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Vector-magnetic-field sensing via multifrequency control of nitrogen-vacancy centers in diamond
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An ensemble of nitrogen-vacancy (NV) centers in diamond is an attractive device to detect small magnetic
fields. In particular, by exploiting the fact that the NV center can be aligned along one of four different axes due to
C3ν symmetry, it is possible to extract information concerning vector magnetic fields. However, in the conventional
scheme, low readout contrasts of the NV centers significantly decrease the sensitivity of the vector-magnetic-field
sensing. Here, we propose a way to improve the sensitivity of the vector-magnetic-field sensing of the NV centers
using multifrequency control. Since the Zeeman energy of the NV centers depends on the direction of the axis,
we can independently control the four types of NV centers using microwave pulses with different frequencies.
This allows us to use every NV center for the vector field detection in parallel, which effectively increases the
readout contrast. Our results pave the way to realize a practical diamond-based vector field sensor.
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I. INTRODUCTION

The detection of small magnetic fields is important in
the field of metrology, because there are many potential
applications in biology and medical science. The performance
of a magnetic field sensor is characterized by its spatial
resolution and sensitivity; therefore, a significant amount of
effort has been devoted to creating a device that can measure
small magnetic fields in a local region [1–3].

Nitrogen-vacancy (NV) centers in diamond are fascinating
candidates with which to construct a magnetic field sensor
[4–7]. The NV center is a spin-1 system, and the frequency
of the |±1〉 states can be shifted by magnetic fields. We can
use this system as an effective two-level system spanned by |0〉
and |1〉 with a frequency selectivity where |−1〉 is significantly
detuned. We can implement gate operations of the spins in
NV centers using microwave pulses [8–11]. It is possible to
detect dc (ac) magnetic fields by implementing a Ramsey
interference (spin echo) measurement [4–6]. Moreover, NV
centers have a long coherence time, e.g., a few milliseconds at a
room temperature and a second at low temperature [12–14]. In
addition, because the NV centers can be strongly coupled with
optical photons, we can read out the state of the NV centers
via fluorescence from the optical transitions [9,10]. The NV
centers can be embedded in nanocrystals, which allows the
NV centers to interact with local magnetic fields [15]. These
properties are a prerequisite to realizing a high-performance
sensor for magnetic fields.

Recently, vector-magnetic-field sensing by NV centers has
become an active area of interest [16–21]. The NV center is
aligned along one of four different axes due to C3ν symmetry.
The Zeeman energies of the NV centers are determined by
gμbB · dl (l = 1,2,3,4) where g denotes the g factor, μb

denotes a Bohr magneton, B denotes the magnetic fields, and
dl denotes the direction of the lth NV axis. By sequentially
performing Ramsey interference or spin echo measurements
on NV centers with different NV axes, we can estimate the
values of the Zeeman energies gμbB · dl . The data from
the experiments can be processed to reconstruct the vector
components (Bx , By , and Bz) of applied magnetic fields

[16,18]. This can be used to magnetically image a target sample
such as living cells or circuit currents [22,23].

In the conventional approach, the low readout contrast of the
NV centers decreases the sensitivity when sensing the vector
magnetic field [5,24]. When the state of the NV centers is
|±1〉, the photoluminescence intensity becomes smaller than
in the case of |0〉. This allows us to measure the state of the
NV centers via optical detection even at room temperature.

Nevertheless, we can only detect a small portion of the
emitted photons, because most of the photons are emitted
into the environment. This decreases the readout contrast.
Moreover, if we only implement Ramsey or spin echo
measurements on NV centers with a specific axis with this
limited readout contrast, the states of the other NV centers with
different axes remain in the |0〉 state regardless the value of the
magnetic fields, which induces noise affecting the sensitivity
of the magnetic field sensor [5]. If we only need to estimate one
vector component of the target magnetic field, we can recover
the sensitivity by using a diamond where the orientations of the
NV centers are aligned along just one axis [25–28]. However,
we cannot use such a diamond to estimate every component
of the vector magnetic fields, unless we mechanically rotate
the diamond to change the angle between the target magnetic
fields and the direction of the NV axis.

Here, we propose a scheme to improve the sensitivity of the
vector magnetic field sensing via multifrequency control. We
consider using high-density NV centers in a bulk diamond
where the NV centers have four different symmetry axes
(Fig. 1). Because NV centers with different axes can have
different resonant frequencies [24], we can independently
control these NV centers via frequency selectivity. The key
idea in our scheme is the simultaneous implementation
of a Ramsey interference or spin echo experiment with
every NV center via multifrequency control. We show that
adequate control of the microwave pulses can enhance the
signal from NV centers with four different axes, and that
the sensitivity of the vector-magnetic-field sensing becomes
approximately four times better than that of the conventional
scheme.
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FIG. 1. An NV center in diamond set on an axis to be the direction
from the vacancy to the nitrogen. There are four possible directions
of the axis in the diamond. Note that by applying known external
magnetic fields, we can independently control the four types of NV
centers with different axes using frequency selectivity.

II. CONVENTIONAL VECTOR-MAGNETIC-FIELD
SENSING WITH AN NV CENTER

Here, we review a conventional dc magnetic field sensing
using NV centers [16–18]. The key idea in this scheme is to
use NV centers with different axes so that we can extract the
information of the vector magnetic fields. Applying microwave
pulses to drive the states only with one specific NV axis, the
photoluminescence intensity let us obtain the information of
the magnetic field projection along the chosen NV axis. By
repeating the experiment with different axes, we obtain the
information of the magnetic field projection along different
directions. From the sum of these experimental results, it is
possible to extract the information of the vector magnetic
fields. This scheme will, in principle, work for 4 NV centers
with different axes. Although an ensemble of the NV centers
is used for the actual experiment of the vector field sensing
[16–18], we explain the case of using just four NV centers
with different NV axes, which lets us know the essence of the
conventional scheme.

We describe the details of the conventional dc magnetic field
sensing using four NV centers with different axes. Even though
the NV center is a spin-1 system, we can treat it as a two-level
system spanned by |0〉 and |1〉 with frequency selectivity, as we
show in detail in Appendix A. Note that the NV center has four
types of intrinsic quantization axes along the NV direction with
zero or small magnetic fields. We define the direction of these
NV axes as d1 = ( 1√

3
,− 1√

3
,− 1√

3
), d2 = (− 1√

3
, 1√

3
,− 1√

3
),

d3 = (− 1√
3
,− 1√

3
, 1√

3
), and d4 = ( 1√

3
, 1√

3
, 1√

3
).

The Hamiltonian of the NV center with an axis defined by
a vector dl is given as

Hl = ωl

2
σ̂ (l)

z + λσ̂ (l)
x cos ω′t, (1)

for l = 1,2,3,4, where ωl = ω0 + gμbBtotal · dl , ω0 denotes
zero-field splitting, and gμbBtotal · dl denotes Zeeman energy
splitting.

Btotal = Bex + B denotes the sum of a known external
magnetic field (Bex) and the target unknown magnetic field (B),
λ denotes the Rabi frequency, and ω′ denotes the microwave
frequency. The Pauli matrices are defined as σ̂z = |1〉〈1| −
|0〉〈0|, σ̂x = |1〉〈0| + |0〉〈1|, σ̂y = −i|1〉〈0| + i|0〉〈1|. We con-
sider h̄ = 1 here. Throughout this paper, we assume that the
target unknown magnetic field (B) is much smaller than the
known external magnetic field (Bex). By applying known
external magnetic fields of around 5 mT, the degeneracy of
the four different orientations of NV centers can be removed,

FIG. 2. Microwave pulse sequence for standard magnetometry
with NV centers. (a) Ramsey interference measurements performed
to sense dc field, and (b) spin echo measurements performed to sense
the ac field where we can suppress low-frequency magnetic field
noise.

and so the resonant frequency of the NV centers is different
depending on the NV axis [24]. We can drive only the NV
centers with an axis dk by resonant microwave pulses where k

denotes the specific NV center to be driven by the microwave,
while the other NV centers with different axes are not driven by
the microwave pulses because of the energy detuning. Also, we
assume that the Zeeman energy due to the external magnetic
fields (gμbBex · dl for l = 1,2,3,4) is much smaller than the
zero-field splitting of the NV centers (ω0). This guarantees
that the eigenstates of the Hamiltonian are |0〉 and |1〉 without
microwave driving.

In a rotating frame, we can rewrite this Hamiltonian as

Hl = ωl − ω′

2
σ̂ (l)

z + λ

2
σ̂ (l)

x , (2)

for l = 1,2,3,4, where we choose ω′ = ω0 + gμbBex · dk and
use a rotating-wave approximation. Due to a large detuning,
we obtain

Hk′ � gμbBtotal · dk′ − gμbBex · dk

2
σ̂ (k′)

z , (3)

for k′ �= k, where k′ denote the NV centers not to be driven
by the microwave. On the other hand, since we assume
gμbB · dk � λ, we have

Hk � λ

2
σ̂ (k)

x (4)

during the application of the microwave pulses. If we do not
apply a microwave (λ = 0), the Hamiltonian is written as

Hl = gμbBtotal · dl − gμbBex · dk

2
σ̂ (l)

z , (5)

for l = 1,2,3,4. We can construct the vector field sensor as
follows [see Fig. 2(a)]. We assume that the initialization time,
pulse operations, and readout time are much shorter than the
coherence time of the NV center. First, we initialize the state
to obtain

⊗4
l=1 |0〉l via green laser irradiation. Second, by

performing a π
2 pulse along the y axis with the microwave

(resonant on the kth NV center), we prepare |+〉k
⊗

k′ �=k |0〉k′

where |+〉k = 1√
2
(|0〉k + |1〉k) state. Third, we let this state

evolve via the Hamiltonian in Eq. (5) for a time tk . Note that the
NV center is affected by the dephasing process; therefore, the
dynamics can be described by the following master equation:

dρl

dt
= −i[Hl,ρl] − γl

(
ρl − σ̂ (l)

z ρlσ̂
(l)
z

)
, (6)

where γl = 1
2T l∗

2
denotes the dephasing rate of the lth NV center

and T l∗
2 denotes the coherence time measured by Ramsey

interference for l = 1,2,3,4. It is worth mentioning that, since
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the energy relaxation rate is usually much smaller than the
dephasing rate in the NV centers [29], we ignore the energy
relaxation throughout of this paper. In this case, if we prepare
an energy eigenstate such as |0〉 or |1〉, such a state does
not change during a time scale that we are interested in. So,
during this process, the NV centers with an axis of dk′ (k′ �= k)
remain in a state of

⊗
k′ �=k |0〉k′ . Fourth, we perform a π

2 pulse
along the x axis with the microwave (resonant on the kth NV
center). The diagonal component of the density matrix after
these operations can be calculated to be

k〈0|ρk(tk)|0〉k = 1 + e−2γktk sin(gμbB · dktk)

2
, (7)

k〈1|ρk(tk)|1〉k = 1 − e−2γktk sin(gμbB · dktk)

2
, (8)

while the diagonal components of the density matrices for the
other NV centers with an axis of dk′ are k′ 〈0|ρk′(tk)|0〉k′ = 1
and k′ 〈1|ρk′(tk)|1〉k′ = 0 for k′ �= k due to the detuning. Finally,
we readout the population of the state via the green laser
irradiation [9]. The information of the NV center is now
transferred into photons, and the photon state is described
as

ρ(ph) =
[

1 + e−2γktk sin(gμbB · dktk)

2
ρ

(ph)
k,0

+ 1 − e−2γktk sin(gμbB · dktk)

2
ρ

(ph)
k,1

]⊗
k′ �=k

ρ
(ph)
k′,0 , (9)

where ρ
(ph)
l,1 (ρ(ph)

l,0 ) denotes the state of the photon after
performing the green laser pulse when the state of the NV
center is |1〉l (|0〉l) for l = 1,2,3,4. We can describe ρ

(ph)
l,1 and

ρ
(ph)
l,0 as follows:

ρ
(ph)
l,0 = (

1 − α
(l)
0

)|0〉ph〈0| + α
(l)
0 |1〉ph〈1|,

ρ
(ph)
l,1 = (

1 − α
(l)
1

)|0〉ph〈0| + α
(l)
1 |1〉ph〈1|,

where |0〉ph and |1〉ph denote the Fock states of the photon. We
define α

(l)
0 (α(l)

1 ) l = 1,2,3,4 as a probability emitting a photon
when the state of the NV center is |0〉l (|1〉l). Note that while we
control the NV center with the NV axis along dk , the other NV
centers remain in the state of |0〉k′ (k′ �= k) and emit photons.
We assume α

(l)
0 , α

(l)
1 � 1 and that the multiple photon emission

probability from an NV center is negligible. We define a photon
number operator as N̂ = ∑4

l=1 â
†
l âl where â

†
l (âl) denotes the

creation (destruction) operator of the photon emitted from the
NV center with an NV axis of dl. For gμbB · dktk � 1, we
can calculate the expectation value of the emitted photons

〈N̂k〉 = Tr[ρ(ph)N̂ ]

� 1 + gμbB · dktke
−2γktk

2
α̃0

+ 1 − gμbB · dktke
−2γktk

2
α̃

(k)
1 , (10)

where we define α̃0 = ∑4
l=1 α

(l)
0 and α̃

(k)
1 = α

(k)
1 + ∑

k′ �=k α
(k′)
0 .

Note that we can tune α
(l)
0 and α

(l)
1 by changing both light field

amplitudes and the polarization of the photons. In addition, we

can decrease the coherence time if we add artificial noise. For
simplicity, we assume α

(l)
0 = α0, α

(l)
1 = α1, γl = γ , and tl = t

for (l = 1,2,3,4). Suppose that we first implement the above
experiment shown in Fig. 2(a) for k = 1, and then implement
it for k = 4, which allows us to sum up these two experimental
data, and we obtain

〈N̂1〉 + 〈N̂4〉 = (α̃0 + α̃1) + 1√
3

(α̃0 − α̃1)gμbBxte
−2γ t .

(11)

Interestingly, this sum depends on Bx while this is independent
of By and Bz. Therefore we define 〈N̂x〉 ≡ 〈N̂1〉 + 〈N̂4〉,
and we estimate Bx from 〈N̂x〉. Note that even though we
explain the case to measure Bx , we can also measure By (Bz)
by considering 〈N̂y〉 ≡ 〈N̂2〉 + 〈N̂4〉 (〈N̂z〉 ≡ 〈N̂3〉 + 〈N̂4〉),
because 〈N̂y〉 (〈N̂z〉) only depends on By (Bz). Therefore, we
can calculate the uncertainty in the estimation of Bx as follows:

δB(dc)
x =

√
〈δN̂xδN̂x〉∣∣ d〈N̂〉x

dBx

∣∣ 1√
N

=
√

3
√

7α0 + α1

|α0 − α1|gμbte−2γ t

1√
T
2t

, (12)

where N = T
2t

denotes the repetition number and T denotes
the total experiment time. This uncertainty is minimized for
t = 1

4γ
and

δB(dc)
x =

√
3
√

7α0 + α1

e− 1
4 |α0 − α1|gμb

√
1

4γ

1√
T
2

. (13)

Therefore we chose this value for the field sensing. Note
that we have a factor of

√
7α0 + α1 in the numerator, which

increases the uncertainty. This is because, when we read out
the NV centers, three-quarters of the NV centers remain in
the |0〉 state regardless of the strength of the magnetic fields,
which decreases the sensitivity. This clearly shows that the
existence of NV centers that emit the same number of photons
regardless of the strength of the applied magnetic field actually
decreases the sensitivity of the field sensing.

Here, we briefly review conventional ac magnetic field
sensing using NV centers [5,16,17]. We have the same form
of the Hamiltonian described in Eq. (B1) where we replace
the total magnetic field with Btotal = Bex + Bac sin ωact . Here,
we assume that we can control ωac while Bac is unknown.
This is a reasonable assumption when we try to detect nuclear
spins, because we can rotate the spin by radio frequency pulses
while we do not know the states of the nuclear spin [30].
This assumption is also valid when we try to detect a state of
the superconducting flux qubit [31]. The superconducting flux
qubit has two persistent current states, and we can measure the
superconducting flux qubit by detecting the magnetic field
from the flux qubit. To induce ac magnetic fields with a
controllable frequency of ωac, we can drive the flux qubit by a
resonant pulse [32].

To estimate the values of Bac, we use a similar pulse
sequence to that of the dc magnetic field sensing. The only
difference from the dc magnetic field sensing is that we apply
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a π pulse in the middle of the time evolution between the two
π
2 pulses, as shown in Fig. 2(b). The diagonal component of
the density matrix can be calculated as

k〈0|ρk(tk)|0〉k = 1 + e−2γ ′
k tk sin θ

(ac)
k

2
, (14)

k〈1|ρk(tk)|1〉k = 1 − e−2γ ′
k tk sin θ

(ac)
k

2
, (15)

θ
(ac)
k = gμbBac · dk

1 + cos ωact − 2 cos ωact

2

ωac
, (16)

where γ ′
k = 1

2T k
2

denotes the dephasing rate for the k′th NV

center and T k
2 denotes the dephasing time measured by the

spin echo. The diagonal components of the density matrices
for the other NV centers with an axis of dk′ (k′ �= k) are
k′ 〈0|ρk′ (tk)|0〉k′ = 1 and k′ 〈1|ρk′(tk)|1〉k′ = 0 for k′ �= k due
to the detuning. Similarly to the case of dc sensing, we can
calculate the sensitivity of the ac field sensing such that

δB(ac)
x �

√
3
√

7α0 + α1

|α0 − α1|gμb
|1+cos ωact−2 cos ωac t

2 |
ωac

e−2γ ′t

1√
T
2t

,

(17)

where we assume α
(k)
0 = α0, α

(k)
1 = α1, γ ′

k = γ ′, and tk = t

for all k. This uncertainty is minimized for t = 1
4γ ′ and ωac �

23.3γ ′ = 2θopt

T2
for θopt � 1.856π . So we choose these values

for the field sensing. The uncertainty in the estimation is given
as follows:

δB(ac)
x �

√
3
√

7α0 + α1

e− 1
2 |α0 − α1|gμb

|1+cos θopt−2 cos
θopt

2 |
θopt

√
1

4γ ′
T
2

.

(18)

III. DC-VECTOR-MAGNETIC-FIELD SENSOR
VIA MULTIFREQUENCY CONTROL

Here, we propose a scheme to measure the vector magnetic
field with an improved sensitivity. The key idea is to adopt
multifrequency control of the NV centers. NV centers with
different axes can have different resonant frequencies when
applying a known external magnetic field [24]; therefore, we
can independently control these NV centers using frequency
selectivity. In addition, we can parallelize the control of the
NV centers by simultaneously rotating all NV centers with
different axes so that every NV center can be involved in the
field sensing.

It is worth mentioning that to demonstrate our proposal, we
can use a large ensemble of NV centers where each NV center
has different properties, as we will describe later. However, for
simplicity, we start by explaining how our scheme works if we
have four specific NV centers with the NV axis of d1, d2, d3,
and d4 where the NV centers have the same properties except
the NV axis.

We consider detecting a weak target unknown magnetic
field (B) along the general direction by using our scheme. As
an example, we explain how to measure a dc magnetic field
component along [1,0,0] (Bx) using our scheme. After the

FIG. 3. The pulse sequence used to perform our proposed vector-
magnetic-field sensing. Using frequency selectivity, we indepen-
dently control the NV centers with different axes. We implement
four microwave pulses with different frequencies at the same time to
increase the sensitivity.

initialization of the states by the green laser, we rotate every
NV center using the π

2 pulse, and the initial state is given by⊗4
l=1

1√
2
(|0〉l + |1〉l). Although we assume a perfect single-

qubit gate here, we will describe the effect of the imperfect
single-qubit gate in Appendixes B and C. We let this state
evolve for a time t according to the master equation in Eq. (C5).
After performing the π

2 pulse ( 3π
2 pulse) on the NV centers with

the NV axes d2 and d3 (d1 and d4) as shown in Fig. 3(a), we
read out the state of the NV centers via the photoluminescence.
The diagonal component of the density matrix just before the
readout can be calculated as

k〈0|ρk(tk)|0〉k = 1 + e−2γktk sin(gμbB · dktk)

2
,

k〈1|ρk(tk)|1〉k = 1 − e−2γktk sin(gμbB · dktk)

2
, (19)

for k = 2,3 and

k〈0|ρk(tk)|0〉k = 1 − e−2γktk sin(gμbB · dktk)

2
,

k〈1|ρk(tk)|1〉k = 1 + e−2γktk sin(gμbB · dktk)

2
, (20)

for k = 1,4. After the green laser irradiation, the state of the
photons can be described as ρ(ph) = ⊗4

l=1 ρ
(ph)
l , where

ρ
(ph)
k = 1 + e−2γktk sin(gμbB · dktk)

2
ρ

(ph)
k,0

+ 1 − e−2γktk sin(gμbB · dktk)

2
ρ

(ph)
k,1 , (21)

for k = 2,3 and

ρ
(ph)
k = 1 − e−2γktk sin(gμbB · dktk)

2
ρ

(ph)
k,0

+ 1 + e−2γktk sin(gμbB · dktk)

2
ρ

(ph)
k,1 , (22)
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for k = 1,4. We can calculate the expected values of the
emitted photons from these states as follows:

〈
N̂ (total)

x

〉 = Tr

[(
4∑

l=1

N̂k

)
ρ(ph)

]

�
4∑

l=1

α
(l)
0 + α

(l)
1

2

−
∑
k=1,4

α
(k)
0 − α

(k)
1

2
gμbB · dktke

−2γktk

+
∑
k=2,3

α
(k)
0 − α

(k)
1

2
gμbB · dktke

−2γktk . (23)

Let us assume α
(l)
0 = α0, α

(l)
1 = α1, γl = γ , and tl = t (l =

1,2,3,4) for simplicity. (We will consider more general condi-
tions later.) With these homogeneous parameters, we obtain〈

N̂ (total)
x

〉 � 2(α0 + α1) − 2√
3

(α0 − α1)gμbBxte
−2γ t .

Note that this expectation value depends on just Bx . Therefore,
the uncertainty of the estimation of Bx is given as follows:

δB(dc)
x =

√〈
δN̂

(total)
x δN̂

(total)
x

〉
∣∣ d〈N̂ (total)

x 〉
dBx

∣∣ 1√
N

�
√

2(α0 + α1)
2√
3
|α0 − α1|gμbte−2γ t

1√
T
t

, (24)

where N = T
t

denotes the repetition number of the experiment.
This uncertainty is minimized for t = 1

4γ
and

δB(dc)
x �

√
3
√

2(α0 + α1)

2e− 1
2 |α0 − α1|gμb

√
1

4γ

1√
T

. (25)

Therefore, we chose this value for the field sensing. Because
we have α0 � α1 due to the low readout contrast [24],
the sensitivity of our scheme described by Eq. (25) is
approximately four times better than that in the conventional
scheme described by Eq. (13). Note that even though we
explained how to measure the magnetic field Bx along [1,0,0],
we can easily generalize our scheme to measure By and Bz.
For example, to measure By (Bz), we perform a π

2 pulse ( 3π
2

pulse) on the NV centers with the NV axes of d1 and d3 (d2

and d4) between the green laser irradiation.
However, in actual experiments, α

(l)
0 , α

(l)
1 , and γl have a

dependency on l due to inhomogeneities. In this case, we
need to choose a suitable set of tl (l = 1,2,3,4) to compensate

for such an inhomogeneity. If τl(tl) ≡ α
(l)
0 −α

(l)
1

2 e−2γl tl tl does not
depend on l, we can measure Bx from 〈N̂ (total)

x 〉 as described
in Eq. (23). We numerically checked that it is possible to have

an equal value of α
(l)
0 −α

(l)
1

2 e−2γl tl tl for l = 1,2,3,4. In Fig. 4,

we randomly picked up δαj = α
(j )
0 − α

(j )
1 and γj from the

Gaussian distribution, and we plotted τj (t) = α
(j )
0 −α

(j )
1

2 e−2γj t t

(j = 1,2, . . . ,200). (It is worth mentioning that although we
still consider using four NV centers for our scheme, we choose
200 sets of random parameters to investigate the effect of

FIG. 4. We plot τj (t) = α
(j )
0 −α

(j )
1

2 e−2γj t t (j = 1,2, . . . ,200)

against t where we choose δαj = α
(j )
0 − α

(j )
1 and γj from the Gaussian

distribution. The average of δαj (γj ) is 0.01 (107 Hz), and the
standard deviation is 0.001 (106). In addition, we plot the value of
δαmin

2 e− 1
2 1

4γmax
with a horizontal dashed line, where δαmin = minj [δαj ]

and γmax = maxj [γj ], and plot a vertical line at t = 1
4γmax

. We

numerically show that we can satisfy τj (tj ) = δαmin
2 e− 1

2 1
4γmax

for all j

by choosing a certain set of {tj }200
j=1 for tj � 1

4γmax
.

inhomogeneous parameters between these four NV centers.)
In addition, in the same figure, we plotted the value of
δαmin

2 e− 1
2

1
4γmax

with a dashed line where δαmin = minj [δαj ]
and γmax = maxj [γj ]. These results show that we can choose

tj to satisfy α
(j )
0 −α

(j )
1

2 e−2γj tj tj = δαmin
2 e− 1

2
1

4γmax
and tj � 1

4γmax

as long as the inhomogeneous width of the parameters is
approximately 10% [24]. The expected values of the emitted
photons from this state are described as

〈
N̂ (total)

x

〉 �
4∑

l=1

α
(l)
0 + α

(l)
1

2

−
∑
k=1,4

α
(k)
0 − α

(k)
1

2
gμbB · dktke

−2γktk

+
∑
k=2,3

α
(k)
0 − α

(k)
1

2
gμbB · dktke

−2γktk

=
(

4∑
l=1

α
(l)
0 + α

(l)
1

2

)
+ 2e− 1

2√
3

δαmin

4γmax
gμbBx,

where δαmin = minl=1,2,3,4[α(l)
0 − α

(l)
1 ] and γmax =

maxl=1,2,3,4[γl].
Therefore, the uncertainty in the estimation of Bx is given

as follows:

δB(dc)
x =

√〈
δN̂

(total)
x δN̂

(total)
x

〉
∣∣ d〈N̂ (total)

x 〉
dBx

∣∣ 1√
N

�
√

3
√∑4

l=1
α

(l)
0 +α

(l)
1

2

2e− 1
2 δαmingμb

√
1

4γmax

1√
T

. (26)
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FIG. 5. The normalized uncertainty of the estimation r =
δB (dc)

x (σ )/δB (dc)
x (σ = 0) = δB (ac)

x (σ )/δB (ac)
x (σ = 0) where δB (dc)

x (σ )
[δB (ac)

x (σ )] denotes the uncertainty in our dc (ac) vector magnetic
field sensor for inhomogeneous parameters with a standard deviation
of σ . Note that the normalized uncertainty for the dc sensing has the
same form as that for the ac sensing. To calculate the average value,
we randomly pick up the values of δαj = α

(j )
0 − α

(j )
1 and γj from the

Gaussian distribution where the average of δαj (γj ) is δαj = 0.01
(γj = 106 Hz) and the standard deviation is δαj · σ ′ (γ ′

j · σ ′) where
σ ′ denotes a normalized standard deviation.

We numerically calculated this sensitivity, and plotted the ratio
between the homogeneous case and inhomogeneous case with
a standard deviation of σ as shown in Fig. 5. These results
demonstrate that if the standard deviation of the parameters is
around a few %, we can achieve nearly the same sensitivity as
that in the homogeneous case.

We will consider a more realistic case where we use an
ensemble of NV centers with slightly different properties,
while we described the case of using four NV centers above.
Similarly to the standard electron spin resonance (ESR), we
will globally drive the NV centers by the microwave pulses
where we use the same pulse sequence as shown in Fig. 3.
After the initialization of the states by the green laser, we
rotate the ensemble of NV centers by using the π

2 pulse, and
the initial state is given by

L
4⊗

j=1

[ 4⊗
l=1

1√
2

(|0〉l,j + |1〉l,j )

]
, (27)

where L denotes the number of NV centers and l specifies the
type of the NV axis. We can calculate the expected values of
the emitted photons from the NV centers after the readout by
the green laser as follows:

〈
N̂ (total)

x

〉 �
L
4∑

j=1

4∑
l=1

α
(l,j )
0 + α

(l,j )
1

2

−
L
4∑

j=1

∑
k=1,4

α
(k,j )
0 − α

(k,j )
1

2
gμbB · dktke

−2γk,j tk

+
L
4∑

j=1

∑
k=2,3

α
(k,j )
0 − α

(k,j )
1

2
gμbB · dktke

−2γk,j tk .

(28)

For l = 1,2,3,4, we define the deviation from the aver-
age value as δα

(l,j )
0 ≡ α

(l,j )
0 − α

(l)
0 , δα

(l,j )
1 ≡ α

(l,j )
1 − α

(l)
1 , and

δγl,j = γl,j − γl where α
(l)
0 (α(l)

1 ) denotes an average value for

{α(l,j )
0 }

L
4
j=1 ({α(l,j )

1 }
L
4
j=1) and γl denotes an average value for

{γl,j }
L
4
j=1. We can rewrite the expectation value as 〈N̂ (total)

x 〉 =
N (av)

x + δN (av)
x . Here, N (av)

x denotes the average value defined
as

N (av)
x = L

4

4∑
l=1

α
(l)
0 + α

(l)
1

2

− L

4

∑
k=1,4

α
(k)
0 − α

(k)
1

2
gμbB · dktke

−2γktk

+ L

4

∑
k=2,3

α
(k)
0 − α

(k)
1

2
gμbB · dktke

−2γktk ,

while δN (av)
x denotes the deviation from the average values

calculated as

δN (av)
x �

L
4∑

j=1

4∑
l=1

δα
(l,j )
0 + δα

(l,j )
1

2

−
L
4∑

j=1

∑
k=1,4

δα
(k,j )
0 − δα

(k,j )
1

2
gμbB · dktke

−2γktk

+
L
4∑

j=1

∑
k=2,3

δα
(k,j )
0 − δα

(k,j )
1

2
gμbB · dktke

−2γktk

−
L
4∑

j=1

∑
k=1,4

α
(k)
0 − α

(k)
1

2
gμbB · dktke

− 2γktk (−2δγk,j tk)

+
L
4∑

j=1

∑
k=2,3

α
(k)
0 − α

(k)
1

2
gμbB · dktke

−2γktk (−2δγk,j tk),

where we use e−2γl,j tl = e−2γl tl e−2δγl,j tl � e−2γl tl (1 − 2δγl,j tl)
for l = 1,2,3,4. From the central limit theorem, we can show
δN (av)

x = O(
√

L) while we have N (av)
x = O(L). So we have

〈N̂ (total)
x 〉 � N (av)

x for a large L, and so the effect of the
inhomogeneous parameters is negligible. Therefore, even for
an ensemble of NV centers where each NV center has different
decay rate and visibility, we can use our scheme to measure the
vector magnetic field, similarly to the case of four NV centers
described above.

IV. AC-VECTOR-MAGNETIC-FIELD SENSOR
VIA MULTIFREQUENCY CONTROL

Here, we explain how to measure the ac vector magnetic
field using our scheme. As an example, we discuss the case
of measuring the x component of the ac magnetic fields. We
use a similar pulse sequence to that in our dc magnetic field
sensing. The only difference from the dc magnetic field sensing
is that we apply a π pulse in the middle of the microwave
pulse sequence as shown in Fig. 3(b). Similarly to the case
of dc magnetic field sensing, we can use a large ensemble
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of NV centers for the ac field sensing. However, we start by
explaining how our scheme for ac field sensing works if we
have four specific NV centers with the NV axis of d1, d2,
d3, and d4. After the green laser irradiation, the state of the
photons can be described as follows:

ρ(ph)
ac =

4⊗
l=1

ρ
(ph)
l,ac , (29)

where

ρ
(ph)
k,ac = 1 + e−2γ ′

k tk sin θ
(ac)
k

2
ρ

(ph)
k,0

+ 1 − e−2γ ′
k tk sin θ

(ac)
k

2
ρ

(ph)
k,1

for k = 2,3 and

ρ
(ph)
k,ac = 1 − e−2γ ′

k tk sin θ
(ac)
k

2
ρ

(ph)
k,0

+ 1 + e−2γ ′
k tk sin θ

(ac)
k

2
ρ

(ph)
k,1

for k = 1,4. We can calculate the expected values of the
emitted photon from these states as follows:〈
N̂ (total)

x

〉
�

(
4∑

l=1

α
(l)
0 + α

(l)
1

2

)

−
∑
k=1,4

(
α

(k)
0 − α

(k)
1

)
gμbBac · dk

1+ cos ωactk − 2 cos ωac tk
2

ωac
e−2γ ′

k tk

2

+
∑
k=2,3

(
α

(k)
0 − α

(k)
1

)
gμbBac·dk

1+cos ωactk − 2 cos ωac tk
2

ωac
e−2γ ′

k tk

2
.

If we have α
(l)
0 = α0, α

(l)
1 = α1, γ ′

l = γ , and tl = t for l =
1,2,3,4, we obtain〈

N̂ (total)
x

〉
� 2(α0 + α1)

− 2(α0 − α1)gμbB
(ac)
x

(
1+ cos ωact − 2 cos ωact

2

)
e−2γ ′t

√
3 ωac

.

Note that this expectation value only depends on B(ac)
x .

Therefore, the uncertainty in the estimation of B(ac)
x is given as

follows:

δB(ac)
x =

√〈
δN̂

(total)
x δN̂

(total)
x

〉
∣∣ d〈N̂ (total)

x 〉
dB

(ac)
x

∣∣ 1√
N

�
√

2(α0 + α1)
2√
3
|α0 − α1|gμb

|1+cos ωact−2 cos ωac t
2 |

ωac
e−2γ ′t

1√
T
t

,

FIG. 6. We plot τ ′
j (t) = α

(j )
0 −α

(j )
1

2 e
−2γ ′

j
t 1+cos(ωact)−2 cos( ωac

2 t)
ωac

(j =
1,2, . . . ,200) against t where we choose δαj = α

(j )
0 − α

(j )
1 and γ ′

j

from the Gaussian distribution. The average of δαj (γ ′
j ) is 0.01 (107),

and the standard deviation is 0.001 (106). In addition, we plot the

value of δαmin
2 e− 1

2
1+cos(θopt)−2 cos(

θopt
2 )

ωac
with a horizontal dashed line,

and we plot a vertical line at t = 1
4γ ′

max
where δαmin = minj [δαj ],

γ ′
max = maxj [γ ′

j ], and ωac = 4θoptγ
′
max. We numerically show that we

can satisfy τ ′
j (tj ) = δαmin

2 e− 1
2

1+cos(θopt)−2 cos(
θopt

2 )
ωac

for all j by choosing

a certain set of {tj }200
j=1 where tj � 1

4γ ′
max

.

where N = T
t

denotes the repetition number of the experiment.
By optimizing the parameters, we obtain

δB(ac)
x �

√
3
√

2(α0 + α1)

2e− 1
2 |α0 − α1|gμb

|1+cos θopt−2 cos
θopt

2 |
θopt

√
1

4γ ′

1√
T

.

Because α0 � α1, we can conclude that the sensitivity of
our scheme is approximately four times better than that
in the conventional scheme by comparing Eq. (30) with
Eq. (18).

Conversely, if the parameters α
(l)
0 , α

(l)
1 , and γ ′

l have a
dependency on k, we need to choose a suitable set of
tl (l = 1,2,3,4) to compensate such an inhomogeneity. We

know that if (α(l)
0 − α

(l)
1 )e−2γ ′

l tl
1+cos ωactl−2 cos ωac tl

2
ωac

does not

depend on l, we can estimate the value of B(ac)
x from just

〈N̂ (total)
x 〉. We numerically checked whether it is possible to

have an equal value of (α(l)
0 − α

(l)
1 )e−2γ ′

l tl
1+cos ωactl−2 cos ωac tl

2
ωac

for all l. In Fig. 6, we randomly picked δαj = α
(j )
0 − α

(j )
1

and γ ′
j from the Gaussian distribution. We plotted τ ′

j (t) =
α

(j )
0 −α

(j )
1

2 e−2γ ′
j t

1+cos(ωact)−2 cos( ωac
2 t)

ωac
(j = 1,2, . . . ,200) and the

value of δαmin
2 e− 1

2
1+cos(θopt)−2 cos(

θopt
2 )

ωac
where δαmin = minj [δαj ],

γ ′
max = maxj [γ ′

j ], and ωac = 4θoptγ
′
max. These results show that

we can choose tj to satisfy τ ′
j (tj ) = δαmin

2 e− 1
2

1+cos(θopt)−2 cos(
θopt

2 )
ωac

for all j where tj � 1
4γ ′

max
.
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We can calculate the expected values of the emitted photons
from this state as follows:〈

N̂ (total)
x

〉
�

(
4∑

l=1

α
(l)
0 + α

(l)
1

2

)

− 2e− 1
2 δαmingμbB

(ac)
x

(
1 + cos θopt − 2 cos θopt

2

)
√

3ωac

, (30)

where δαmin = minl=1,2,3,4[δαl], γ ′
max = maxl=1,2,3,4[γ ′

l ], and
ωac = 4θoptγ

′
max. Therefore, the uncertainty is

δB(ac)
x �

√
3
√∑4

l=1
α

(l)
0 +α

(l)
1

2

2e− 1
2 δαmingμb

|1+cos θopt−2 cos
θopt

2 |
θopt

√
1

4γ ′
max

1√
T

.

Similarly to the case of dc-vector-magnetic-field sensing,
we can achieve nearly the same sensitivity as that in the
homogeneous case if the standard deviation of the parameters
is around a few % as shown in Fig. 5.

It is worth mentioning that although we have described
a scheme to measure the vector of the ac magnetic field by
using four NV centers, it is possible to use a large ensemble
of NV centers where each NV center has different decay rate.
Similarly to the dc magnetic field sensing, we can use a central
limit theorem so that the statistical variations can be negligible
as long as the number of the NV centers is large.

In conclusion, we proposed a scheme to improve the
sensitivity of vector-magnetic-field sensing via multifrequency
control. Implementing a Ramsey interference or spin echo
experiment for all NV centers with different NV axes using
frequency selectivity, we can enhance the signal from the
NV centers. We demonstrated that the sensitivity of the
vector-magnetic-field sensing becomes approximately four
times better than that of the conventional scheme.
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APPENDIX A: TWO-LEVEL SYSTEM APPROXIMATION
FOR THE NV CENTER

Although the NV center is a spin-1 system, we can
approximate this system as a two-level system by using
a frequency selectivity. We will show the details for this
approximation. The Hamiltonian of the NV center with an
NV axis of dk is

Hk = ω0
(
Ŝ(k)

z

)2 + gμbBex · dkŜ
(k)
z + λ′Ŝ(k)

x cos ω′t, (A1)

where Ŝx , Ŝy , and Ŝz denote spin-1 operators. It is worth
mentioning that although the NV center is affected by a strain,
we can remove the effect of the strain from the Hamiltonian by

applying external magnetic fields [33,34]. So, in this paper, we
do not consider the effect of the strain. By going to a rotating
frame with a frequency of ω′ = ω0 + gμbBex · dk , we obtain

Hk = (ω0 − ω′)
(
Ŝ(k)

z

)2 + gμbBex · dkŜ
(k)
z

+ λ′
√

2
(|0〉k〈1| + |1〉k〈0|),

where we use the rotating-wave approximation. Since we
consider |0〉k as an initial state, the state of |−1〉k will not
be involved in the dynamics by this Hamiltonian, and so we
can ignore the state of |−1〉k . So we obtain

Hk = (ω0 − ω′ + gμbBex · dk)|1〉k〈1|

+ λ′
√

2
(|0〉k〈1| + |1〉k〈0|),

and we can rewrite this Hamiltonian as follows:

Hk = (ω0 − ω′ + gμbBex · dk)

2
σ̂ (k)

z + λ′
√

2
σ̂ (k)

x ,

where σ̂ (k)
z = |1〉k〈1| − |0〉k〈0| and σ̂ (k)

x = |0〉k〈1| + |1〉k〈0|.
Therefore, we can treat the NV center as a two-level system.

APPENDIX B: THE EFFECT OF THE MICROWAVE
PULSES ON THE NV CENTERS

In the main text, we assume the Hamiltonian of the NV
center with an axis with dk as

Hk = ωl

2
σ̂ (k)

z + λσ̂ (k)
x cos ω′t, (B1)

where the microwave pulses are applied along the x direction
on the NV center. However, in our scheme, the microwave
field to drive the other NV centers with different axes (dk′ for
k′ �= k) has parallel and perpendicular components to the axis
of dk . To consider the effect of the microwave pulses to drive
the other NV centers, we use the following Hamiltonian:

Hk = ωl

2
σ̂ (k)

z + λσ̂ (k)
x cos ω′t

+ λ̃x σ̂
(k)
x cos ω̃′t + λ̃zσ̂

(k)
z cos ω̃′t, (B2)

where λx (λz) denote the amplitude of the microwave along
the x (z) direction to drive the other NV centers, ω′ = ω0 +
gμbBex · dk denotes the frequency of the resonant microwave
on the target NV center, ω̃′ = ω′ + δ denotes the frequency
of the microwave for the other NV centers, and δ denotes the
detuning between the NV centers. By going to a rotating frame,
we obtain

Hk = ωl − ω′

2
σ̂ (k)

z + λσ̂ (k)
x

1 + e2iω′t

2

+ λ̃x σ̂
(k)
x

ei(ω′+ω̃′)t + ei(ω′−ω̃′)t

2
+ λ̃zσ̂

(k)
z cos ω̃′t.

Importantly, by using a rotating-wave approximation, we
obtain a time-independent Hamiltonian

Hk � ωl − ω′

2
σ̂ (k)

z + λ

2
σ̂ (k)

x , (B3)

and so the effect of the microwave to drive other NV centers
is negligible. Also, by using a numerical simulation, we have
confirmed that the perpendicular component does not affect
the dynamics with realistic parameters as shown in Fig. 7.
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FIG. 7. We plot the population of the NV center l〈1|ρk(t)|1〉l with
the Hamiltonian in Eq. (B2) [Eq. (B3)] by a red (black) line where
the initial state is ρl(0) = |0〉l〈0|. The parameters are λ = λ̃x = λ̃y =
2π × 5 MHz, ωl = ω′ = 2π × 3 GHz, and δ = 2π × 150 MHz.
Although we have a small oscillation with the time-dependent
Hamiltonian, the dynamics with the time-dependent Hamiltonian is
similar to that with the time-independent Hamiltonian. These results
show that the rotating-wave approximation is valid in this parameter
regime.

APPENDIX C: IMPERFECT SINGLE-QUBIT ROTATIONS

For an ensemble of NV centers, each NV center is affected
by slightly different magnetic fields due to the environmental
spins, and this induces a finite linewidth in the spectrum [24].
Importantly, due to the inhomogeneous magnetic fields, we
cannot apply a perfect π

2 pulse on the ensemble of the NV
centers. However, as we will show below, the effect of the
imperfect single-qubit rotation is negligible in our scheme as
long as the Rabi frequency is larger than the inhomogeneous
linewidth.

We describe the Hamiltonian under the effect of the
inhomogeneous magnetic fields. In a rotating frame, we can
rewrite this Hamiltonian of the j th NV center (j = 1,2, . . . , L

4 )
with an NV axis of dk as

H
(j )
k,x = ω

(j )
k − ω′

k

2
σ̂ (k)

z − λ

2
σ̂ (k)

x ,

H
(j )
k,y = ω

(j )
k − ω′

k

2
σ̂ (k)

z − λ

2
σ̂ (k)

y , (C1)

where ω
(j )
k = ω0 + gμbB(j )

total · dk , B(j )
total = Bex + B + B(j ),

and ω′
k = ω0 + gμbBex · dk . Here, Bex denotes the applied

known magnetic fields, B denotes the target magnetic fields
to be sensed, and B(j ) denotes inhomogeneous magnetic fields
on the j th NV center. We can rewrite the Hamiltonian as

H
(j )
k,x = nj

λ

2
σ̂ (k)

z − λ

2
σ̂ (k)

x , (C2)

H
(j )
k,y = nj

λ

2
σ̂ (k)

z − λ

2
σ̂ (k)

y , (C3)

where nk,j = gμbB·dk+gμbB(j )·dk

λ
. Also, we define a Hamiltonian

without microwave driving as

H
(j )
k = nj

λ

2
σ̂ (k)

z . (C4)

We consider the dynamics of the states of the NV centers
with NV axes of d1 and d4 when we implement a pulse
sequence for our vector-magnetic-field sensor. First, by using
green laser irradiation, we prepare a state of |0〉k,j . Second, by
performing the π

2 pulse by the Hamiltonian H
(j )
k,y , we obtain

e−iH
(j )
k,y

π
2λ |0〉k,j . Third, we let the state evolve for time t = 1

4γ
,

and we obtain the state described by a density matrix ρk,j (t)
after the time evolution by solving the master equation

dρk,j

dt
= −i

[
H

(j )
k ,ρk,j

] − γ
(
ρk,j − σ̂ (k)

z ρk,j σ̂
(k)
z

)
(C5)

for a given initial state of e−iH
(j )
k,y

π
2λ |0〉k,j . Here, for simplicity,

we consider a homogeneous decay rate γ . Finally, we perform
the π

2 pulse by the Hamiltonian H
(j )
k,x , and obtain ρ

(f)
k,j =

e−iH
(j )
k,y

π
2λ ρk,j (t)eiH

(j )
k,y

π
2λ . Since only the diagonal component of

this density matrix affects the optical readout, we calculate
these as follows:

k,j 〈0|ρ(f)
k,j |0〉k,j � 1

2
+ λnk,j

8
√

eγ
+ O

(
n3

k,j

)
,

k,j 〈1|ρ(f)
k,j |1〉k,j � 1

2
− λnk,j

8
√

eγ
+ O

(
n3

k,j

)
,

where we assume nk,j � 1 and γ � λ. Similarly, we can
calculate the states of the NV centers with NV axes of d2 and
d3. The expected values of the emitted photons from the NV
centers after the readout by the green laser is calculated as

〈
N̂ (total)

x

〉�
L
4∑

j=1

2(α0+α1) −
L
4∑

j=1

∑
k=1,4

α0 − α1

2
nk,jλ

1

4γ
e− 1

2

+
L
4∑

j=1

∑
k=2,3

α0 − α1

2
nk,j

1

4γ
e− 1

2 + O
(
n3

k,j

)
,

(C6)

where we assume homogeneous photon emission probabilities.

Since nk = 1
(L/4)

∑ L
4
j=1 nj,k denotes the average value of

{nk,j }j= L
4

j=1 , we obtain

〈
N̂ (total)

x

〉 � L

2
(α0 + α1) − L

4

∑
k=1,4

α0 − α1

2
nkλ

1

4γ
e− 1

2

+ L

4

∑
k=2,3

α0 − α1

2
nk

1

4γ
e− 1

2 + O
(
n3

k,j

)

� L

2
(α0 + α1) − L

4

∑
k=1,4

α0 − α1

2
gμbB · dkλ

1

4γ
e− 1

2

+ L

4

∑
k=2,3

α0 − α1

2
gμbB · dk

1

4γ
e− 1

2 + O(n3
k,j ),

(C7)
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where nk = 1
λ

· gμbB · dk + gμbB(j ) · dk = gμbB·dk

λ
.

Therefore, the effect of the inhomogeneous broadening
does not appear in the perturbative calculation with
gμbB·dk+gμbB(j )·dk

λ
� 1, and so we can implement our

vector-magnetic-field sensing as long as we strongly drive the
NV centers by the microwave pulses.

APPENDIX D: THE EFFECT OF THE STANDARD
DEVIATION OF THE PHOTON NUMBER ON THE
PRECISION OF OUR MAGNETIC FIELD SENSOR

Here, we show that the sensitivity of our magnetic field
sensor does not depend on the standard deviation of the emitted
photons but depends on the average number of the photons.

The sensitivity of the field sensing is calculated by the
following formula:

δB =
√

〈δN̂δN̂〉∣∣ d〈N̂〉
dB

∣∣ 1√
N

, (D1)

where δB denotes the uncertainty of the estimation, N̂ =
â†â denotes the number operator of the emitted photons,

δN̂ = N̂ − 〈N̂〉 denotes the deviation from the average num-
ber of the emitted photons, and N denotes the number of the
repetition. Since we assume that the collection efficiency of
the photon is small, we can approximate the number operator
of the photons as N̂ = ∑∞

n=0 n|n〉ph〈n| � |1〉ph〈1| where |n〉ph

denotes the Fock states of the photons. We obtain

〈δN̂δN̂〉 = 〈N̂2〉 − 〈N̂〉2

� 〈N̂〉 − 〈N̂〉2. (D2)

Therefore, we can rewrite Eq. (D1) as follows:

δB �
√

〈N̂〉∣∣ d〈N̂〉
dB

∣∣ 1√
N

, (D3)

where we assume N̂ � 1. This shows that the sensitivity of our
magnetic field sensor simply depends on the average number
of emitted photons and the repetition number.
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