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A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open
quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear
response function, and a weak value of an observable. Time evolution of the correlation function can be derived
by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a
quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit
formulas for calculating a double-time correlation function in the second-order approximation with respect to
a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for
calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time.
Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum
regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results
are compared with those obtained by exact calculation to examine whether the formula is a good approximation.
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I. INTRODUCTION

A study on a quantum system under the influence of a ther-
mal reservoir, called an open quantum system, is of essential
importance not only in the foundations of quantum mechanics
[1] but also in the applications of quantum mechanics to com-
munication and computation, which are referred to as quantum
information processing and make it possible to perform novel
tasks that cannot be done by classical information processing
[2]. In a realistic situation, a quantum system is inevitably
influenced by a surrounding environmental system, which we
refer to as a thermal reservoir in this paper. Since information
that a quantum system possesses flows out to a thermal
reservoir due to an interaction, a quantum system undergoes
irreversible time evolution, during which quantumness of the
system such as coherence, entanglement, and nonlocality is
degraded [3–6]. Although a study on irreversibility has a
long history in non-equilibrium statistical mechanics [7], it
has still attracted much attention since irreversibility plays an
important role in controlling quantum states when performing
quantum information processing and understanding coherence
and quantum correlation of quantum states [8–11].

A state of a quantum system is described by a density
operator ρ(t) which is a positive operator satisfying Trρ(t) =
1, where Tr stands for a trace operation. The irreversible time
evolution of a quantum system is governed by the equation of
motion for a density operator ρ(t). The reduced time evolution
of an open quantum system can be derived by various methods
including the phenomenological equation [12,13], the stochas-
tic equation [14,15], the quantum master equation [4,7], and
the path integral [16]. When a thermal reservoir has a suffi-
ciently short correlation time and there is no initial correlation
between a relevant quantum system and a thermal reservoir, the
reduced time evolution of a quantum system can be described
by a dynamical semigroup [4–6]. In this case, a change from
ρ(t0) to ρ(t) with t � t0 is given by a completely positive map
and the time-evolution equation is given by the Markovian
quantum master equation of the Lindblad form [4–6]. How-
ever, the Markovian time evolution of a density operator ρ(t) is
not sufficient in many systems treated in quantum information
processing and coherent optical transient phenomena. In

particular, the non-Markovian effects are also important to un-
derstand coherence and quantum correlation of quantum states
[17–28]. To obtain quantum dynamics beyond the Markovian
time evolution, an approximation method is necessary in many
cases since an interaction between a quantum system and a
thermal reservoir is too complicated to solve exactly. The
systematic method for perturbative expansion for a reduced
density operator has been developed by making use of the pro-
jection operator method [4,29–31] with the assistance of cumu-
lant expansion [14,32–36]. The results are given by the time-
local (time-convolutionless) quantum master equation and the
time-nonlocal (time-convolution) quantum master equation,
which are successfully applied to many quantum systems.

A density operator ρ(t) can describe all properties of
single-time events in a quantum system. Probability that
projective measurement performed on a quantum system at
time t yields an outcome a is given by P (a; t) = 〈a|ρ(t)|a〉
[1,2,4], where a and |a〉 are eigenvalue and corresponding
eigenstate of a measured observable A. This means that any
statistical property of a single-time event is derive from the
density operator ρ(t). However, there are important quantities
that are not single-time events. For instance, the second order
coherence and the fluorescence spectrum in quantum optical
systems are described by double-time correlation functions
[37–39]. A linear response function that characterizes how a
system responds to a weak external field depends on two times
at which an external field is applied to the system and a system
observable is measured [7,40–44]. Furthermore, a weak value
of an observable A [45–48] is not a single-time quantity.
It depends on two times [49–51]: One is a measurement
time at which an observable A is weakly measured, and the
other is a postselection time at which the weakly measured
system is postselected in a certain quantum state. Usually
double-correlation functions are calculated by making use
of the quantum regression theorem [4,37–39]. However, it
has been shown that the quantum regression theorem is valid
only in restricted situations. When reduced time evolution of
a relevant quantum system is non-Markovian, it cannot be
no longer used for calculating correlation functions [52–58].
Therefore, it is of a great importance to formulate a systematic
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calculation method that is valid even if the reduced time
evolution is non-Markovian.

In this paper, applying the projection operator method
[4,29–31,34–36] to a quasidensity operator with a fictitious
field that is introduced here, we derive formulas for calculating
double-time correlation functions of an open quantum system
influenced by a thermal reservoir. The preliminary version
of the method has been developed for formulating the linear
response theory [59] and the weak measurement process [60]
of open quantum systems. The projection operator method
for calculating correlation functions has already been used in
Ref. [58]. However, our method makes it possible to derive
explicit forms of double-time correlation functions. The result
is applied to exactly solvable models of an open two-level
system to show how our formulas work well. The validity of
quantum regression theorem [52–57] and the violation of the
Leggett-Garg inequality [61–71] are also examined. In Sec. II,
we define a double-time correlation function of two quantum
operations for which we derive calculation formulas. The
double-time correlation function becomes a usual correlation
function [4,72], a linear response function [40,41], and a
weak value of an observable [47,48] by setting the quantum
operations appropriately.

This paper is organized as follows. In Sec. III, we introduce
a quasidensity operator accompanied with a fictitious field.
The linear term with respect to the fictitious field yields
the double-time correlation function. Using the projection
operator method, we derive the time-local [4,29–31] and time-
nonlocal equations [4,29–31] for the reduced quasidensity
operator. In Sec. IV, we apply the second-order approximation
(the Born approximation) [4] to the time-local and time-
nonlocal equations [34–36] and we derive the linearized
solutions with respect to the fictitious field. Then we can
obtain the double-time correlation function, which consists
of two terms. One is derived by making use of the quantum
regression theorem and the other is a correction term which is
yielded by a finite correlation time of a thermal reservoir.
The latter becomes negligible if the thermal reservoir has
a sufficiently short correlation time. In Sec. V, assuming a
linear coupling between the relevant quantum system and
the thermal reservoir, we derive the double-time correlation
functions explicitly. In Sec. VI, we treat two exactly solvable
models for a two-level system in a pure dephasing [73,74]
and a linear dissipative process [4,19] to show that the derived
formulas work well. Furthermore, we investigate the validity
of the quantum regression theorem [52–57] and the violation
of the Leggett-Garg inequality [61–71]. It will be found from
the results that the formulas are good approximation for the
double-time correlation functions. In Sec. VII, we provide a
brief summary of this paper.

II. DOUBLE-TIME CORRELATION FUNCTION
OF QUANTUM OPERATIONS

Time evolution of a quantum system is described in terms
of a Liouvillian superoperator L [4], which is defined by
L• = −(i/h̄)H×• with Kubo’s notation X×• = [X,•] [40],
where we denote a Hamiltonian of a quantum system as H . A
quantum system that we consider in this paper consists of two
parts: One is a relevant system and the other is a surrounding

environment or a thermal reservoir. Then the Hamiltonian
is decomposed into H = HS + HSR + HR with HS and HR

being the system and reservoir Hamiltonians and HSR being
the system-reservoir interaction Hamiltonian. Furthermore,
we denote arbitrary quantum operations performed on the
relevant system as K1 and K2, where we do not require
that these operations preserve a trace of a density operator.
When the whole system is in a quantum state described by a
density operator W at an initial time t0, we define a function
G(t2,t1|K2,K1) by

G(t2,t1|K2,K1) = Tr[K2e
L(t2−t1)K1e

L(t1−t0)W ]

(t2 > t1 > t0). (1)

In the rest of this paper, we refer to this function as a double-
time correlation function of the two quantum operations K1

and K2. This function means that the two quantum operations
K2 andK1 are performed on the relevant system at time t2 and t1
during the time evolution. As explained below, the double-time
correlation function given by Eq. (1) includes various kinds of
quantities as a special case.

First, we substituteK1 = A andK2 = B into Eq. (1), where
A and B are observables of the relevant quantum system. Then
G(t2,t1|B,A) becomes a usual correlation function of A and
B [4,72]. In fact, we have

G(t2,t1|B,A)

= Tr
[
BeL(t2−t1)AeL(t1−t0)W

]
= Tr

[
Be− i

h̄
H (t2−t1)

(
Ae− i

h̄
H (t1−t0)We

i
h̄
H (t1−t0)

)
e

i
h̄
H (t2−t1)

]
= Tr[B(t2)A(t1)W ]

= 〈B(t2)A(t1)〉 ≡ CBA(t2,t1), (2)

where X(t) = e
i
h̄
H (t−t0)Xe− i

h̄
H (t1−t0) (X = A,B) is a Heisen-

berg operator. If we substitute K1 = Ã and K2 = B with
Ã• = •A into Eq. (1), we obtain a correlation function
G(t2,t1|B,Ã) = 〈A(t1)B(t2)〉 = CAB(t1,t2) in the reverse or-
der. Furthermore, by substituting K1 = iA× and K2 = B, we
can derive the linear response function [40,41],

G(t2,t1|B,iA×) = Tr
[
BeL(t2−t1)iA×eL(t1−t0)W

]
= iTr

[
BeL(t2−t1)(A − Ã)eL(t1−t0)W

]
= iTr[B(t2)A(t1)W ] − iTr[A(t1)B(t2)W ]

= i〈[B(t2),A(t1)]〉 ≡ φBA(t2,t1). (3)

When K1 = (A + Ã)/2 and K2 = B, it is obvious that Eq. (1)
becomes a symmetrized correlation function, G(t2,t1|B,

(A + Ã)/2) = 1
2 〈B(t2)A(t1) + A(t1)B(t2)〉 ≡ SBA(t2,t1).

The weak value of an observable A can be represented in
terms of the double-time correlation function G(t2,t1|K2,K1).
To see this, we denote a measurement operator as �f ,
which is an element of positive operator-valued measure
(POVM) [2,75], satisfying positivity �f � 0 and normaliza-
tion

∑
f �f = 1. Then, by substituting K1 = A (K1 = 1) and

K2 = �f into Eq. (1), we can derive the weak value of an
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observable A [47,48,60],

G(t2,t1|�f ,A)

G(t2,t1|�f ,1)
= Tr

[
�f eL(t2−t1)AeL(t1−t0)W

]
Tr

[
�f eL(t2−t0)W

]
≡ Aw(t2,t1|W ), (4)

which is obtained by weak measurement of A at time t1,
where the quantum system is preselected in W at initial
time t0 and postselected in �f at final time t2. Using the
spectral decomposition A = ∑

a aPa with eigenvalue a and
eigenprojector Pa = |a〉〈a|, we have the weak conditional
probability of the measurement outcome a,

Pw(a|�f ,W ) = Tr
[
�f eL(t2−t1)Pae

L(t1−t0)W
]

Tr
[
�f eL(t2−t0)W

] , (5)

which is related to the weak value by Aw(t2,t1|W ) =∑
a aPw(a|�f ,W ).
Furthermore, we can obtain the joint probability

P (b,t2; a,t1|W ) that sequential projective measurement of
observables A and B performed on the relevant system at
times t1 and t2 (t1 < t2) yields the outcomes a and b. To
show this, we introduce two projective superoperator by
Pa• = Pa • Pa and Pb• = Pb • Pb, where Pa = |a〉〈a| and
Pb = |b〉〈b| are projection operators with eigenstates |a〉 and
|b〉 of the measured observables A and B. Then we can derive

G(t2,t1|Pb,Pa)

= Tr
[
Pbe

L(t2−t1)Pbe
L(t1−t0)W

]
= ∣∣〈b|e− i

h̄
H (t2−t1)|a〉∣∣2〈a|e− i

h̄
H (t1−t0)We

i
h̄
H (t1−t0)|a〉

= P (b,t2|a,t1)P (a,t1|W )

= P (b,t2; a,t1|W ), (6)

where P (b,t2|a,t1) represents the conditional probability that
the measurement of B at the time t2 yields the outcome b for
given measurement outcome a at the time t1, and P (a,t1|W )
is the probability that the measurement of A at the time t1
yields the outcome a when the quantum system is initially
prepared in the state W at the initial time t0. Here, we note
that CBA(t2,t1) �= ∑

a

∑
b abP (b,t2; a,t1|W ) in general. If the

two observables A and B are both dichotomous, the equality
ReCBA(t2,t1) = ∑

a

∑
b abP (b,t2; a,t1|W ) holds. The result

is summarized in Table I. Since the double-time correlation
function G(t2,t1|K2,K1) includes various important quantities,
it is very useful to provide a method for systematically
calculating the double-time correlation function.

III. PROJECTION OPERATOR METHOD FOR
DOUBLE-TIME CORRELATION FUNCTIONS

To drive the time evolution of the double-time correlation
function G(t2,t1|K2,K1) for an open quantum system under
the influence of a thermal reservoir, we introduce a fictitious
external field g(t), which is linearly coupled to the quantum
operation K1 of the relevant quantum system. The Liouvillian
superoperator is replaced by L + g(t)K1. Then the time
evolution operator of the whole system is given by

U(t,t0|g) = exp←

(∫ t

t0

dτ [L + g(τ )K1]

)
, (7)

where exp← stands for the time-ordered exponential, in which
operators are placed from right to left in the chronological
order. This superoperator is not unitary in general. We have up
to the first order with respect to the fictitious field,

U(t,t0|g) = eL(t−t0) exp←

[∫ t

t0

dτ g(τ )K1(τ )

]

≈ eL(t−t0) +
∫ t

t0

dτ g(τ )eL(t−τ )K1e
L(τ−t0). (8)

A quasidensity operator of the whole system interacting with
the fictitious field g(t) is introduced by W (t |g) = U(t,t0|g)W .
The relevant quantum system is described by the reduced
quasidensity operator WS(t |g) = TrRW (t |g), where TrR is a
trace operation over a Hilbert space of the thermal reservoir.
Thus, using Eq. (8), we can express the double-time correlation
function G(t2,t1|K2,K1) as follows:

G(t2,t1|K2,K1) = TrS
[
K2TrR

(
eL(t2−t1)K1e

L(t1−t0)W
)]

= TrS[K2WS(t2,t1|K1)] (9)

with

WS(t2,t1|K1) = δWS(t2|g)

δg(t1)

∣∣∣∣
g(t)→0

, (10)

where TrS is a trace operation of the relevant quantum
system. It is found from this result that the first-order term
of the reduced quasidensity operator WS(t |g) with respect to
the fictitious field g(t) provides the double-time correlation
function G(t2,t1|K2,K1). Therefore, our task is to obtain
the time evolution of the first-order term of the reduced
quasidensity operator WS(t |g).

First, using the projection operator method [4,29–31,34–
36], we obtain the time-evolution equation for the reduced

TABLE I. The double-time correlation function G(t2,t1|K2,K1) of two quantum operationsK1 andK2 with t2 > t1,
where A and B are system observables, �f is POVM, and Pa,b is a projective superoperator.

Time t1 Time t2 G(t2,t1|K2,K1)

K1 = A K2 = B Correlation function CBA(t2,t1)
K1 = Ã K2 = B Correlation function CAB (t1,t2)

K1 = 1
2 (A + Ã) K2 = B Symmetrized correlation function SBA(t2,t1)

K1 = iA× K2 = B Linear response function φBA(t2,t1)
K1 = A K2 = �f Weak value Aw(t2,t1|W )
K1 = Pa K2 = �f Weak probability Pw(a|�f ,W )
K1 = Pa K2 = Pb Joint probability P (b,t2; a,t1|W )
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quasidensity operator WS(t |g) and then linearize it with
respect to the fictitious field g(t). When we differentiate
the quasidensity operator W (t |g) = U(t,t0|g)W of the whole
system with respect to time t , we obtain the equation of
motion, ∂W (t |g)/∂t = [L + g(t)K1]W (t |g). Introducing a
projection operator P• = ρRTrR• with a density operator
ρR of the thermal reservoir [4], we can derive two different
time-evolution equations for the reduced quasidensity operator
WS(t |g), where the derivation is the same as that for the
non-Markovian quantum master equation. One is a time-local
equation [34–36],

∂

∂t
WS(t |g) = [LS + g(t)K1]WS(t |g)

+KS(t |g)WS(t |g) + IS(t |g), (11)

where LS,KS(t |g) and IS(t |g) are given by Eqs. (A1), (A16),
and (A17). The other is a time-nonlocal equation,

∂

∂t
WS(t |g) = [LS + g(t)K1]WS(t |g) + �S(t |g)WS(t |g)

+
∫ t

t0

dt1 �S(t,t1|g)WS(t1|g) + JS(t |g), (12)

where �S(t |g),�S(t,t1|g), and JS(t |g) are given by
Eqs. (A20)–(A22). The derivation of Eqs. (11) and (12) is
briefly summarized in Appendix A.

We can derive the time-evolution equation for the double-
time correlation function G(t2,t1|K2,K1) from Eqs. (11) or
(12). To do this, we calculate a functional derivative of Eq. (11)
with respect to the fictitious field g(t1) and take the limit
g(t) → 0. Then, we obtain the equation for the operator
WS(t2,t1|K1) of the relevant quantum system from Eq. (10),

∂

∂t2
WS(t2,t1|K1)

= [LS + KS(t2|0)]WS(t2,t1|K1) + IS(t2|0)

+ 	KS(t2,t1|K1)WS(t2|0) + 	IS(t2,t1|K1), (13)

with

	KS(t2,t1|K1) = δKS(t2|g)

δg(t1)

∣∣∣∣
g→0

, (14)

	IS(t2,t1|K1) = δIS(t2|g)

δg(t1)

∣∣∣∣
g→0

− IS(t2|0), (15)

where we have used the fact that the equality δg(t2)/δg(t1) = 0
holds due to t2 > t1. The double-time correlation function is
given by G(t2,t1|K2,K1) = TrS[K2WS(t2,t1|K1)]. In Eq. (13),
WS(t2|0) is a reduced density operator of the relevant quantum
system, the time evolution of which is governed by the time-
local quantum master equation [34–36],

∂

∂t2
WS(t2|0) = [LS + KS(t2|0)]WS(t2|0) + IS(t2|0). (16)

The average value of the quantum operation K2 is given by
G(t2|K2) = TrS[K2WS(t2|0)]. Therefore, comparing Eq. (13)
with Eq. (16), we find that the time evolution of double-time
correlation function G(t2,t1|K2,K1) and the average value
G(t2|K2) are determined by the same equation if the last two
terms on the right-hand side of Eq. (13) can be ignored. In

this case, it is found that the quantum regression theorem for
the double-time correlation function is established [4,37–39].
In the absence of the initial correlation between the relevant
quantum system and the thermal reservoir, the similar result
has been obtained in the second-order approximation by a
different approach [56].

In the same way, calculating a functional derivative of
Eq. (12) with respect to the fictitious field g(t1) and taking
the limit g(t) → 0, we can derive

∂

∂t2
WS(t2,t1|K1)

= LSWS(t2,t1|K1) + �S(t2|0)WS(t2,t1|K1)

+
∫ t2

t0

dτ �S(t2,τ |0)WS(τ,t1|K1) + JS(t2|0)

+ 	�S(t2,t1|K1)WS(t2|0)

+
∫ t2

t0

dτ 	�S(t2,t1,τ |K1)WS(τ |0) + 	JS(t2,t1|K1),

(17)

with

	�S(t2,t1|K1) = δ�S(t2|g)

δg(t1)

∣∣∣∣
g→0

, (18)

	�S(t2,t1,τ |K1) = δ�S(t2,t1|g)

δg(t1)

∣∣∣∣
g→0

, (19)

	JS(t2,t1|K1) = δJS(t2|g)

δg(t1)

∣∣∣∣
g→0

− JS(t2|0), (20)

where the reduced density operator WS(t2|0) of the relevant
quantum system is determined by the time-nonlocal quantum
master equation [29–31],

∂

∂t2
WS(t2|0) =LSWS(t2|0) + �S(t2|0)WS(t2|0)

+
∫ t2

t0

dτ �S(t2,τ |0)WSWS(τ |0) + JS(t2|0).

(21)

It is seen from Eqs. (17) and (21) that if the last three terms on
the right-hand side of Eq. (17) vanish, the quantum regression
theorem is established for the double-time correlation function
G(t2,t1|K2,K1). As will be show later, the quantum regression
theorem is valid only if the correlation time of the thermal
reservoir is sufficiently short.

Before closing this section, we briefly mention the result
given in Ref. [58], which is closely related to Eq. (13). We can
rewrite it into

∂

∂t2
WS(t2,t1|K1)

= [LS + KS(t2|0)]WS(t2,t1|K1)

+ 	KS(t2,t1|K1)WS(t2|0) + δIS(t2|g)

δg(t1)

∣∣∣∣
g→0

. (22)

Here we have WS(t2,t1|K1) = TrR[eL(t2−t1)K1e
L(t1−t0)W ] from

Eq. (10), which is equivalent to the system operator

(t1 − t0,t2 − t1) introduced in Ref. [58]. Then the first line on
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the right-hand side of Eq. (22) corresponds to the second term
on the right-hand side of Eq. (10) in Ref. [58] and the second
line to the first term on the right-hand side of Eq. (10). The rela-
tion between the results in this paper and in Ref. [58] becomes
more clear when we apply the second-order approximation
with respect to the system-reservoir interaction in the case that
there is no initial correlation between the relevant quantum
system and the thermal reservoir (see Appendix B). Further-
more, we note that calculation in terms of the quasidensity
operator WS(t |g) is easier than that using the system operator
WS(t2,t1|K1) or 
(t1 − t0,t2 − t1). In fact, we can obtain
explicit formulas for the double-time correlation function.

IV. DOUBLE-TIME CORRELATION FUNCTIONS
IN THE SECOND-ORDER APPROXIMATION

In this section, in order to derive the double-time correlation
function G(t2,t1|K2,K1), we assume that the interaction be-
tween the relevant quantum system and the thermal reservoir is
so weak that we can apply the second-order approximation (the
Born approximation) [4] to the time-local and time-nonlocal
equations (11) and (12) for the reduced quasidensity operator
WS(t |g). In the rest of this paper, we assume that the equality
〈L̂SR(t)〉R = 0 holds for the sake of simplicity.

A. Double-time correlation function from the time-local equation

In the second-order approximation with respect to the system-reservoir interaction, using the relation G(t2,t1|K2,K1) =
TrS[K2δWS,1(t2|g)/δg(t1)]g→0, we can obtain the double-time correlation function from Eq. (11),

G(t2,t1|K2,K1) = TrS[K2US(t2,t1)K1US(t1,t0)WS] +
∫ t2

t1

dτ1

∫ t1

t0

dτ2 TrS
[
K2US(t2,τ1)

× eLS (τ1−t0)〈LSR(τ1)[K1(t1),LSR(τ2)]〉Re−LS (τ1−t0)US(τ1,t0)WS

]
+

∫ t1

t0

dτ1 TrS[K2US(t2,t1)K1US(t1,τ1)IS,0(τ1)] +
∫ t2

t1

dτ1

∫ τ1

t0

dτ2

∫ t1

t0

dτ3 TrS
[
K2US(t2,τ1)eLS (τ1−t0)

× 〈LSR(τ1)[K1(t1),LSR(τ3)]〉Re−LS (τ1−t0)US(τ1,τ2)IS,0(τ2)
] +

∫ t2

t1

dτ1 TrS[K2US(t2,τ1)IS,1(τ1,t1)], (23)

where the derivation is given in Appendix B. In this equation, LSR(t),K1(t), IS,0(t), IS,1(t,τ ), and US(t,τ ) are respectively given
by Eqs. (B3), (B7), (B15), (B17), and (B26). When we use the reduced density operator WS(t) = WS,0(t) of the relevant quantum
system, which is a solution of the inhomogeneous time-local master equation (B24), the expression of the double-time correlation
function G(t2,t1|K2,K1) is simplified as

G(t2,t1|K2,K1) = TrS[K2US(t2,t1)K1WS(t1)] +
∫ t2

t1

dτ1

∫ t1

t0

dτ2 TrS
[
K2US(t2,τ1)

× eLS (τ1−t0)〈LSR(τ1)[K1(t1),LSR(τ2)]〉Re−LS (τ1−t0)WS(τ1)
]

+
∫ t2

t1

dτ1 TrS[K2US(t2,τ1)IS(τ1,t1|K1)], (24)

with IS(τ1,t1|K1) = IS,1(τ1,t1). Furthermore, when we introduce K1(t,t ′) and J (t,t ′|K1) by

K1(t,t ′) = δ(t − t ′)K1 + θ (t − t ′)KS,1(t,t ′), (25)

J (t,t ′|K1) = θ (t − t ′)IS(t,t ′|K1), (26)

where KS,1(t,t ′) is given by Eq. (B13), the double-time correlation function G(t2,t1|K2,K1) can be expressed as

G(t2,t1|K2,K1) =
∫ t2

t0

dτ {TrS[K2US(t2,τ )K1(τ,t1)WS(τ )] + TrS[K2US(t2,τ )J (τ,t1|K1)]}. (27)

When there is no initial correlation between the relevant quantum system and the thermal reservoir, that is, W = WS ⊗ WR , the
second term on the right-hand side of this equation vanishes if we set ρR = WR in the definition of the projection operator P .

For instance, setting K1 = A and K2 = B, we obtain the usual double-time correlation function of two observables A and B,

〈B(t2)A(t1)〉 = TrS[BUS(t2,t1)AWS(t1)] +
∫ t2

t1

dτ1

∫ t1

t0

dτ2 TrS
[
BUS(t2,τ1)

× eLS (τ1−t0)〈LSR(τ1)[A(t1),LSR(τ2)]〉Re−LS (τ1−t0)WS(τ1)
] +

∫ t2

t1

dτ1 TrS[BUS(t2,τ1)IS(τ1,t1|A)], (28)
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with

IS(t,τ |A) = eLS (t−t0)TrR[LSR(t)A(τ )δW ] +
∫ t

t0

dt1 eLS (t−t0)TrR[LSR(t)T{LSR(t1)A(τ )}δW ]. (29)

When we substitute K1 = iA× and K2 = B into Eq. (24), we have the linear response function φBA(t2,t1) = i〈[B(t2),A(t1)]〉 of
an open quantum system,

φBA(t2,t1) = iTrS[BUS(t2,t1)A×WS(t1)] + i

∫ t2

t1

dτ1

∫ t1

t0

dτ2 TrS
[
BUS(t2,τ1)

× eLS (τ1−t0)〈LSR(τ1)[A×(t1),LSR(τ2)]〉R e−LS (τ1−t0)WS(τ1)
] +

∫ t2

t1

dτ1 TrS[BUS(t2,τ1)IS(τ1,t1|iA×)], (30)

with

IS(t,τ |iA×) = ieLS (t−t0)TrR[LSR(t)A×(τ )δW ] + i

∫ t

t0

dt1 eLS (t−t0)TrR[LSR(t)T{LSR(t1)A×(τ )}δW ]. (31)

Furthermore, the weak value of an observable A in a postselected open quantum system, where the postselection is described by
a measurement operator �f , is provided by [60]

AW (t2,t1|�f ) = TrS[�fUS(t2,t1)AWS(t1)]

TrS[�f WS(t2)]
+ 1

TrS[�f WS(t2)]

∫ t2

t1

dτ1

∫ t1

t0

dτ2 TrS
[
�fUS(t2,τ1)

× eLS (τ1−t0)〈LSR(τ1)[A(t1),LSR(τ2)]〉Re−LS (τ1−t0)WS(τ1)
]

+ 1

TrS[�f WS(t2)]

∫ t2

t1

dτ1 TrS[�fUS(t2,τ1)IS(τ1,t1|A)], (32)

where IS(t,τ |A) is given by Eq. (29). In deriving Eq. (32), we have used the equality IS(t,τ |1) = IS,0(t). Furthermore, by
substituting K1 = Pa and K2 = Pb into Eq. (24), we can obtain the joint probability of two projective measurements performed
on the relevant quantum system at times t1 and t2.

B. Double-time correlation function from time-nonlocal equation

Using the same method for the time-local equation, we can obtain the double-time correlation function from the time-nonlocal
equation (12),

G(t2,t1|K2,K1) = TrS[K2ŪS(t,t1)K1W̄S(t1)] +
∫ t

t1

dτ1

∫ t1

t0

dτ2 TrS
[
K2ŪS(t2,τ1)

× eLS (τ1−t0)〈LSR(τ1)K1(t1)LSR(τ2)〉R e−LS (τ2−t0)W̄S(τ2)
]

+
∫ t2

t1

dτ1 TrS[K2ŪS(t,τ1)IS,1(τ1,t1|K1)], (33)

the derivation of which is given in Appendix C. In this equation, W̄S(t1) and ŪS(t,t1) are defined by Eqs. (C11) and (C12).
Comparing this result with Eq. (24), we can derive the correlation function 〈B(t2)A(t1)〉, the linear response function φBA(t2,t1),
and the weak value AW (t2,t1|�f ) by replacing US(t,t ′), WS(t), and

eLS (τ1−t0)〈LSR(τ1)[K1(t1),LSR(τ2)]〉Re−LS (τ1−t0)WS(τ1)

in Eqs. (28), (30), and (32) by ŪS(t,t ′), W̄S(t) and

eLS (τ1−t0)〈LSR(τ1)K1(t1)LSR(τ2)〉Re−LS (τ2−t0)W̄S(τ2),

where K1 = A for the correlation function and the weak value and K1 = iA× for the linear response function.

V. EXPLICIT FORMS OF THE DOUBLE-TIME CORRELATION FUNCTIONS

To obtain explicit expressions of the double-time correlation function in the second-order approximation, we assume that the
interaction Hamiltonian between the relevant quantum system and the thermal reservoir is given by HSR = h̄

∑
μ SμRμ, where

Sμ and Rμ are operators of the relevant quantum system and the thermal reservoir. The corresponding Liouvillian superoperator
is LSR = −i

∑
μ(SμRμ)×. For the sake of simplicity, we assume that the initial time is t0 = 0 and there is no initial correlation

between them. So, we can write the initial state W = WSWR . In this case, setting ρR = WR in the definition of the projection
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operator P , we have the equality δW = 0 and thus the inhomogeneous terms in the time-local and time-nonlocal equations for
the reduced quasidensity operator disappear. It is easy to find that

eLS t 〈LSR(t)LSR(t1)〉Re−LS tWS(t) =
∑
μ,ν

〈Rμ(t)Rν(t1)〉R[Sν(t1 − t)WS(t),Sμ] +
∑
μ,ν

〈Rν(t1)Rμ(t)〉R[Sμ,WS(t)Sν(t1 − t)], (34)

where Sμ(t) = eiHSt/h̄Sμe−iHS t/h̄ and Rμ(t) = eiHRt/h̄Rμe−iHRt/h̄. Then the time-local quantum master equation is given by

∂

∂t
WS(t) = [LS + KS,0(t)]WS(t) (35)

with

KS,0(t)WS(t) =
∑
μ,ν

∫ t

0
dt1 〈Rμ(t)Rν(t1)〉R[Sν(t1 − t)WS(t),Sμ] +

∑
μ,ν

∫ t

0
dt1 〈Rν(t1)Rμ(t)〉R[Sμ,WS(t)Sν(t1 − t)]. (36)

On the other hand, since we obtain

eLS t 〈LSR(t)LSR(t1)〉Re−LS t1W̄S(t1) = eLS t 〈LSR(t)LSR(t1)〉Re−LS t eLS (t−t1)W̄S(t1)

=
∑
μ,ν

〈Rμ(t)Rν(t1)〉R
[
Sν(t1 − t)

(
eLS (t−t1)W̄S(t1)

)
,Sμ

]

+
∑
μ,ν

〈Rν(t1)Rμ(t)〉R
[
Sμ,

(
eLS (t−t1)W̄S(t1)

)
Sν(t1 − t)

]
, (37)

the time-nonlocal quantum master equation of the relevant quantum system is given by

∂

∂t
W̄S(t) = LSW̄S(t) +

∫ t

0
dt1 �S,0(t,t1)W̄S(t1), (38)

with ∫ t

0
dt1 �S,0(t,t1)W̄S(t1) =

∑
μ,ν

∫ t

0
dt1 〈Rμ(t)Rν(t1)〉R

[
Sν(t1 − t)

(
eLS (t−t1)W̄S(t1)

)
,Sμ

]

+
∑
μ,ν

∫ t

0
dt1 〈Rν(t1)Rμ(t)〉R

[
Sμ,

(
eLS (t−t1)W̄S(t1)

)
Sν(t1 − t)

]
. (39)

Next, we obtain the second term on the right-hand side of Eq. (24). After straightforward calculation, we have

eLS (τ1−t0)〈LS(τ1)[K1(t1),LSR(τ2)]〉Re−LS (τ1−t0)WS(τ1) =
∑
μ,ν

〈Rμ(τ1)Rν(τ2)〉R{[K1(t1 − τ1),Sν(τ2 − τ1)]WS(τ1),Sμ}

+
∑
μ,ν

〈Rν(τ2)Rμ(τ1)〉R{Sμ,[K1(t1 − τ1),S̃ν(τ2 − τ1)]WS(τ1)}, (40)

where we have defined the operator S̃ν(τ2) by

S̃ν(τ2)WS(τ1) = WS(τ1)Sν(τ2). (41)

Then the double-time correlation function G(t2,t1|K2,K1) is given by

G(t2,t1|K2,K1) = TrS[K2US(t2,t1)K1US(t1,0)WS] + 	G(t2,t1|K2,K1). (42)

The first term of the right-hand side is derived by making use of the quantum regression theorem. The second term is given by

	G(t2,t1|K2,K1) =
∑
μ,ν

∫ t2

t1

dτ1

∫ t1

0
dτ2 〈Rμ(τ1)Rν(τ2)〉RTrS[K2US(t2,τ1){[K1(t1 − τ1),Sν(τ2 − τ1)]WS(τ1),Sμ}]

+
∑
μ,ν

∫ t2

t1

dτ1

∫ t1

0
dτ2 〈Rν(τ2)Rμ(τ1)〉RTrS[K2US(t2,τ1){Sμ,[K1(t1 − τ1),S̃ν(τ2 − τ1)]WS(τ1)}]. (43)

Here, it is important to note that there is no overlap between the two integrations with respect to τ1 and τ2. If the thermal
reservoir has a sufficiently short correlation time, the reservoir correlation function can be approximated as 〈Rμ(τ1)Rν(τ2)〉R ≈
〈Rμ(τ1)Rν(τ1)〉Rδ(τ1 − τ2). In this case, the correction term becomes negligible and thus the quantum regression theorem is
established.
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To derive the correction term of the double-time correlation function from the time-nonlocal inhomogeneous equation, we fist
calculate

eLSτ1〈LS(τ1)K1(t1)LSR(τ2)〉Re−LSτ2W̄S(τ2) = eLSτ1〈LS(τ1)K1(t1)LSR(τ2)〉Re−LSτ1eLS (τ1−τ2)W̄S(τ2)

=
∑
μ,ν

〈Rμ(τ1)Rν(τ2)〉R
{
K1(t1 − τ1)Sν(τ2 − τ1)

[
eLS (τ1−τ2)W̄S(τ2)

]
,Sμ

}

+
∑
μ,ν

〈Rν(τ2)Rμ(τ1)〉R
{
Sμ,K1(t1 − τ1)S̃ν(τ2 − τ1)

[
eLS (τ1−τ2)W̄S(τ2)

]}
. (44)

Then, we can obtain the double-time correlation function in the second-order approximation,

G(t2,t1|K2,K1) = TrS[K2ŪS(t2,t1)K1ŪS(t1,0)WS] + 	G(t2,t1|K2,K1), (45)

with

	G(t2,t1|K2,K1) =
∑
μ,ν

∫ t2

t1

dτ1

∫ t1

0
dτ2 〈Rμ(τ1)Rν(τ2)〉RTrS

[
K2ŪS(t2,τ1)

{
K1(t1 − τ1)Sν(τ2 − τ1)

[
eLS (τ1−τ2)W̄S(τ2)

]
,Sμ

}]

+
∑
μ,ν

∫ t2

t1

dτ1

∫ t1

0
dτ2 〈Rν(τ2)Rμ(τ1)〉RTrS

[
K2ŪS(t2,τ1)

{
Sμ,K1(t1 − τ1)S̃ν(τ2 − τ1)

[
eLS (τ1−τ2)W̄S(τ2)

]}]
.

(46)

Comparing Eqs. (43) and (46), we find the correspondence between the double-time correlation functions derived from the
time-local and time-nonlocal equations,

US(t,t ′) ⇔ ŪS(t,t ′),

[K1(t1 − τ1),Sν(τ2 − τ1)] ⇔ K1(t1 − τ1)Sν(τ2 − τ1),

[K1(t1 − τ1),S̃ν(τ2 − τ1)] ⇔ K1(t1 − τ1)S̃ν(τ2 − τ1),

WS(τ1) ⇔ eLS (τ1−τ2)W̄S(τ2).

Since the range of the τ1 integration in Eq. (46) does not have an overlap with that of the τ2 integration, the correction term
	G(t2,t1|K2,K1) becomes negligible if the thermal reservoir has a sufficiently short correlation time.

VI. SIMPLE EXAMPLES

In this section, we calculate the double-time correlation
functions of an open two-level system interacting with a
thermal reservoir, where a pure dephasing process and a linear
dissipative process are assumed. Using the formula (42), we
explicitly obtain the double-time correlation functions of two
observables A and B. Furthermore, we examine the quantum
regression theorem [52–57] and the Leggett-Garg inequality
[61–71]. The results are compared with those obtained by exact
calculation.

A. Pure dephasing of a two-level system

For a pure dephasing of a two-level system, the interaction
Hamiltonian HSR between the two-level system and the
thermal reservoir is assumed to be HS = σz ⊗ R, where σz

is the Pauli operator of the z component of a spin-1/2 and R is
a Hermitian operator of the thermal reservoir. When we denote
the ground and excited states of the two-level system as |g〉
and |e〉, we have σz = |e〉〈e| − |g〉〈g|. Then the time-local
quantum master equation for the reduced density operator
WS(t) of the two-level system is obtained from Eq. (B24),

∂

∂t
WS(t) = − i

2
ω[σz,WS(t)] + 2Reφ(t) [σzWS(t)σz − WS(t)],

(47)

where ω represents a transition frequency between the ground
and excited states and the time-dependent function φ(t) is
given by

φ(t) =
∫ t

0
dτ 〈R(τ )R(0)〉R. (48)

When we express an initial density operator as

WS(t) = 1
2 + cσ+ + c∗σ− + 1

2czσz, (49)

with |c|2 + (cz/2)2 � 1 and ladder operators σ+ = |e〉〈g| and
σ− = |g〉〈e|, the solution of the quantum master equation is

WS(t) = 1
2 + u(t,0)cσ+ + u∗(t,0)c∗σ− + 1

2czσz, (50)

where u(t,s) (t � s) is given by

u(t,s) = exp

(
−

∫ t

s

dτ [iω + γ (τ )]

)
, (51)

with

γ (τ ) = 4Re
∫ τ

0
dτ ′ 〈R(τ ′)R(0)〉R. (52)

Then the map defined by the relation WS(t) = US(t,0)WS(0)
for any initial state WS(0) is determined by US(t,0)|i〉〈i| =
|i〉〈i| (i = g,e) and

US(t,0)|e〉〈g| = u(t,0)|e〉〈g|, US(t,0)|g〉〈e| = u∗(t,0)|g〉〈e|.
(53)
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It is easy to see that US(t,s) = US(t,0)U−1
S (s,0) is provided by

US(t,s)|i〉〈i| = |i〉〈i| and

US(t,s)|e〉〈g| = u(t,s)|e〉〈g|, US(t,0)|g〉〈e| = u∗(t,s)|g〉〈e|.
(54)

Substituting K1 = σ± and K2 = σ∓ into Eq. (42), we obtain
the first term on the right-hand side,

〈σ−(t2)σ+(t1)〉0 = 〈σ−σ+〉e−iω(t2−t1)e−g(t2)+g(t1), (55)

〈σ+(t2)σ−(t1)〉0 = 〈σ+σ−〉eiω(t2−t1)e−g(t2)+g(t1), (56)

and 〈σz(t2)σz(t1)〉0 = 1. In the right-hand side of these equa-
tions, 〈· · · 〉 stands for the initial average TrS[· · ·WS] of the
two-level system and

g(t) =
∫ t

0
dτ γ (τ ). (57)

These results are also obtained by making use of the quantum
regression theorem.

Next we obtain the correction term (43) of the double-
time correlation function. Since we obtain the relations from
Eq. (50) and σ±(t) = e−LS tσ±eLS t = σ±eiωt ,

{[σ+(t1 − τ1),σz]WS(τ1),σz} = 2eiω(t1−τ1)(1 − cz)σ+, (58)

{[σ−(t1 − τ1),σz]WS(τ1),σz} = 2e−iω(t1−τ1)(1 + cz)σ−, (59)

{[σz(t1 − τ1),σz]WS(τ1),σz} = 0, (60)

we can derive from Eq. (43)

	〈σ−(t2)σ+(t1)〉 = 4〈σ−σ+〉
∫ t2

t1

dτ1

∫ t1

0
dτ2

× 〈R(τ1 − τ2)R(0)〉Reiω(t1−τ1)u(t2,τ1),
(61)

	〈σ+(t2)σ−(t1)〉 = 4〈σ+σ−〉
∫ t2

t1

dτ1

∫ t1

0
dτ2

× 〈R(τ1 − τ2)R(0)〉Re−iω(t1−τ1)u∗(t2,τ1),
(62)

where we have used the relation 〈σ±σ∓〉 = 1
2 (1 ± cz). Here we

introduce the function f (t2,t1) by

f (t2,t1) = 4
∫ t2

t1

dτ1

∫ t1

0
dτ2 〈R(τ1 − τ2)R(0)〉Re−g(t2)+g(τ1).

(63)

Then, the double-time correlation functions of the two-level
system with the correction term in the second-order approxi-
mation are given by

〈σ−(t2)σ+(t1)〉c = 〈σ−σ+〉e−iω(t2−t1)[e−g(t2)+g(t1) + f (t2,t1)],

(64)

〈σ+(t2)σ−(t1)〉c = 〈σ+σ−〉eiω(t2−t1)[e−g(t2)+g(t1) + f (t2,t1)],

(65)

and 〈σz(t2)σz(t1)〉c = 1. For the pure dephasing, we can easily
obtain the exact double-time correlation functions,

〈σ−(t2)σ+(t1)〉ex = 〈σ−σ+〉e−iω(t2−t1)F (t2,t1), (66)

〈σ+(t2)σ−(t1)〉ex = 〈σ+σ−〉eiω(t2−t1)F (t2,t1), (67)

and 〈σz(t2)σz(t1)〉ex = 1, where F (t2,t1) is given by

F (t2,t1) =
〈
exp←

(
−2i

∫ t2

t1

ds R(s)

)〉
R

. (68)

If the thermal reservoir is Gaussian with respect to the
Hermitian operator R, the function F (t2,t1) becomes

F (t2,t1) = exp

(
−2

∫ t2

t1

ds1

∫ t2

t1

ds2 〈TR(s1)R(s2)〉
)

, (69)

where T stands for the time-ordered product.
We next compare the correlation functions to examine

whether our formula is a good approximation and whether
the quantum regression theorem is valid. For this purpose, we
assume that the thermal reservoir is Gaussian and the reservoir
correlation function 〈R(t2)R(t1)〉R is given by 〈R(t2)R(t1)〉 =
1
4R2

0e
−λ|t2−t1|. In this case, the exact time-time correlation

functions become

〈σ∓(t2)σ±(t1)〉ex = 〈σ∓σ±〉e∓iω(t2−t1)e−g(t2−t1), (70)

with

g(t) =
(

R0

λ

)2

[λt − 1 + e−λt ]. (71)

When the correlation functions are calculated by means of the
quantum regression theorem, we obtain

〈σ∓(t2)σ±(t1)〉0 = 〈σ∓σ±〉e∓iω(t2−t1)e−g(t2)+g(t1). (72)

The result clearly shows that the quantum regression theorem
is valid if and only if the equality g(t2 + t1) = g(t2) + g(t1)
holds. Thus the quantum regression theorem is established
when the thermal reservoir has a sufficiently short correlation
time. On the other hand, Eq. (63) is calculated to be

f (t2,t1)

= e−g(t2)

[
R2

0

λ
(eλt1 − 1)

∫ t2

t1

ds e−λs+g(s)

]

=
(

R0

λ

)2[
e−(R0/λ)2

e−g(t2)(eλt1 − 1)

×
∞∑

n=0

1

n!

(
R0

λ

)2n
e−[1+n−(R0/λ)2]λt1 − e−[1+n−(R0/λ)2]λt2

1 + n − (R0/λ)2

]
.

(73)

Substituting this equation into Eqs. (64) and (65), we obtain the
correlation functions with the correction term. In this model,
the dephasing time T2 of the two-level system is given by
T2 = λ/R2

0 and the correlation time TR of the thermal reservoir
is TR = 1/λ. It is obvious from Eq. (73) that the second-order
approximation is valid only when (R2

0/λ)2 = TR/T2 < 1. The
time dependences of the correlation functions are depicted in
Fig. 1. Since the second-order approximation is valid if λT2 =
2.0, the correlation function calculated from our formula is
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FIG. 1. The time evolution of the normalized correlation functions 〈σ±(t2)σ∓(t1)〉0,c,ex/〈σ±σ∓〉 with t1/T2 = 1.0, t1/T2 = 4.0 and t1/T2 =
7.0. The black solid line stands for the exact correlation function, the red dashed line for the correlation function derived our formula, and
the blue dash-dotted line for one by means of the quantum regression theorem. In this figure, we set λT2 = 2.0 in panel (a) and λT2 = 0.8 in
panel (b).

much closer to the exact one than the correlation function
derived by the quantum regression theorem [Fig. 1(a)]. On
the other hand, when λT2 = 0.8, it deviates from the exact
correlation function as |t2 − t1|/T2 is larger. However, our
result is better than the quantum regression theorem. We note
that the quantum regression theorem is established only in the
limit λT2 → ∞.

Noninvasive measurability and macrorealism lead to the
Leggett-Garg inequality, which is considered as a temporal
version of the Bell inequality [61–71]. Let us denote as
Q(t) a dichotomous observable which takes the values ±1 at
time t . Then assuming macroscopic realism and noninvasive
measurability, we can derive the the Leggett-Garg inequality,
〈Q(t2)Q(t1)〉 + 〈Q(t3)Q(t2)〉 − 〈Q(t3)Q(t1)〉 � 1 with t3 >

t2 > t1. For the Pauli operator σx of a two-level system, the
inequality is replaced by [65,69]

K3(t3,t2,t1) = Re〈σx(t2)σx(t1)〉 + Re〈σx(t3)σx(t2)〉
−Re〈σx(t3)σx(t1)〉 � 1. (74)

The correlation function 〈σx(t2)σx(t1)〉 with σx = |e〉〈g| +
|g〉〈e| is given by

〈σx(t2)σx(t1)〉 = cos ω(t2 − t1)G(t2,t1)

+ i〈σz〉 sin ω(t2 − t1)G(t2,t1), (75)

with

G(t2,t1)

=

⎧⎪⎪⎨
⎪⎪⎩

e−g(t2−t1) for the exact calculation
e−g(t2)+g(t1) + f (t2,t1) for the derived formula
e−g(t2)+g(t1) for the quantum regression

theorem

.

(76)

Note that the real part of the correlation function G(t2,t1) does
not depend on the initial condition. To investigate whether the
Leggett-Garg inequality is violated, we introduce

K3(τ,t) = Re〈σx(t + 2τ )σx(t + τ )〉 + Re〈σx(t + τ )σx(t)〉
− Re〈σx(t + 2τ )σx(t)〉, (77)

where the inequality K3(τ,t) > 1 means the violation of the
Leggett-Garg inequality. In Fig. 2, the parameter K3(τ,t) is
plotted as a function of τ . It is found from the figure that
our formula for the double-time correlation function is a
good approximation for the exact calculation of the parameter
K3(τ,t). Furthermore, one can see that the Leggett-Garg
inequality is violated in the initial time region for all the cases.
For small values of λT2, the revival of the violation can be
observed.

B. Linear dissipative process of a two-level system

Next, we consider a linear dissipative process of a two-level
system to obtain the double-time correlation function, where
the interaction Hamiltonian between the two-level system and
the thermal reservoir is given by HSR = σ−R† + σ+R. In
the interaction picture, it becomes HSR(t) = σ−R†(t)e−iωt +
σ+R(t)eiωt with R(t) = eiHRt/h̄Re−iHRt/h̄. In this case, the
time-local quantum master equation for the reduced density
operator of the two-level system is given by

∂

∂t
WS(t) = − i

h̄
[HS,WS(t)] + φ+−(t)[σ+WS(t),σ−]

+ φ∗
+−(t)[σ+,WS(t)σ−] + φ−+(t)[σ−WS(t),σ+]

+ φ∗
−+(t)[σ−,WS(t)σ+], (78)

with

φ−+(t) =
∫ t

0
dt1 〈R(t1)R†(0)〉Reiωt1 , (79)

φ+−(t) =
∫ t

0
dt1 〈R†(t1)R(0)〉Re−iωt1 . (80)

When we express the reduced density operator as WS(t) =
1
2 + c(t)σ+ + c∗(t)σ− + 1

2cz(t)σz, we obtain the differential
equations of the coefficients c(t) and cz(t),

d

dt
c(t) = −[γ (t) + iδ(t) + iω]c(t), (81)

d

dt
cz(t) = −2γ (t)[cz(t) − w(t)], (82)
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FIG. 2. The dependence of the parameter K3(τ,t) on time τ with (a) t/T2 = 0.0 and λT2 = 2.0, (b) t/T2 = 2.0 and λT2 = 2.0, (c) t/T2 = 0.0
and λT2 = 0.8, and (d) t/T2 = 2.0 and λT2 = 0.8. In the figure, we set ωT2 = 5.0. The black solid line stands for the exact calculation, the red
dashed line for our formula, and the blue dash-dotted line for the quantum regression theorem. The inequality K3(τ,t) > 1 means the violation
of the Leggett-Garg inequality.

where the time-dependent parameters γ (t), δ(t), and w(t) are
given by

γ (t) = Re[φ−+(t) + φ∗
+−(t)], (83)

δ(t) = Im[φ−+(t) + φ∗
+−(t)], (84)

w(t) = −Re[φ−+(t) − φ+−(t)]

Re[φ−+(t) + φ+−(t)]
. (85)

Then we obtain the solutions,

c(t) = u(t)c(0), cz(t) = uz(t)cz(0) + σ (t), (86)

with

u(t) = e−iωt exp

(
−

∫ t

0
dτ [γ (τ ) + iδ(τ )]

)
, (87)

uz(t) = exp

(
−2

∫ t

0
dτ γ (τ )

)
, (88)

σ (t) = w(t) − w(0) exp

(
−2

∫ t

0
dτ γ (τ )

)

−
∫ t

0
dτ ẇ(τ ) exp

(
−2

∫ τ

0
dτ ′ γ (τ ′)

)
, (89)

where we set ẇ(t) = dw(t)/dt .
To obtain an explicit form of the correlation function, we

assume that the thermal reservoir consists of independent har-
monic oscillators in the ground state and it has the Lorentzian

spectrum [4,19]. Then, we can obtain the double-time
correlation functions,

〈σz(t2)σz(t1)〉0 = 1 + (
e−g(t2) − e−g(t1)

)
(1 + 〈σz〉), (90)

〈σz(t2)σz(t1)〉c = 1 +
[
e−g(t2) − e−g(t1) +

(γ

λ

)(
1 − e−λ(t2 − t1)

)

× (1 − e−λt1 )e−g(t2)

]
(1 + 〈σz〉), (91)

with g(t) = (
γ

λ

)
(λt − 1 + e−λt ). These correlation functions

are derived in Appendix D. On the other hand, we can derive
the exact correlation function [76],

〈σz(t2)σz(t1)〉ex

= 1 − [|A(t2)|2 + |A(t1)|2 − 2A(t2)A(t2 − t1)A(t1)]

× (1 + 〈σz〉), (92)

where A(t) is given by

A(t) = e− 1
2 λt

[
cosh

(
a

2
λt

)
+ 1

a
sinh

(
a

2
λt

)]
, (93)

with a = √
1 − 2γ /λ. The derivation of the exact correlation

function is briefly summarized in Appendix E. It is easy to
check that 〈σz(t2)σz(t1)〉ex ≈ 〈σz(t2)σz(t1)〉c ≈ 〈σz(t2)σz(t1)〉0

is established if the condition γ /λ � 1 is fulfilled. In this
case, the quantum regression theorem is valid. It is important
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FIG. 3. The time evolution of the correlation functions 〈σz(t2)σz(t1)〉0,c,ex with (a) λ/γ = 4.0 and (b) λ/γ = 0.2. The black solid line stands
for the exact correlation function, the red dashed line for one derived from our formula, and the blue dash-dotted line for one by making use
of the quantum regression theorem. We set from the left to the right γ t1 = 1.0,1.5,3.0 in panel (a) and γ t1 = 1.0,2.5,4.0 in panel (b). In this
figure, we set 〈σz〉 = 1.0.

to note that this condition is much stronger than the Markovian
condition. In fact, the reduced time evolution is Markovian
if and only if λ > 2γ [77–80]. The correlation functions are
depicted in Fig. 3. It is found from the figure that the correlation
function given by our formula is a good approximation in the
time region of γ (t2 − t1) � 1 not only for λ/γ > 1 but also
for λ/γ < 1. However, it approaches the correlation function
derived by the quantum regression theorem and deviates from
the exact one as the time difference t2 − t1 is large.

Finally, using the correlation function 〈σz(t2)σz(t1)〉, we
investigate the violation of the Leggett-Garg inequality. The
inequality is given by

Re〈σz(t3)σz(t2)〉 + Re〈σz(t2)σz(t1)〉 − Re〈σz(t3)σz(t1)〉 � 1,

(94)

with t3 > t2 > t1. First, we note that the correlation func-
tion derived from the quantum regression theorem satis-
fies the Leggett-Garg inequality. In fact, using Eq. (90),

FIG. 4. The dependence of the parameter K3(τ,t) on time τ with (a) γ t = 0.0 and λ/γ = 4.0, (b) γ t = 1.0 and λ/γ = 4.0, (c) γ t = 0.0
and λ/γ = 0.2, and (d) γ t = 1.0 and λ/γ = 0.2. The black solid line stands for the exact correlation function, the red dashed line for one with
the correction term, and the blue dash-dotted line for one derived by the quantum regression theorem. In this figure, we set 〈σz〉 = 1.0. The
inequality K3(τ,t) > 1 means the violation of the Leggett-Garg inequality.
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we obtain the equality Re〈σz(t3)σz(t2)〉 + Re〈σz(t2)σz(t1)〉 −
Re〈σz(t3)σz(t1)〉 = 1. To examine the violation of the Leggett-
Garg inequality, we introduce the parameter K3(τ,t) by

K3(τ,t) = Re〈σz(t + 2τ )σz(t + τ )〉 + Re〈σz(t + τ )σz(t)〉
− Re〈σz(t + 2τ )σz(t)〉, (95)

which is plotted as a function of τ in Fig. 4. The figure clearly
shows the violation of the Leggett-Garg inequality. Further-
more, it is found that the correlation function 〈σz(t2)σz(t1)〉c

is a good approximation for the exact correlation function
〈σz(t2)σz(t1)〉ex if λ/γ is not small.

VII. SUMMARY

In this paper, using the projection operator method, we
have studied the double-time correlation functions of two
quantum operations performed on an open quantum system
which is placed under the influence of a thermal reservoir.
The two quantum operations are done sequentially during the
irreversible time evolution of the relevant quantum system.
The double-time correlation function considered in this paper
includes a usual correlation function, a linear response func-
tion, a weak value of an observable, and joint probability of
sequential measurement as a special case. Here, it is important
to note that the quantum regression theorem cannot be used
for calculating double-time correlation functions when the
thermal reservoir has a finite correlation time. To obtain the
double-time correlation function, we introduce a fictitious
field and a quasidensity operator. The double-time correlation
function is provided by the first-order term of the reduced
quasidensity operator with respect to the fictitious field. Apply-
ing the projection operator method, we have derived the time-
local and time-nonlocal equations for the reduced quasidensity
operator. By solving these equations, we have obtained the
formulas for calculating the double-time correlation function.
Furthermore, applying the second-order approximation with
respect to the system-reservoir interaction, we have obtained
the explicit form of the double-time correlation function.
The derived correlation function consists of two parts. One
is obtained by means of the quantum regression theorem
and the other is a correction term that takes care of finite
correlation time of the thermal reservoir. The latter causes the
violation of the quantum regression theorem and vanishes only
if correlation time of the thermal reservoir is sufficiently short.
This condition is stronger than that of the Markovianity for
the reduced time evolution of the relevant quantum system. As
an example, we have calculated the double-time correlation
functions for a pure dephasing process and a linear dissipative
process of an open two-level system. Comparing the results
with the exact calculation, we have shown that the derived
formulas are a good approximation for the exact double-time
correlation functions. Furthermore, using the results, we have
investigated the violation of the Leggett-Garg inequality.

APPENDIX A: TIME-LOCAL AND TIME-NONLOCAL
EQUATIONS FOR THE REDUCED QUASIDENSITY

OPERATOR

To derive the time-evolution equation for the reduced quasi-
density operator WS(t |g) = TrRW (t |g) of the relevant system
from ∂W (t |g)/∂t = [L + g(t)K1]W (t |g), we decompose the

Liouvillian superoperator as follows:

L + g(t)K1 = LS + g(t)K1 + LR + LSR (A1)

= LS(t) + LR + LSR (A2)

= L(t) + LSR (A3)

= L0 + g(t)K1 + LSR, (A4)

with LS = −(i/h̄)H×
S , LR = −(i/h̄)H×

R , LSR = −(i/h̄)H×
SR ,

L0 = LS + LR , and L0(t) = L0 + g(t)K1. Then in the in-
teraction picture, we have ∂Ŵ (t |g)/∂t = L̂SR(t)Ŵ (t |g),
where we set Ŵ (t |g) = V−1(t,t0|g)W (t |g) and L̂SR(t) =
V−1(t,t0|g)LSRV(t,t0|g) with

V(t,t0|g) = exp←

(∫ t

t0

dτ L(t)

)
. (A5)

Using the projection operator method [4], where a pro-
jection operator is defined by P• = ρRTrR• with a density
operator ρR of the thermal reservoir, we can derive a time-local
time-evolution equation for the reduced quasidensity operator
WS(t |g) of the relevant system [34–36],

∂

∂t
ŴS(t |g) = K̂S(t |g)ŴS(t |g) + ÎS(t |g), (A6)

with

K̂S(t |g) = 〈L̂SR(t)[1 − �̂(t |g)]−1〉R, (A7)

ÎS(t |g) = TrR{L̂SR(t)[1 − �̂(t |g)]−1ĜP (t,t0|g)(1 − P)W }.
(A8)

In these equations, we set 〈•〉R = TrR[•ρR] and

�̂(t |g) =
∫ t

t0

dτ ĜP (t,τ |g)(1 − P)L̂SR(τ )PĜ−1(t,τ |g),

(A9)

ĜP (t,τ |g) = exp←

(∫ t

τ

dτ ′ (1 − P)L̂SR(τ ′)
)

, (A10)

Ĝ(t,τ |g) = exp←

(∫ t

τ

dτ ′ L̂SR(τ ′)
)

. (A11)

We can also derive a time-nonlocal equation [29–31],

∂

∂t
ŴS(t |g) = 〈L̂SR(t)〉RŴS(t |g)

+
∫ t

t0

dt1 �̂S(t,t1|g)ŴS(t1|g) + ĴS(t |g),

(A12)

where �̂S(t,t1|g) and ĴS(t |g) are given by

�̂S(t,t1|g) = 〈L̂SR(t)ĜP (t,t1|g)(1 − P)L̂SR(t1)〉R, (A13)

ĴS(t |g) = TrR[L̂SR(t)�̂S(t,t0|g)(1 − P)W ]. (A14)

In the Schrödinger picture, the time-local equation becomes

∂

∂t
WS(t |g) = [LS + g(t)K1]WS(t |g)

+KS(t |g)WS(t |g) + IS(t |g), (A15)

042111-13



MASASHI BAN PHYSICAL REVIEW A 96, 042111 (2017)

with

KS(t |g) = VS(t,t0)K̂S(t |g)V−1
S (t,t0), (A16)

IS(t |g) = VS(t,t0)ÎS(t |g), (A17)

VS(t,t0) = exp←

(∫ t

t0

dτ [LS + g(τ )K1]

)
, (A18)

and the time-nonlocal equation is given by

∂

∂t
WS(t |g) = [LS + g(t)K1]WS(t |g) + �S(t |g)WS(t |g)

+
∫ t

t0

dt1 �S(t,t1|g)WS(t1|g) + JS(t |g), (A19)

with

�S(t |g) = VS(t,t0)〈L̂SR(t)〉RV−1
S (t,t0), (A20)

�S(t,t1|g) = VS(t,t0)�̂S(t,t1|g)V−1
S (t1,t0), (A21)

JS(t |g) = VS(t,t0)ĴS(t |g). (A22)

APPENDIX B: DERIVATION OF THE DOUBLE-TIME
CORRELATION FUNCTION FROM THE TIME-LOCAL

EQUATION IN THE SECOND-ORDER APPROXIMATION

In this appendix, applying the second-order approximation
to the time-local equation (11), we derive the double-time
correlation function G(t2,t1|K2,K1) given by Eq. (23). First,
it is easy to see that KS(t |g) and IS(t |g), given by Eqs. (A16)
and (A17), become up to second order with respect to the
system-reservoir interaction,

KS(t |g) =
∫ t

t0

dτ VS(t,t0)〈L̂SR(t)L̂SR(τ )〉RV−1
S (t,t0)

=
∫ t

t0

dτ eLS (t−t0)〈LSR(t)e−L0(t−τ )V(t,τ |g)eL0(t−τ )

× LSR(τ )e−L0(τ−t0)V(τ,t0|g)〉RV−1
S (t,t0), (B1)

IS(t |g) =VS(t,t0)

{
TrR[L̂SR(t)δW ]

+
∫ t

t0

dτ TrR[L̂SR(t)L̂SR(τ )δW ]

}
, (B2)

where we set δW = W − WS ⊗ ρR and

LSR(t) = e−L0(t−t0)LSReL0(t−t0). (B3)

Since we only need the terms up to the first order with respect to
the fictitious field g(t), we can use the approximated relations,

e−L0(t−t0)V(t,t1|g)eL0(t1−t0) = 1 +
∫ t

t1

dτ g(τ )K1(τ )

≡ 1 + 	V(t,t1), (B4)

e−L0(t1−t0)V(t1,t0|g) = 1 +
∫ t1

t0

dτ g(τ )K(τ )

≡ 1 + 	V(t1,t0), (B5)

V−1
S (t,t0)eLS (t−t0) = 1 −

∫ t

t0

dτ g(τ )K1(τ )

≡ 1 − 	V(t,t0), (B6)

with

K1(t) = e−LS (t−t0)K1e
LS (t−t0), (B7)

	V(t,t1) =
∫ t

t1

dτ g(τ )K1(τ ). (B8)

Here we note that 	V(t,t1) is a superoperator of the relevant
quantum system.

The superoperator KS(t |g) given by Eq. (B1) is further
calculated to be

KS(t |g) = KS,0(t) + KS,1(t |g), (B9)

where the zeroth- and first-order terms are given respectively
by

KS,0(t) =
∫ t

t0

dt1 eLS (t−t0)〈LSR(t)LSR(t1)〉Re−LS (t−t0), (B10)

KS,1(t |g) =
∫ t

t0

dt1 eLS (t−t0)〈LSR(t)[	V(t,t1),

LSR(t1)]〉Re−LS (t−t0). (B11)

In deriving the last equation, we have used the equality
	V(t,t0) = 	V(t,t1) + 	V(t1,t0) with t > t1 > t0. Then by
rearranging the order of integration, we can rewrite the
first-order superoperator KS,1(t |g) into

KS,1(t |g) =
∫ t

t0

dτ g(τ )KS,1(t,τ ), (B12)

with

KS,1(t,τ ) =
∫ τ

t0

dt1 eLS (t−t0)〈LSR(t)[K1(τ ),

LSR(t1)]〉Re−LS (t−t0). (B13)

The inhomogeneous term IS(t |g), given by Eq. (B2), is
calculated up to the first order with respect to the fictitious
field g(t),

IS(t |g) = IS,0(t) + IS,0(t |g), (B14)

where the zeroth- and first-order terms are given respectively
by

IS,0(t) = eLS (t−t0)TrR[LSR(t)δW ]

+
∫ t

t0

dt1 eLS (t−t0)TrR[LSR(t)LSR(t1)δW ], (B15)

IS,1(t |g) =
∫ t

t0

dτ g(τ )IS,1(t,τ ), (B16)

with

IS,1(t,τ ) = eLS (t−t0)TrR[LSR(t)K1(τ )δW ]

+
∫ t

t0

dt1 eLS (t−t0)TrR[LSR(t)T{LSR(t1)K1(τ )}δW ].

(B17)

042111-14



DOUBLE-TIME CORRELATION FUNCTIONS OF TWO . . . PHYSICAL REVIEW A 96, 042111 (2017)

Here we note that TrR[LSR(t)δW ] and TrR[LSR(t)K1(τ )δW ]
do not necessarily become zero even if 〈L̂SR(t)〉R = 0.

Therefore, we finally obtain the time-local equation for
the reduced quasidensity operator WS(t |g) in the second-order
approximation,

∂

∂t
WS(t |g) = [LS + g(t)K1]WS(t |g) + KS,0(t)WS(t |g)

+KS,1(t |g)WS(t |g) + IS,0(t) + IS,1(t |g).

(B18)

The formal solution of this equation is given by

WS(t |g) = US(t,t0)U ′
S(t,t0|g)WS

+
∫ t

t0

dt1 US(t,t0)U ′
S(t,t1|g)U−1

S (t1,t0)IS,0(t1)

+
∫ t

t0

dt1 US(t,t0)U ′
S(t,t1|g)U−1(t1,t0)IS,1(t1|g),

(B19)

with

US(t,t0) = exp←

(∫ t

t0

dt1 [LS + KS,0(t1)]

)
, (B20)

U ′
S(t,t0|g) = exp←

(∫ t

0
dt1U−1

S (t1,t0)[g(t1)K1

+KS,1(t1|g)]US(t1,t0)

)
. (B21)

By discarding all the terms higher than the first order with
respect to the fictitious field g(t), we can obtain the reduced
quasidensity operator WS(t |g) of the relevant quantum system,

WS(t |g) = WS,0(t) + WS,1(t |g). (B22)

The zeroth-order term WS,0(t) is nothing but the reduced
density operator of the relevant quantum system, that is,

WS,0(t) = US(t,t0)WS +
∫ t

t0

dt1 US(t,t1)IS,0(t1), (B23)

which is a solution of the inhomogeneous time-local quantum master equation in the second-order approximation [4,34–36],
∂

∂t
WS,0(t) = [LS + KS,0(t)]WS,0(t) + IS,0(t). (B24)

After some calculation, we can obtain the first-order correction term WS,1(t |g) of the reduced quasidensity operator,

WS,1(t |g) =
∫ t

t0

dτ g(τ )US(t,τ )K1US(τ,t0)WS +
∫ t

t0

dτ g(τ )
∫ t

τ

dt1

∫ τ

t0

dt2 US(t,t1)eLS (t1−t0)〈LSR(t1)[K1(τ ),LSR(t2)]〉R

× e−LS (t1−t0)US(t1,t0)WS +
∫ t

t0

dτ g(τ )
∫ τ

t0

dt1 US(t,τ )K1US(τ,t1)IS,0(t1)

+
∫ t

t0

dτ g(τ )
∫ t

τ

dt1

∫ t1

t0

dt2

∫ τ

t0

dt3 US(t,t1)eLS (t1−t0)〈LSR(t1)[K1(τ ),LSR(t3)]〉Re−LS (t1−t0)US(t1,t2)IS,0(t2)

+
∫ t

t0

dτ g(τ )
∫ t

τ

dt1,US(t,t1)IS,1(t1,τ ), (B25)

with

US(t,τ ) = US(t,t0)U−1
S (τ,t0) (t > τ > t0). (B26)

Then by using the relation G(t2,t1|K2,K1) =
TrS[K2δWS,1(t2|g)/δg(t1)]g→0, we can obtain the correlation
function (23).

Finally, we briefly consider the relation to the result given
in Ref. [58]. For this purpose, we assume that there is no
initial correlation between the relevant quantum system and
the thermal reservoir. In this case, when we set ρR = WR in
the definition of the projection operator P with the initial
reservoir state WR , Eq. (B18) becomes

∂

∂t
WS(t |g) = [LS + g(t)K1]WS(t |g) + KS,0(t)WS(t |g)

+ KS,1(t |g)WS(t |g). (B27)

Performing the functional derivative with respect to g(τ ) and
taking the limit g(t) → 0, we obtain

∂

∂t
WS(t,τ |K1) =LSWS(t,τ |K1) + KS,0(t)WS(t,τ |K1)

+ KS,1(t,τ )WS,0(t). (B28)

The system operators 
(t,t ′) and ρ(t,t ′) introduced in Ref. [58]
are related to WS(t,τ |K1) and WS,0(t) by 
(τ − t0,t −
τ ) = WS(t,τ |K1) with K1 = B and ρ(τ − t0,t − τ ) =
eLS (t−τ )WS,0(t). Then we find that the second and third
terms on the right-hand side of Eq. (B28) are equivalent
to D(
(τ − t0,t − τ )) and C(ρ(τ − t0,t − τ )) in Eq. (16) of
Ref. [58].

APPENDIX C: DERIVATION OF THE DOUBLE-TIME
CORRELATION FUNCTION FROM THE
TIME-NONLOCAL EQUATION IN THE

SECOND-ORDER APPROXIMATION

We drive the time evolution of the double-time corre-
lation function G(t2,t1|K2,K1) given by Eq. (33) from the
time-nonlocal equation of motion (12) in the second-order
approximation. Since the equality 〈L̂SR(t)〉R = 0 is assumed,
it is obvious from Eq. (A20) that the equality �S(t |g) = 0
holds. Up to the first order with respect to the fictitious field
g(t), we can obtain the integral kernel superoperator �S(t,t1|g)
in the second-order approximation,

�S(t,t1|g) = �S,0(t,t1) + �S,1(t,t1|g), (C1)
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with

�S,0(t,t1) = eLS (t−t0)〈LSR(t)LSR(t1)〉Re−LS (t1−t0), (C2)

�S,1(t,t1|g)

=
∫ t

t1

dτ g(τ )eLS (t−t0)〈LSR(t)K1(τ )LSR(t1)〉Re−LS (t1−t0).

(C3)

In this approximation, we can readily verify that the inho-
mogeneous term of the time-nonlocal equation is identical
with that of the time-local equation, and then we have
JS(t |g) = IS,0(t) + IS,1(t |g), where IS,0(t) and IS,1(t |g) are
given respectively by Eqs. (B15) and (B16). The time-nonlocal
equation for the reduced quasidensity operator WS(t |g) is given
by

∂

∂t
WS(t |g) = [LS + g(t)K1]WS(t |g)

+
∫ t

t0

dt1 [�S,0(t,t1) + �S,1(t,t1|g)]WS(t1|g)

+ IS,0(t) + IS,1(t |g). (C4)

To solve this equation, we denote as ŪS(t,t0) a solution of the
following equation:

∂

∂t
ŪS(t,t0) = LSŪS(t,t0) +

∫ t

t0

dt1 �S,0(t,t1)ŪS(t1,t0), (C5)

with the initial condition ŪS(t0,t0) = 1. Here we assume that
ŪS(t,t0) is invertible, though this is not always true. Then
W ′

S(t |g) = Ū−1
S (t,t0)WS(t |g) satisfies

∂

∂t
W ′

S(t |g) = Ū−1
S (t,t0)IS,0(t) + Ū−1

S (t,t0)IS,1(t |g)

+ g(t)Ū−1
S (t,t0)K1ŪS(t,t0)W ′

S(t |g)

+
∫ t

t0

dt1 Ū−1
S (t,t0)�S,1(t,t1|g)ŪS(t1,t0)W ′

S(t1|g).

(C6)

We decompose the system operator W ′
S(t |g) into the zeroth-

and first-order terms with respect to the fictitious field g(t),

W ′
S(t |g) = W ′

S,0(t) + W ′
S,1(t |g). (C7)

Discarding all the terms higher than the first order, we obtain
from Eq. (C6)

W ′
S,0(t) = WS +

∫ t

t0

dt1 Ū−1
S (t1,t0)IS,0(t1), (C8)

W ′
S,1(t |g) =

∫ t

t0

dt1 Ū−1
S (t1,t0)IS,1(t1|g)

+
∫ t

t0

dt1 g(t1)Ū−1
S (t1,t0)K1ŪS(t1,t0)W ′

S,0(t1)

+
∫ t

t0

dt1

∫ t1

t0

dt2 Ū−1
S (t1,t0)�S,1(t1,t2|g)

× ŪS(t2,t0)W ′
S,0(t2). (C9)

We denote as W̄S(t) the reduced density operator of the
relevant quantum system, where W̄S(t) is a solution of
the inhomogeneous time-nonlocal quantum master equation
[4,29–31],

∂

∂t
W̄S(t) = LSW̄S(t) +

∫ t

t0

dt1 �S,0(t,t1)W̄S(t1) + IS,0(t),

(C10)

the solution of which is given by

W̄S(t) = ŪS(t,t0)WS +
∫ t

t0

dt1 ŪS(t,t1)IS,0(t1), (C11)

with

ŪS(t,t1) = ŪS(t,t0)Ū−1
S (t1,t0) (t � t1 � t0). (C12)

Note that W̄S(t) is nothing but WS,0(t) = ŪS(t,t0)W ′
S,0(t). After

some calculation, we obtain the first-order term from Eq. (C9),

WS,1(t |g) = ŪS(t,t0)W ′
S,1(t |g)

=
∫ t

t0

dτ g(τ )ŪS(t,τ )K1W̄S(τ )

+
∫ t

t0

dτ g(τ )
∫ t

τ

dτ1

∫ τ

t0

dτ2 ŪS(t,τ1)eLS (τ1−t0)

×〈LSR(τ1)K1(τ )LSR(τ2)〉Re−LS (τ2−t0)W̄S(τ2)

+
∫ t

t0

dτ g(τ )
∫ t

τ

dτ1 ŪS(t,τ1)IS,1(τ1,τ ). (C13)

Since the double-time correlation function G(t2,t1|K2,K1) is
derived from the relation G(t2,t1|K2,K1)=TrS[K2δWS,1(t |g)/
δg(t1)|g→0], we finally obtain Eq. (33).

APPENDIX D: CORRELATION FUNCTIONS OF THE
QUBIT IN THE SECOND-ORDER APPROXIMATION

In this appendix, we derive the correlation functions (90)
and (91). When the time evolution of the qubit given by
Eq. (86), the map US(t,0) defined by the relation WS(t) =
US(t,0)WS(0) for any initial state WS(0) is determined by

US(t,0)|e〉〈e| = 1
2 [1 + σ (t) + uz(t)]|e〉〈e|
+ 1

2 [1 − σ (t) − uz(t)]|g〉〈g|, (D1)

US(t,0)|g〉〈g| = 1
2 [1 + σ (t) − uz(t)]|e〉〈e|
+ 1

2 [1 − σ (t) + uz(t)]|g〉〈g|, (D2)

US(t,0)|e〉〈g| = u(t)|e〉〈g|, (D3)

US(t,0)|g〉〈e| = u∗(t)|g〉〈e|. (D4)

The mapUS(t,0) is invertible since |u(t)|2 = uz(t) > 0. In fact,
the inverse map is given by

U−1
S (t,0)|e〉〈e| = 1

2

[
1 + 1 − σ (t)

uz(t)

]
|e〉〈e|

+ 1

2

[
1 − 1 − σ (t)

uz(t)

]
|g〉〈g|, (D5)
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U−1
S (t,0)|g〉〈g| = 1

2

[
1

1 + σ (t)

uz(t)

]
|e〉〈e|

+ 1

2

[
1 + 1 + σ (t)

uz(t)

]
|g〉〈g|, (D6)

U−1
S (t,0)|e〉〈g| = 1

u(t)
|e〉〈g|, (D7)

U−1
S (t,0)|g〉〈e| = 1

u∗(t)
|g〉〈e|. (D8)

Thus, we obtain the map US(t,s) = US(t,0)U−1
S (s,0),

US(t,s)|e〉〈e| = 1
2 [1 + σ (t,s)uz(0,s) + uz(t,s)]|e〉〈e|
+ 1

2 [1 − σ (t,s)uz(0,s) − uz(t,s)]|g〉〈g|,
(D9)

US(t,s)|g〉〈g| = 1
2 [1 + σ (t,s)uz(0,s) − uz(t,s)]|e〉〈e|
+ 1

2 [1 − σ (t,s)uz(0,s) + uz(t,s)]|g〉〈g|,
(D10)

US(t,s)|e〉〈g| = u(t,s)|e〉〈g|, (D11)

US(t,s)|g〉〈e| = u∗(t,s)|g〉〈e|, (D12)

or equivalently

US(t,s)1 = 1 + σ (t,s)uz(0,2)σz,

US(t,s)σz = uz(t,s)σz, (D13)

US(t,s)σ+ = u(t,s)σ+,

US(t,s)σ− = u∗(t,s)σ−. (D14)

In these equation, we set

u(t,s) = exp

(
−

∫ t

s

dτ [γ (τ ) + iδ(τ )]

)
, (D15)

uz(t,s) = exp

(
−2

∫ t

s

dτ γ (τ )

)
, (D16)

σ (t,s) = σ (t) − σ (s). (D17)

To make the model analytically tractable, we assume that
the thermal reservoir is in the ground state so that the equality
〈R†(t)R(t ′)〉R = 0 holds. Since we can obtain w(t) = −1 from
Eq. (85), the map US(t,s) given by Eqs. (D13) and (D14)
becomes

US(t,s)1 = 1 − [1 − uz(t,s)]σz,

US(t,s) = uz(t,s)σz, (D18)

US(t,s)σ+ = u(t,s)σ+,

US(t,s)σ− = u∗(t,s)σ−. (D19)

Then the quantum regression theorem yields the correlation
function,

〈σz(t2)σz(t1)〉0 = TrS[σzUS(t2,t1)σzUS(t1,0)WS]

= 1 + [uz(t2,0) − uz(t1,0)](1 + 〈σz〉). (D20)

Next we derive the correction term (43) to the double-time
correlation function. After some calculation, we can derive

US(t2,τ1)eLSτ1〈LSR(τ1)[σz,LSR(τ2)]〉Re−LSτ1WS(τ1)

= eiω(τ1−τ2)〈R(τ1)R†(τ2)〉R{uz(t2,τ1)uz(τ1,0)[1 + cz(0)]σz

+ u∗(t2,τ1)2u(τ1,0)c(0)σ−}. (D21)

Then the correction term is obtained from Eq. (43):

	〈σz(t2)σz(t1)〉 = 2
∫ t2

t1

dτ1

∫ t1

0
dτ eiω(τ1−τ2)

×〈R(τ1)R†(τ2)〉Ruz(t2,0)(1 + 〈σz〉).
(D22)

Thus, the double-time correlation function with the correlation
term is 〈σz(t2)σz(t1)〉c = 〈σz(t2)σz(t1)〉0 + 	〈σz(t2)σz(t1)〉.

To proceed further, we suppose that the thermal reservoir is
a set of independent harmonic oscillators [4,19]. The reservoir
operator R is assumed to be R = ∑

k gkak , where ak is an
annihilation operator of the kth mode of the reservoir oscillator
and gk is a coupling constant. Then we obtain the correlation
function of the thermal reservoir,

〈R(τ1)R†(τ2)〉R =
∑

k

|gk|2e−iωk (τ2−τ1)

=
∫

d�J (�)e−i�(τ2−τ1), (D23)

where J (�) represents the spectral density of the system-
reservoir interaction. Furthermore, we assume that J (�) is
a Lorentzian function with the resonance condition

J (�) =
(

γ

2π

)
λ2

(� − ω)2 + λ2
, (D24)

where λ is an inverse of the reservoir correlation time and γ is
a coupling strength. Then the correlation function becomes

〈R(τ1)R†(τ2)〉R = 1
2γ λe−(λ+iω)(τ2−τ1). (D25)

In this case, the time-dependent parameter uz(t,0) is given by

uz(t,0) = exp

[
−

(
γ

λ

)
(λt − 1 + e−λt )

]
. (D26)

By substituting this equation and Eq. (D25) into Eqs. (D20)
and (D22), we obtain Eqs. (90) and (91).

APPENDIX E: DERIVATION OF THE EXACT
CORRELATION FUNCTION OF THE QUBIT

In this appendix, we briefly explain the derivation of the
exact correlation function 〈σz(t2)σz(t1)〉 given by Eq. (92).
We suppose that a two-level system is placed under the
influence of a thermal reservoir. Furthermore, we assume that
there is at most a single excitation in the whole system at
an initial time and the Hamiltonian H conserves the total
excitation number. Then the whole system can be described
by a Hilbert space spanned by three basis vectors |e〉|0〉,
|g〉|1k〉, and |e〉|0〉, where |0〉 is the ground state of the thermal
reservoir and |1k〉 is a single-excited state in which only the kth
mode has one excitation. Since the total excitation number is
conserved during the time evolution, we can express the time
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evolution as

e−iH t/h̄|g〉|0〉 = |g〉|0〉, (E1)

e−iH t/h̄|e〉|0〉 = A(t)|g〉|0〉 +
∑

k

Ak(t)|g〉|1k〉, (E2)

e−iH t/h̄|g〉|1k〉 = Bk(t)|e〉|0〉 +
∑

l

Bkl(t)|g〉|1l〉, (E3)

with the initial condition A(0) = 1, Ak(0) = Bk(0) = 0 and
Bkl(0) = δkl . The normalization condition yields the relations

|A(t)|2 +
∑

k

|Ak(t)|2 = 1,

|Bk(t)|2 +
∑

l

|Bkl(t)|2 = 1. (E4)

Using the trivial equalities U (t1+t2)|e〉|0〉=U (t2)U (t1)|e〉
|0〉 and U (t1 + t2)|g〉|1k〉 = U (t2)U (t2)|g〉|1k〉 with U (t) =
e−iH t/h̄, we can obtain the relations among the parameters

A(t1 + t2) = A(t1)A(t2) +
∑

k

Ak(t1)Bk(t2), (E5)

Ak(t1 + t2) = A(t1)Ak(t2) +
∑

l

Al(t1)Blk(t2), (E6)

Bk(t1 + t2) = Bk(t1)A(t2) +
∑
m

Bkm(t1)Bm(t2), (E7)

Bkl(t1 + t2) = Bk(t1)Al(t2) +
∑
m

Bkm(t1)Bml(t2). (E8)

We assume that the initial state of the whole system is given
by |�(0)〉 = (cg|g〉 + ce|e〉)|0〉 with |cg|2 + |ce|2 = 1. In this
case, we have the relations

U (t − s)σzU (s)|�(0)〉
= −cg|g〉|0〉 + ce[2A(s)A(t − s) − A(t)]|e〉|0〉

+ ce

∑
k

[2A(s)Ak(t − s) − Ak(t)]|g〉|1k〉 (E9)

and

U (t)|�(0)〉 = cg|g〉|0〉 + ceA(t)|e〉|0〉 + ce

∑
k

Ak(t)|g〉|1k〉.

(E10)

Then we obtain for any operator X of the two-level system

〈�(0)|U †(t)XU (t − s)σzU (s)|�(0)〉
= (c∗

g〈g| + c∗
eA

∗(t)〈e|)
× X(−cg|g〉 + ce[2A(s)A(t − s) − A(t)]|e〉)
+ |ce|2

∑
k

A∗
k(t)[2A(s)Ak(t − s) − Ak(t)]〈g|X|g〉.

(E11)

Then by substituting X = 1 into this equation, we derive

〈�(0)|U †(s)σzU (s)|�(0)〉

= −1 + 2|ce|2
[
A∗(t)A(t − s) +

∑
k

A∗
k(t)Ak(t − s)

]
A(s).

(E12)

On the other hand, the direct calculation yields

〈�(0)|U †(s)σzU (s)|�(0)〉 = −1 + 2|ce|2A∗(s)A(s). (E13)

Since this equation has to be identical to Eq. (E12), we obtain
the relation between the parameters A(t) and Ak(t ′),

A(s) = A(t)A∗(t − s) +
∑

k

Ak(t)A∗
k(t − s), (E14)

with t > s. This relation together with |A(t)|2+∑
k |Ak(t)|2=

1 provides

∑
k

A∗
k(t)[2A(s)Ak(t − s) − Ak(t)]

= 2|A(s)|2 + |A(t)|2 − 1 − 2A∗(t)A(t − s)A(s). (E15)

Substituting this equation into Eq. (E11), we can obtain the
correlation function,

〈X(t)σz(s)〉
= {−1 + |ce|2[2|A(s)|2 + |A(t)|2 − 2A∗(t)A(t − s)A(s)]}

× 〈g|X|g〉+|ce|2[2A∗(t)A(t − s)A(s) − |A(t)|2]〈e|X|e〉
− c∗

e cgA
∗(t)〈e|X|g〉 + c∗

gce[2A(t − s)A(s)

− A(t)]〈g|X|e〉. (E16)

Here, we note that the correlation function can be expressed
only in terms of the single time-dependent parameter A(t) if
there is no initial correlation between the two-level system and
the thermal reservoir. Setting X = σz in this equation yields
Eq. (92). This result can be extended in the presence of the
initial correlation. The details are given in Ref. [76].

To find an explicit form of the time-dependent parameter
A(t), we assume that the Hamiltonian H of the whole system
is

H = 1

2
h̄ωσz +

∑
k

h̄ωka
†
kak +

∑
k

h̄(λkσ+ak + λ∗
kσ−a

†
k).

(E17)

By differentiating both sides of Eq. (E2) with respect to time
t , we obtain

d

dt
A(t) = −iωA(t) − i

∑
k

λkAk(t), (E18)

d

dt
Ak(t) = −iλ∗

kA(t) − iωkAk(t), (E19)

which yields

d

dt
A(t) = −iωA(t) −

∑
k

|λk|2
∫ t

0
ds e−iωk (t−s)A(s). (E20)

Thus, by assuming the Lorentzian spectral density (D24)
and solving this integrodifferential equation under the initial
condition A(0) = 1, we can obtain Eq. (93).
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