1),(−1,0,0,−1),

(1,0,0,−1),(0,1,0,−1),(0,0,1,−1),(0,0,−1,1),(0,−1,0,1),(−1,0,0,1),(1,0,0,1),(0,1,0,1),(0,0,1,1),

(0,0,0,−2),(0,0,0,2),(0,0,−2,0),(0,−1,−1,0),(−1,0,−1,0),(1,0,−1,0),(0,1,−1,0),(0,−2,0,0),(−1,−1,0,0),

(1,−1,0,0),(−2,0,0,0),(2,0,0,0),(−1,1,0,0),(1,1,0,0),(0,2,0,0),(0,−1,1,0),(−1,0,1,0),

(1,0,1,0),(0,1,1,0),(0,0,2,0),(0,0,−2,−2),(0,−1,−1,−2),(−1,0,−1,−2),

(1,0,−1,−2),(0,1,−1,−2),(0,−2,0,−2),(−1,−1,0,−2),(1,−1,0,−2),(−2,0,0,−2),

(2,0,0,−2),(−1,1,0,−2),(1,1,0,−2),(0,2,0,−2),(0,−1,1,−2),(−1,0,1,−2),

(1,0,1,−2),(0,1,1,−2),(0,0,2,−2),(0,0,−2,2),(0,−1,−1,2),(−1,0,−1,2),

(1,0,−1,2),(0,1,−1,2),(0,−2,0,2),(−1,−1,0,2),(1,−1,0,2),(−2,0,0,2),

(2,0,0,2),(−1,1,0,2),(1,1,0,2),(0,2,0,2),(0,−1,1,2),(−1,0,1,2),(1,0,1,2),(0,1,1,2),(0,0,2,2)}. (A1)

The D sets of matrices N1[m,sh(i)], i = 1, . . . ,12, have the form [5]

Ds{N1[m,(0,0,−1,−1)]} = {−2(A31w1 + A32w2),0,iA32, − iA31,0,0,0,0,0,0,−A31−,−A32−,0,0,0,0},

Ds{N1[m,(0,−1,0,−1)]} = {−2(A21w1 + A23w3),iA21, − iA23,0,0,0,0,0,0,−A23−,−A21−,0,0,0,0,0},

Ds{N1[m,(−1,0,0,−1)]} = {−2(A12w2 + A13w3), − iA12,0,iA13,0,0,0,0,0,−A13−,0,−A12−,0,0,0,0},

Ds{N1[m,(1,0,0,−1)]} = {−2(A42w2 + A43w3),iA42,0, − iA43,0,0,0,0,0,−A43−,0,−A42−,0,0,0,0},

Ds{N1[m,(0,1,0,−1)]} = {−2(A51w1 + A53w3), − iA51,iA53,0,0,0,0,0,0,−A53−,−A51−,0,0,0,0,0},

Ds{N1[m,(0,0,1,−1)]} = {−2(A61w1 + A62w2),0, − iA62,iA61,0,0,0,0,0,0,−A61−,−A62−,0,0,0,0},

Ds{N1[m,(0,0,−1,1)]} = {−2(A∗
61w1 + A∗

62w2),0,iA∗
62, − iA∗

61,0,0,0,0,0,0,−A∗
61+,−A∗

62+,0,0,0,0},

Ds{N1[m,(0,−1,0,1)]} = {−2(A∗
51w1 + A∗

53w3),iA∗
51, − iA∗

53,0,0,0,0,0, 0,−A∗
53+,−A∗

51+,0,0,0,0,0},

Ds{N1[m,(−1,0,0,1)]} = {−2(A∗
42w2 + A∗

43w3), − iA∗
42,0,iA∗

43,0,0,0,0, 0,−A∗
43+,0,−A∗

42+,0,0,0,0},

Ds{N1[m,(1,0,0,1)]} = {−2(A∗
12w2 + A∗

13w3),iA∗
12,0, − iA∗

13,0,0,0,0, 0,−A∗
13+,0,−A∗

12+,0,0,0,0},

Ds{N1[m,(0,1,0,1)]} = {−2(A∗
21w1 + A∗

23w3), − iA∗
21,iA∗

23,0,0,0,0,0, 0,−A∗
23+,−A∗

21+,0,0,0,0,0},

Ds{N1[m,(0,0,1,1)]} = {−2(A∗
31w1 + A∗

32w2),0, − iA∗
32,iA∗

31,0,0,0,0,0,0,−A∗
31+,−A∗

32+,0,0,0,0}.

2. Coefficients N2(s)

There are 56 points s = sh(i) ∈ L, i = 13, . . . ,68, with g4D(s) = 2. They are elements (from 14 to 69) of the list S69. The list
of the coefficients N2(s) has the form

{N2[sh(i)], i = 13, . . . ,68} = {2(A12A42 + A13A43 + A21A51 + A23A53 + A31A61 + A32A62),

2(A∗
12A

∗
42 + A∗

13A
∗
43 + A∗

21A
∗
51 + A∗

23A
∗
53 + A∗

31A
∗
61 + A∗

32A
∗
62),

2(A31A
∗
61 + A32A

∗
62), 2(A31A

∗
51 + A21A

∗
61),

2(A32A
∗
42 + A12A

∗
62), 2(A∗

12A32 + A42A
∗
62),

2(A∗
21A31 + A51A

∗
61), 2(A21A

∗
51 + A23A

∗
53),

2(A23A
∗
43 + A13A

∗
53), 2(A∗

13A23 + A43A
∗
53),

2(A12A
∗
42 + A13A

∗
43), 2(A∗

12A42 + A∗
13A43),

2(A13A
∗
23 + A∗

43A53), 2(A∗
23A43 + A∗

13A53),
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2(A∗
21A51 + A∗

23A53), 2(A21A
∗
31 + A∗

51A61),

2(A12A
∗
32 + A∗

42A62), 2(A∗
32A42 + A∗

12A62),

2(A∗
31A51 + A∗

21A61), 2(A∗
31A61 + A∗

32A62),

(A31 + iA32)(A31 − iA32), 2A21A31, 2A12A32,

2A32A42,2A31A51, (A21 + iA23)(A21 − iA23),

2A13A23,2A23A43, (A12 + iA13)(A12 − iA13),

(A42 + iA43)(A42 − iA43), 2A13A53, 2A43A53,

(A51 + iA53)(A51 − iA53), 2A21A61, 2A12A62,

2A42A62,2A51A61, (A61 + iA62)(A61 − iA62),

(A∗
61 + iA∗

62)(A∗
61 − iA∗

62), 2A∗
51A

∗
61, 2A∗

42A
∗
62,

2A∗
12A

∗
62,2A∗

21A
∗
61, (A∗

51 + iA∗
53)(A∗

51 − iA∗
53),

2A∗
43A

∗
53,2A∗

13A
∗
53, (A∗

42 + iA∗
43)(A∗

42 − iA∗
43),

(A∗
12 + iA∗

13)(A∗
12 − iA∗

13), 2A∗
23A

∗
43, 2A∗

13A
∗
23,

(A∗
21 + iA∗

23)(A∗
21 − iA∗

23), 2A∗
31A

∗
51, 2A∗

32A
∗
42,

2A∗
12A

∗
32, 2A∗

21A
∗
31, (A∗

31 + iA∗
32)(A∗

31 − iA∗
32)}.
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