
PHYSICAL REVIEW A 96, 042106 (2017)

Kramers-Kronig potentials for the discrete Schrödinger equation
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In a seminal work, Horsley and collaborators [S. A. R. Horsley, et al., Nat. Photon. 9, 436 (2015)] showed that,
in the framework of non-Hermitian extensions of the Schrödinger and Helmholtz equations, a localized complex
scattering potential with spatial distributions of the real and imaginary parts related to one another by the spatial
Kramers-Kronig relations are reflectionless and even invisible under certain conditions. Here we consider the
scattering properties of Kramers-Kronig potentials for the discrete version of the Schrödinger equation, which
generally describes wave transport on a lattice. Contrary to the continuous Schrödinger equation, on a lattice a
stationary Kramers-Kronig potential is reflective. However, it is shown that a slow drift can make the potential
invisible under certain conditions.
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I. INTRODUCTION

Reflection is a ubiquitous phenomenon of wave physics
which is found both in classical and quantum systems [1].
Reflection of electromagnetic (optical) waves in dielectric
media with sharp refractive index changes and scattering of
nonrelativistic particles from a quantum potential provide
important examples of wave reflection which share strong
similarities [1–5]. However, it has been known for a long
time [2] that reflection can be avoided in special classes
of scattering potentials, the so-called reflectionless poten-
tials [6–9]. Recently, wave reflection and scattering from
complex potentials in non-Hermitian systems has sparked
a great interest with the prediction of intriguing physics
forbidden in ordinary Hermitian models, such as asymmetric
scattering and unidirectional or bidirectional invisibility of the
potential [10–17].

In a seminal paper, Horsley and collaborators introduced the
class of Kramers-Kronig complex potentials [18], in which
the spatial profiles of the real and imaginary parts of the
potentials are related to one another by a Hilbert transform.
The properties of such newly discovered potentials, i.e.,
unidirectional or bidirectional transparency, invisibility and
some sublets related to the slow decay of the potentials, have
been theoretically investigated in a couple of subsequent works
[19–27], with recent attempts to experimentally realize such a
kind of complex potentials [28,29].

In all previous studies, wave propagation was formulated in
the framework of the Helmholtz or the stationary Schrödinger
equations, which are suited to describe scattering phenomena
of waves in continuous systems. However, in several physical
contexts, such as in quantum or classical transport on a lattice
[30–34] or in quantum mechanical models with discretized
space [35–37], wave transport is better described by the
discrete version of the Schrödinger equation. Like for the
continuous Schrödinger equation, reflectionless potentials
can be constructed for the discrete Schrödinger equation
as well [38–42], for example, using the discrete version of
supersymmetry or the Darboux transformation. Such previous
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works could not find any substantial different behavior of
supersymmetric-synthesized scatteringless potentials when
space is discretized. However, the continuous and discrete
versions of the Schrödinger equation may show distinctly
different behaviors, which arise mainly for the limited energy
band imposed by the lattice as opposed to the parabolic
dispersion curve in the continuous limit.

In this work we consider Kramers-Kronig potentials for
the discrete version of the Schrödinger equation and highlight
some very distinct features of wave scattering on a lattice as
compared to the continuous Schrödinger equation. While in
the latter case a Kramers-Kronig potential is unidirectionally
or bidirectionally reflectionless, a stationary Kramers-Kronig
potential on a lattice is reflective, i.e., discretization of space
breaks the reflectionless property of the Kramers-Kronig
potentials. However, we show that a class of slowly drifting
Kramers-Kronig potentials on a lattice can become invisi-
ble. Our results disclose a very distinct scattering behavior
of Kramers-Kronig potentials in continuous and discrete
Schrödinger equation models, and are expected to stimulate
further theoretical and experimental investigations of such an
important class of recently discovered complex potentials.

II. WAVE REFLECTION FROM A MOVING POTENTIAL
ON A LATTICE

A. Drifting potential on a lattice: Basic equations

We consider wave reflection from a drifting potential
on a one-dimensional lattice, which is described by the
discrete Schrödinger equation for the wave amplitude ψ(x,t)
[31,32,43,44]

i
∂ψ

∂t
= −2κ cos(ap̂x)ψ + V (x + vt)ψ, (1)

i.e.,

i
∂ψ

∂t
= −κ[ψ(x + a,t) + ψ(x − a,t)] + V (x + vt)ψ, (2)

where T̂ = −2κ cos(ap̂x) = −κ[exp(a∂x) + exp(−a∂x)] is
the kinetic energy operator, a is the lattice period, x is the
spatial variable defined on the discrete sites x = na (n =
0, ± 1, ± 2, . . . ,), p̂x = −i∂x is the momentum operator,
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V (x) is the scattering potential and v is the drift velocity.
The parameter κ entering in the kinetic energy operator is the
hopping rate which determines the width of the tight-binding
lattice band. The dispersion relation of the lattice band is
sinusoidal and given by E(q) = −2κ cos(qa), where q is the
Bloch wave number. The continuous limit is obtained for a
small lattice period a after setting cos(ap̂x) � 1 − (a2/2)p̂2

x

in Eq. (1). In this limit the discreteness of space is lost and one
obtains the continuous Schrödinger equation

i
∂ψ

∂t
= −κa2 ∂2ψ

∂x2
− 2κψ + V (x + vt)ψ (3)

with the usual parabolic dispersion relation E(q) = −2κ +
κa2q2 of the kinetic energy term. The scattering potential V (x)
is assumed to vanish as x → ±∞ sufficiently fast so as the
asymptotic solutions to Eqs. (2) and (3) far from the scattering
potential are plane waves. To study the scattering problem, it
is convenient to write Eq. (2) in the reference frame of the
drifting potential via the Galileian transformation

X = x + vt , T = t. (4)

This yields the transformed equation

i
∂ψ

∂T
= −κ[ψ(X + a,T ) + ψ(X − a,T )] + V (X)ψ

−iv
∂ψ

∂X
, (5)

which differs from Eq. (2) owing to the drift term on the
right-hand side of Eq. (5). Note that, after the Galileian
transformation (4), the continuous limit of the Schrödinger
equation [Eq. (3)] takes the form

i
∂ψ

∂T
= −2κψ − κa2 ∂2ψ

∂X2
+ V (X)ψ − iv

∂ψ

∂X
, (6)

which again differs from the original equation because of a
drift term [the last term on the right-hand side of Eq. (6)]. In
such a continuous limit, the drift term can be removed via a
gauge transformation and the continuous Schrödinger equation
is thus invariant under a Galileian transformation. In fact, af-
ter the gauge transformation ψ(X,T ) = φ(X,T ) exp(−iβT +
iγX) with γ = −v/(2κa2) and β = −v2/(4κa2), one can
readily show that φ(X,T ) satisfies Eq. (6), but without the
drift term on the right-hand side. This result is basically
due to the fact that the continuous Schrödinger equation is
a nonrelativistic wave equation, and it is therefore invariant
under a Galileian transformation [45]. Such an invariance
ensures that the scattering properties of the potential V (x)
are not changed when it drifts at a uniform speed v: in
the laboratory reference frame (x,t), the main effect of
the moving potential is a Doppler shift of the frequency
of the scattered (reflected) wave. However, for the discrete
Schrödinger equation (5) in the moving reference frame the
drift tern cannot be removed via a gauge transformation,
i.e., the discrete Schrödinger equation is not invariant under
a Galileian transformation. This result basically stems from
the discrete translational symmetry of the lattice, so that
in the reference frame (X,T ) the scattering potential is at
rest, however, the lattice is drifting in the opposite direction.
A major impact of the breakdown of Galileian invariance
for the discrete Schrödinger equation is that the scattering

properties of a potential V (x) on a lattice are modified when
the potential drifts, as we are going to show in the following
analysis.

B. Reflection and transmission coefficients
in the moving reference frame

Let us first consider the case of a vanishing scattering
potential V (X) = 0. Then in the moving reference frame the
scattering solutions to Eq. (5) are plane waves ψ(X,T ) ∝
exp(iqX − iET ) with Bloch wave number q and energy
E = E(q) defined by the dispersion relation

E(q) = −2κ cos(qa) + qv, (7)

and group velocity

vg(q) = ∂E

∂q
= 2aκ sin(qa) + v. (8)

A typical behavior of the dispersion curve E = E(q) is shown
in Fig. 1 for increasing values of the drift velocity v. Note that,
in the moving reference frame, the energy dispersion curve
acquires a linear ramp term qv which breaks the periodicity
of E(q).

Let us now consider a scattering potential V (X) which
vanishes sufficiently fast as |X| → ∞ so that the scattering
solutions to Eq. (5) with energy E are asymptotically plane
waves. To study the scattering problem, for the sake of
definiteness we will assume v > 0 and will consider a
forward-propagating plane wave with Bloch wave number q0

and positive group velocity vg(q0) > 0 (left incidence side),
however, the analysis can be readily extended to the v < 0
case or to the right incidence side. Note that the limit of a
nondrifting potential is obtained by letting v = 0. Since in
the moving reference frame (X,T ) the scattering potential
V (X) is at rest, scattering of a plane wave with defined
energy E0 is elastic, i.e., it conserves the energy, and the
solution to Eq. (5) corresponding to an incoming plane wave
from the left side with wave number q0 is then of the form
ψ(X,T ) = f (X) exp(−iE0T ), where E0 = E(q0) and f (X)
satisfies the stationary differential-difference equation

E0f (X) = −κ[f (X + a) + f (X − a)] + V (X)f (X)

− iv
df

dX
, (9)

with the asymptotic behavior

f (X) ∼
{

exp(iq0X) + ∑
α rα(q0) exp(iQαX) X → −∞,∑

β tβ(q0) exp(iqβX) X → ∞.

(10)

In Eq. (10), the wave numbers Qα and qβ are defined as the real
roots of the equation −2κ cos(qa) + vq = E0 with vg(qβ) � 0
and vg(Qα) < 0; see Fig. 1(b). They correspond to the wave
numbers of reflected and transmitted plane waves with the
same energy E0 than the incident wave, with rα and tβ being
the reflection and transmission amplitudes, respectively. Note
that, for β = 0, qβ = q0 is precisely the wave number of the
incident wave. The number of the roots Qα and qβ depends
sensitively on the drift velocity v, and increases as v → 0, as
schematically shown in Fig. 1 [46]. For a drifting potential with
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FIG. 1. Behavior of the energy dispersion curve E(q) =
−2κ cos(qa) + qv of the lattice in the moving reference frame for
increasing values of the drift velocity: (a) v = 0 (lattice at rest),
(b) v/κ = 0.2a, and (c) v/κ = 2.2a. The horizontal dashed line is
the energy E0 of the incident plane with wave number q0 (q0a = π/2
in the figure, shown by the vertical solid line). The roots qβ and Qα of
the equation E(q) = E0, corresponding to Bloch waves with positive
and negative group velocities, are shown by filled and empty circles,
respectively. Note that, for a drift velocity v larger than the critical
velocity vc = 2aκ [as in (c)], the equation E(q) = E0 is satisfied
solely for q = q0.

a speed v larger than the critical velocity vc ≡ 2κa, {Qα} is
empty, whereas {qβ} is composed solely by the wave number q0

of incident wave [Fig. 1(c)]: this means that elastic scattering
forbids wave reflection from any potential [47]. Here we focus
our analysis to a slowly drifting potential v < vc, for which
elastic scattering permits wave reflection.

III. SCATTERING FROM A KRAMERS-KRONIG
POTENTIAL ON A LATTICE

Unlike for the continuous Schrödinger equation, a Kramers-
Kronig potential at rest on a lattice is not reflectionless.
The main physical reason of such a result is schematically
illustrated in Fig. 2 and can be explained as follows. Let us
consider a plane wave with wave number q0, corresponding
to a positive group velocity (progressive wave) which is
scattered off by a Kramers-Kronig potential V (x) which is

 wave number qa/π
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FIG. 2. Schematic of the scattering process of a progressive plane
wave with wave number q0 from a Kramers-Kronig potential at
rest composed by positive wave number components for (a) the
continuous Schrödinger equation with parabolic dispersion curve,
and (b) the discrete Schrödinger equation with sinusoidal dispersion
curve. The thin solid arrows depict the wave-number components k of
the scattering potential. The shaded areas correspond to waves with
negative group velocity, i.e., to reflected waves. The horizontal dashed
lines define the energy E0 of the incoming wave. Scattered waves are
obtained by mixing the wave numbers of incoming wave and of
scattering potential. For elastic scattering energy must be conserved.
In (a) reflection is forbidden because there are not excited scattered
waves with negative group velocities, whereas in (b) reflection is
permitted.

holomorphic, for the sake of definiteness, in the upper half
complex plane Im(x) � 0. The analyticity of the potential
in the half complex plane ensures that its Fourier spectrum
V̂ (k) = ∫

dxV (x) exp(−ikx) vanishes for any k < 0, i.e., it
is composed solely by positive wave numbers, depicted by
the solid thin arrows in Fig. 2. Therefore, at any scattering
order the scattered waves have wave numbers which can not
be smaller than q0. In the continuous limit, the Schrödinger
equation shows a parabolic energy dispersion curve [Fig. 2(a)],
meaning that all scattered waves have a positive group
velocity, i.e., reflection is canceled. Conversely, for the discrete
Schrödinger equation [Fig. 2(b)] the energy dispersion curve
is sinusoidal, so that scattered waves with a wave number
larger than q0 may correspond to a negative group velocity,
i.e., reflection is allowed. Figure 3 shows, as an example,
reflection of a Gaussian wave packet from a stationary
Kramers-Kronig potential on a lattice as obtained by numerical
simulations of Eq. (1), for both left and right incidence
sides, in the (x,t) laboratory reference frame. The numerical
method of integration is described at the end of the section.
The scattering potential used in the simulations is given
by V (x) = V0(x) exp(i
x) with V0(x) = V0/(x/a + iα)2 and
with parameter values V0/κ = i, 
 = 10/a and α = 0.3. Note
that for both left and right incidence sides the potential is not
reflectionless.

The main result of the present work that we are going
to demonstrate is that, under certain conditions, a class
of Kramers-Kronig potentials which are reflective at rest
become reflectionless (and even invisible) when drifting on
the lattice. As discussed in the previous section, such a result
stems from the fact that the discrete Schrödinger equation
is not invariant under a Galileian transformation, so that the
scattering properties of a potential on a lattice change with
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FIG. 3. Scattering of a Gaussian wave packet on a lattice from a
Kramers-Kronig potential at rest for (a) left and (b) right incidence
sides. The two panels show snapshots of |ψ(x,t)| on a pseudocolor
map. The scattering potential, defined on the lattice sites n = x/a,
is given by V (x) = iκ exp(i10x/a)/(x/a + 0.3i) and is shown in
panel (c) (real and imaginary parts of V/κ). The initial condition is
the Gaussian wave packet ψ(x,t = 0) ∝ exp[−(x − d)2/w2] + iq0x]
with q0 = π/(2a), d = −50a, and w = 5a in (a), and q0 = −π/(2a),
d = 50a, and w = 5a in (b).

the drift velocity of the potential. Precisely, we can prove the
following general theorem, which states a sufficient condition
for a slowly-drifting Kramers-Kronig potential to be invisible.

Let V (X) be a Kramers-Kronig potential of the form
V (X) = V0(X) exp(i
X), with V0(X) holomorphic in the
Im(X) � 0 half complex plane, drifting on a lattice with a
speed v smaller than the critical speed vc = 2κa. Then for

 � 4κ/v the potential is bidirectionally invisible [48].

To prove the theorem, we follow a procedure similar to
the one illustrated in Refs. [20,25] and based on the complex
spatial displacement method. Let us consider, for the sake
of definiteness, a progressive wave incident from the left
side, so that the asymptotic form of the scattered solution is
given by Eq. (10). Since V (X) is holomorphic in the half
complex plane Im(X) � 0, the solution to Eq. (9) can be
analytically prolonged from the real X axis into such a half
plane. In particular, let us indicate by f (ξ,δ) = f (X = ξ + iδ)
the solution to Eq. (9) on the horizontal line  defined by
the parametric equation X = ξ + iδ, with fixed δ > 0 and
−∞ < ξ < ∞, and with the asymptotic form defined by
Eq. (10) as δ → 0+. The main idea of the complex spatial
displacement method is to find suitable connection relations

between reflection and transmission amplitudes of scattered
waves on the real X axis, i.e., for δ = 0, and on the line
, i.e. for δ > 0. Since for δ → ∞ the scattering potential
V (X) vanishes, the reflection and transmission amplitudes of
scattered waves on the line  can be readily determined by
perturbative methods for δ large. The connection formulas can
then be used to compute reflection and transmission amplitudes
of the original problem, i.e., on the real axis δ = 0. For δ > 0,
the asymptotic form of f (ξ,δ) as ξ → ±∞ is given by

f (ξ,δ) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(δ)
[
exp(iq0ξ ) + ∑

α rα(q0,δ) exp(iQαξ )
]
,

ξ → −∞,

A(δ)
∑

β tβ(q0,δ) exp(iqβξ ),

ξ → ∞,

(11)

with A(δ = 0+) = 1. As in Eq. (10), in Eq. (11) rα(q0,δ)
and tβ(q0,δ) are the reflection and transmission amplitudes
of scattered waves on the line , which reduce to rα(q0) and
tβ(q0) entering in Eq. (10) in the δ → 0+ limit. Since f (X)
is an analytic function of X = ξ + iδ, the following relation
holds

∂f

∂δ
= i

∂f

∂ξ
. (12)

Using Eqs. (11) and (12), it readily follows that A(δ) =
exp(−q0δ). Moreover, the following connection formulas for
reflection and transmission amplitudes on the real X axis and
on the line  are found

rα(q0,0) = rα(q0,δ) exp[−(q0 − Qα)δ], (13)

tβ(q0,0) = tβ(q0,δ) exp[−(q0 − qβ)δ]. (14)

For δ → ∞, the potential V (X = ξ + iδ) vanishes and the
order of magnitude of rα(q0,δ), tβ(q0,δ) can be estimated
by first-order Born approximation [25]. As shown in the
Appendix, rα(q0,δ) → 0 and tβ(q0,δ) → 0 (β �= 0) at least
like ∼ exp(−δ
), whereas t0(q0,δ) → 1. Provided that the
condition 
 � 4κ/v is met, 
 is always larger than any
difference |q0 − qβ | and |q0 − Qα|. Therefore from Eqs. (13)
and (14) one obtains rα(q0,0) = 0, tβ(q0,0) = δβ,0, which
means that the scattering potential V (X) is invisible for left
incidence side. A similar proof can be done assuming a
wave incident from the right side, i.e., the potential V (X)
is bidirectionally invisible.

We checked the bidirectional invisibility of moving
Kramers-Kronig potentials by direct numerical simulations
of the discrete Schrödinger equation (1) in the laboratory
reference frame (x,t). By letting x = na and cn(t) = ψ(x =
na,t), the differential-difference equation (2) is equivalent to
the following set of linear coupled equations for the complex
amplitudes cn(t) on the lattice

i
dcn

dt
= −κ(cn+1 + cn−1) + V (na + vt)cn (15)

with time-dependent coefficients. The coupled equations (15)
are numerically solved using an accurate variable-step fourth-
order Runge-Kutta method assuming open boundary condi-
tions. The lattice size, i.e., the number of lattice sites, has been
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FIG. 4. Scattering of a Gaussian wave packet from a drifting
Kramers-Kronig potential for (a) left and (b) right incidence sides.
The upper panels show snapshots of |ψ(x,t)| on a pseudocolor map.
The bottom panels show the detailed distributions of the amplitudes
|ψ(x,t)| at final time t = 50/κ , after the scattering process (open
circles), and compare them with those that one would observe in the
absence of the scattering potential (points). The potential V (x) is the
same as in Fig. 3. The drift velocity is v = 0.4κa. Initial conditions
are as in Fig. 3.

set large enough (typically −100 � n � 100) to avoid edge
effects. As an example, Figs. 4 and 5 show numerical results
of bidirectional invisibility for a propagating Gaussian wave
packet scattered off by the same Kramers-Kronig potential
as in Fig. 3, but when the potential drifts on the lattice
with a velocity v = ±0.4aκ . The figures depict the temporal
evolution of the wave packet amplitude |ψ(x,t)|, for either
left and right incidence sides, and compare the wave packet
distributions after the scattering process with the ones observed
in the absence of the scattering potential. The coincidence
of the distributions is the clear signature that the drifting
Kramers-Kronig potential is invisible, while it is reflective
at rest.

IV. CONCLUSION AND DISCUSSION

Wave scattering from complex potentials in the framework
of non-Hermitian extensions of the Schrödinger or Helmholtz
equations has received a great and increasing interest in the past
few years, with the discovery of intriguing physics forbidden
in ordinary Hermitian scattering problems, such as asymmetric
reflection and unidirectional or bidirectional invisibility of the
potential. An important class of complex potentials, which do
no reflect waves from one or both incidence sides, in provided
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FIG. 5. Same as Fig. 4, but for a reversed drift velocity v =
−0.4κa.

by so-called Kramers-Kronig potentials [18], in which the
real and imaginary spatial profiles of the potential are related
one to another by a Hilbert transform. Most of recent studies
focused on wave scattering from non-Hermitian potentials
in continuous wave equations, however, in several physical
systems wave transport is better described by discrete wave
equations. A paradigmatic equation describing discrete wave
transport is provided by the discrete Schrödinger equation,
which is encountered in models of quantum or classical
transport on a lattice or in quantum mechanical models with
discretized space. In this work we show that discretization
of space and breaking of the continuous translational spatial
invariance deeply change the scattering properties of Kramers-
Kronig potentials on a lattice. In particular, the physical
mechanism that prevents wave reflection of a Kramers-Kronig
potential in the continuous Schrödinger equation breaks down
when scattering occurs on a lattice with discrete translational
invariance. Therefore, a Kramers-Kronig potential on a lattice
is rather generally a reflective potential. However, we have
shown that if the potential slowly drifts on the lattice, under
certain conditions it can become bidirectionally invisible. Our
study sheds new light into the important and broad field
of wave scattering in non-Hermitian physical models and
highlights important distinctive features of wave scattering in
discrete versus continuous wave equations. In particular, we
reveal that the breakdown of Galileian invariance in discrete
wave equations can enable a reflective potential to become
reflectionless when drifting on the lattice.

Physically, Kramers-Kronig potentials on a lattice and their
reflection properties could be implemented in optics using
arrays of evanescently coupled optical waveguides or chains
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of microring resonators with tailored gain and loss profiles
[34,49]. For example, it is known that spatial light propagation
along the longitudinal z axis in a lattice of coupled dielectric
optical waveguides is described by coupled-mode equations
analogous to Eq. (15), in which time t is replaced by the
spatial coordinate z and n is the waveguide number [49]. The
real and imaginary parts of the potential V can be tailored
by controlling, along the propagation distance z, the effective
mode index of the waveguides, i.e., the propagation constant
offset of the waveguide mode and optical amplification and/or
attenuation. If optical amplification (gain) is not available,
one can resort to a purely dissipative (lossy) structure [50].
For example, using waveguide arrays written in a glass with
the femtosecond laser writing technique [51–54] an effective
propagation constant mismatch can be introduced by varying
the writing speed of the focused laser beam in the glass
[51,54], whereas selective optical losses can be obtained by
patterning a selective layer of absorptive material on the top
of the array or by suitable bending of waveguides [53]. Static
and moving potentials are readily obtained by manufacturing
different waveguide arrays with straight or transversely tilted
perturbation V of the effective mode index. Excitation of
the array by a tilted Gaussian beam and monitoring its
propagation along the z axis using fluorescence imaging
methods [49,51,52] enables one to visualize the wave packet
dynamics in the different regimes.

It is envisaged that our results could stimulate further
theoretical and experimental investigations on discrete wave
transport and scattering by non-Hermitian potentials. Optical
waveguide arrays could provide an experimentally acces-
sible laboratory tool for the observation of the scattering
properties of spatial Kramers-Kronig potentials on a lattice.
On the theoretical side, the analysis could be extended to
a two-dimensional lattice in which the band structure and
transport are known to be deeply modified by synthetic gauge
fields. In principle, in a two-dimensional lattice the scattering
properties of non-Hermitian potentials could be controlled by
synthetic gauge fields, which is not feasible in continuous wave
scattering settings. The interplay of non-Hermitian potential
scattering and gauge fields could be a subject of future
research.

APPENDIX: REFLECTION AND TRANSMISSION
AMPLITUDES OF THE SPATIALLY DISPLACED

POTENTIAL

Let us indicate by G(ξ ) the potential V (X) =
V0(X) exp(i
X) on the line  of the upper complex plane, i.e.,

for X = ξ + iδ, with δ > 0 large enough and −∞ < ξ < ∞.
The displacement δ on the imaginary axis of the potential
pushes all the possible singular behavior of V0(X) further down
into the lower complex plane, simultaneously reducing its
magnitude. In particular, since G(ξ ) = G0(ξ ) exp(i
ξ − δ
)
with G0(ξ ) ≡ V0(ξ + iδ), for δ → ∞ G(ξ ) is exponentially
small, uniformly over the entire line , of order smaller than
∼ exp(−δ
). Therefore, the weak scattering introduced by
the vanishingly potential G(ξ ) can be computed by first-order
(Born) approximation [25]. The solution to Eq. (9) on the line
, corresponding to an incident plane wave from the left side
of wave number q0, is thus given by

f (ξ,δ) = A(δ)[f (0)(ξ ) + φ(ξ )], (A1)

where f (0)(ξ ) = exp(iq0ξ ) is the unperturbed incident plane
wave of amplitude A(δ) and φ(ξ ) is a small correction
introduced by the weak scattering potential G(ξ ). At first-order
(Born) approximation, φ(ξ ) is the solution of the forced linear
equation

E0φ(ξ ) + κ[φ(ξ + a) + φ(ξ − a)] + iv
dφ

dξ

= G0(ξ ) exp(−δ
) exp(i
ξ + iq0ξ ). (A2)

The solution to Eq. (A2) is formally given by

φ(ξ ) = 1

2π

(∫ ∞

−∞
dk

Ĝ0(k − q0 − 
) exp(ikξ )

E0 + 2κ cos(ka) − vk

)
exp(−δ
),

(A3)

where Ĝ0(k) = ∫
dξG0(ξ ) exp(ikξ ) is the Fourier transform

of the potential G0(ξ ). Note that, since G0(ξ ) = V0(ξ + iδ)
and V0(X) is holomorphic for Im(X) � 0, Ĝ0(k) vanishes for
k < 0, so that the integral on the right-hand side of Eq. (A3) is
actually extended from k = q0 + 
 to k = ∞. In such a range,
the function under the sign of the integral is not singular since
its poles qβ and Qα lie in the range k < 
 + q0. For δ → ∞,
Eq. (A3) thus shows that φ(ξ ) is exponentially vanishing, at
least like ∼ exp(−δ
). A comparison of Eqs. (11) and (A1)
indicates that rα(q0,δ) and tβ(q0,δ) (β �= 0) are vanishing at
least like ∼ exp(−δ
) as δ → ∞, whereas t0(q0,δ) → 1.
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