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Exact path-integral evaluation of locally interacting systems: The subtlety of operator ordering
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We discuss how one calculates the coherent path integrals for locally interacting systems, where some
inconsistencies with exact results have been reported previously. It is shown that the operator ordering subtlety
that is hidden in the local interaction term modifies the Hubbard-Stratonovich transformation in the continuous
time formulation, and it helps reproduce known results by the operator method. We also demonstrate that
many-body effects in the strong interaction limit can be well characterized by the free-particle theory that is
subject to annealed random potentials and dynamical gauge (or phase) fields. The present treatment expands
the conventional paradigm of the one-particle description, and it provides a simple, viable picture for strongly
correlated materials of either bosonic or fermionic systems.
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I. INTRODUCTION

The path-integral formulation [1,2] has been widely used in
many areas of physics and has now become an indispensable
tool in formulating, investigating, and understanding quantum
physics. Its variant, the coherent-state path integral [3,4],
is particularly useful and versatile for analyzing quantum
many-body theories where the Hamiltonian is expressed in
normal-ordered products of creation and annihilation operators
[5]. It helps us handle either bosons or fermions, perform a
perturbational expansion, treat nonperturbative contributions
like topological effects, and grasp relevant physics intuitively.

The downside of the path-integral approach is that its
direct evaluation tends to demand more effort than that
of the operator method. Even for noninteracting quadratic
Hamiltonians, great care is needed to tackle the operator
ordering subtlety or a seemingly divergent determinant. The
situation gets exacerbated for interacting systems, even for
the simplest possible interacting system, namely the one-site
Bose-Hubbard model. When one uses the time-continuous
coherent-state path integral to evaluate, say, Tr[e−βUc†c†cc/2]
with a single bosonic field, one may well be deceived into
reaching the wrong answer

∑∞
n=0 e−βUn2/2, instead of the

correct one
∑∞

n=0 e−βUn(n−1)/2 [6,7]. The form of discrepancy
strongly suggests that the approach may be plagued by some
operator ordering subtlety that the quartic term may have. The
same problem prevails in many-particle systems with local
interaction, either of bosons or of fermions.

In order to remedy this embarrassing situation, Wilson
and Galitski [6] surmised that an additional correction is
present in the representation of the normal-ordered interaction
in a way to reproduce the exact result. Kordas et al. [7]
subsequently proposed a possible, consistent redefinition of
the coherent-state path-integral formulation that successfully
reproduces the correct results of the one-site Bose-Hubbard
model. The scheme is nonstandard, though. Starting with a
normal-ordered Hamiltonian, they expressed normal-ordered
operators in terms of the coordinate-momentum representation
(or the Weyl symbol). The procedure is inconvenient and
nontrivial when one tries to treat many-particle bosonic
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systems whose degree of freedom is large, not to mention
systems that involve many fermions. Because the many-body
Hamiltonian is normal ordered, complying with the standard
coherent-state formulation has a clear benefit. It is worth
understanding what goes wrong in its conventional treatment
and finding a simple, reliable way of reaching correct results.

II. PURPOSE

In this paper, we reexamine the coherent-state path integral
for locally interacting many-body systems where constituent
particles are either bosons or fermions. Like the one-site
Bose-Hubbard model, the coherent path integral seemingly
fails to reproduce the exact results of the partition function
and Green’s function, if one uses the conventional definition.
We scrutinize the evaluation process and identify the cause in
the operator ordering subtlety hidden in the interaction term.
We find that circumventing that subtlety makes us modify the
Hubbard-Stratonovich (HS) transformation. Accordingly, one
can readily reproduce the known exact results in the standard
definition of the coherent-state path integral. Our discussion
focuses on a simple type of local interaction defined in Eq. (1),
but the same argument can straightforwardly apply to a more
general form of the interaction among mutually commuting
operators, while treating the interaction between mutually
noncommuting operators is nontrivial (see Appendix D).

Locally interacting models can be viewed as the strong
interaction limit of correlated materials where the interaction
is much greater than the band width so that each site
is effectively isolated. Charge-blocking, many-body Mott
physics dominates, and the one-particle picture gets inappro-
priate. Propagating degrees of freedom responsible for such
dynamical gap is elusive [8]. In the process of evaluating
the path integral, we will encounter a certain free-particle
theory that is subject to dynamical phase fields and random
potentials. This supplement to the free-particle theory is of
great interest because it tells how the free-particle theory can
accommodate nonperturbative many-body correlation. One
can describe strongly correlated materials by using emergent
gauge field [9]. Because of charge blocking, the phase degree
fluctuates dynamically far beyond Gaussian, and so does the
gauge field, which is the time derivative of the phase field.
In this respect, one may regard the present calculation as a
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concrete example of how to analyze dynamical fluctuations of
the emergent gauge field in the strong interaction limit.

III. LOCALLY INTERACTING SYSTEMS

A. Model

We consider a multilevel (or multisite) system of bosonic
or fermionic particles (ψα,ψ†

α), which interact locally. The
Hamiltonian is given by

Ĥ =
∑

α

εαn̂α + U

2
N̂ (N̂ − 1), (1)

where the label α refer to levels and/or spins, and N̂ =∑
α n̂α = ∑

α ψ†
αψα is the total number operator. In spite of

the interaction being present, one can exactly calculate
thermodynamics and various Green’s functions by help of the
operator method (see Appendix A). Yet, with the coherent-state
path integral, one must be cautious to reach those results.

B. Subtlety disclosed

We start by revealing a subtlety hidden in the standard
manipulation of the coherent path integral. Taking the grand
partition function �U (μ) = Tr[e−β(Ĥ−μN̂ )], we can establish
the exact identity between �U (μ) and the noninteracting
counterpart �0(μ):

�U (μ) =
∫ ∞

−∞
d[ϕ̃] e−β

ϕ̃2

2U �0

(
μ + U

2
− iϕ̃

)
, (2)

which is derived in Eq. (B2). Here ϕ̃ denotes a time-
independent Gaussian variable with variance U/β and the
measure d[ϕ̃] = √

β/2πUdϕ̃ includes the normalization.
Relation (2) holds for either bosons or fermions. One can
see Eq. (2) come from the operator identity [see Eq. (B3)],

e−β U
2 N̂2 =

∫ ∞

−∞
d[ϕ̃] e−β

ϕ̃2

2U
−iβϕ̃N̂ . (3)

The formula can be viewed as an operative version of the
HS transformation. An important observation is that when
we take the coherent path-integral representation of Eq. (3), it
contradicts the standard form of the HS transformation. Indeed,
the decomposition concerning e−βĤ becomes (see Appendix B
for the derivation)∫

D[ψ,ψ̄] e−S/h̄ =
∫

D[φ̃]D[ψ,ψ̄] e−(Se+Sφ )/h̄, (4a)

where the Euclidean actions S and Se,φ are defined by

S =
∑
α,β

∫ βh̄

0
dτ ψ̄α

[
(h̄∂τ + εα)δαβ + U

2
ψ̄βψβ

]
ψα, (4b)

Se =
∫ βh̄

0
dτ

∑
α

ψ̄α

(
h̄∂τ + εα − U

2
+ iφ̃

)
ψα, (4c)

Sφ =
∫ βh̄

0
dτ

φ̃2

2U
. (4d)

The above formula differs from the standard HS formula by
the presence of −U/2 in Se. It is caused by circumventing the
operator ordering subtlety hidden in the standard derivation of

the HS transformation (see Appendix C) and tells us to modify
the HS transformation, when we comply with the standard
definition of the coherent-state path integral. With the modified
representation of the interaction, we can readily evaluate the
path-integral expression of �U (μ) by following each step of
Appendix B reversely.

In addition to the operator ordering subtlety, the HS
transformation has been known to be plagued by the ambiguity
in selecting relevant channels [10]. When truncating relevant
fluctuations, it causes a serious problem that might give a
different physical result. In the present treatment, however, we
do not have such a problem, because we carry out the complete
integration of the auxiliary fields without any approximation,
thanks to the gauge transformation. Moreover, perturbative
treatment often brings divergent contributions due to inter-
action, and it therefore needs an additional renormalization
procedure. This is not the case here, because the knowledge of
�0(μ) is sufficient to calculate �U (μ) exactly.

C. Green functions

We now turn our attention to evaluating various one-particle
Green functions of locally interacting systems. Below, we use
the closed-time path-integral formalism [5,11–14] to formulate
real-time correlation functions. We show how we can exactly
evaluate those path-integral representations by using a gauge
transformation technique [15–18]. Such approach was under-
taken in Ref. [18] to investigate the tunneling density of states
at Coulomb-blockade peaks of fermionic locally interacting
systems, but its exposition is too succinct to clarify the subtlety
of the coherent-state path integrals. We demonstrate how the
modified HS transformation [Eq. (9) below], which extends
Eqs. (4) to include real-time paths, enables us to evaluate
them. Later in Sec. III, we will show that they are identical to
what are calculated by the operator method. Moreover, we find
that Green’s functions for a locally interacting system can be
connected and determined by the knowledge of noninteracting
systems, like the grand partition function [see Eqs. (15) or (20)
below].

We define four types of real-time Green’s functions,(
Gα(t,0) G<

α (t,0)

G>
α (t,0) G̃α(t,0)

)
= 1

ih̄

(
〈T ψα(t)ψ†

α〉 ±〈ψ†
αψα(t)〉

〈ψα(t)ψ†
α〉 〈T̃ ψα(t)ψ†

α〉

)
,

(5)

where ± refers to bosonic or fermionic systems and 〈· · · 〉 is
the thermal average specified by chemical potential μ and the
inverse temperature β. The operator T is the time-ordering
operator, while T̃ is the anti-time-ordering one. We can
compactly write them by the contour-ordering operator Tc

along the Keldysh path
∫
K

as

Gα(t1,t2) = 1

ih̄
〈Tcψα(t1) ψ†

α(t2)〉, (6)

= 1

ih̄�U

∫
D[ψ,ψ̄] ψα(1)ψ̄α(2) e

i
h̄
S, (7)

where the path is composed of three segments (see Fig. 1): the
forward-going (denoting −) from the initial time ti to the final
time tf , the backward-going (denoting +) from tf to ti , and
the thermal one from ti to ti − iβh̄.
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FIG. 1. The Keldysh contour is composed of three segments:
the forward-going ti → tf , the backward-going tf → ti , and the
thermal ti → ti − iβh̄. The arrows specify the contour ordering. Time
arguments of Green’s functions reside between ti and tf , and the
infinite limit of the time span 
t = tf − ti → ∞ is taken. On each
segment, one decomposes the auxiliary field φ into the static zero
mode ϕ and the dynamical nonzero mode θ . One can safely gauge
away the nonzero mode on the thermal segment.

Since the interaction UN̂ (N̂ − 1)/2 is normal ordered,
the action S that appears in the coherent-state path integral
becomes

S =
∫

K

∑
α,β

ψ̄α

[
(ih̄∂t − εα)δαβ − U

2
ψ̄βψβ

]
ψα. (8)

The next step is crucial: We decompose the interaction term
via the modified HS transformation along the Keldysh path.
The transformation is

e− i
h̄

∫
K

U
2 N2(t) =

∫
D[φ] e

i
h̄

(Sφ+Se). (9)

where

Sφ =
∫

K

φ2(t)

2U
, (10)

Se =
∫

K

∑
α

ψ̄α[ih̄∂t − εα − φ(t) + U/2]ψα. (11)

The term U/2 is mandatory in Se, as in Eq. (4).
After we have managed the operator ordering subtlety, we

may follow the observation in Refs. [15–18] to employ the
local gauge transformation to absorb most of the effect of φ(t).
To make this work, however, we have to carefully specify the
boundary condition: The periodicity of φ(t) must be imposed
on each of the three segments of the Keldysh path, to ensure
new field operators (�α below) to remain canonical. We then
decompose φ fields on each segment into the static zero modes
ϕ = (ϕ∓,iϕ̃), and the dynamical phase fields θ (t) = θ∓(t)
satisfying the periodic boundary condition:

ψα(t) = eiθ(t)�α(t); φ(t) = ϕ − h̄θ̇ (t). (12)

One can safely gauge away the dynamical field on the thermal
segment. Now the action becomes

Se =
∫

K

∑
α

�̄α[ih̄∂t − εα − ϕ + U/2]�α, (13)

Sφ = iβh̄

2U
ϕ̃2 + 
t

2U
(ϕ2

− − ϕ2
+) +

∫
K

h̄2θ̇2

2U
, (14)

with tf − ti = 
t .
The dynamical phase fields may be regarded as compact

U (1) gauge fields that commonly emerge in strongly correlated
matter [9]. One may examine nonperturbative correlation

effect by studying nontrivial field configurations that carry
finite winding numbers. In the present approach, the dynamical
fields θ∓ describe the fluctuating part on top of nontrivial field
configurations, while ϕ = (ϕ±,iϕ̃) affects the thermodynamics
and its dynamics nonperturbatively.

The result of the � integral can be written by the Green’s
functions multiplied by the grand partition function of the
noninteracting particles. We still need to complete the ϕ and
θ integrals, but in isolated systems here, those integrals are
found to be decoupled [15,16,18]. Symbolically, one can write
the result as

Gα(1,2) = 1

�U

〈�ϕGϕ
α(1,2)〉ϕ〈eiθ(1)e−iθ(2)〉θ , (15)

where 〈· · · 〉ϕ refers to the Gaussian average over the three
static Gaussian variables (ϕ∓,ϕ̃), while 〈· · · 〉θ refers to the
path integration over dynamical θ . The explicit forms of �ϕ

and Gϕ
α are nothing but the noninteracting ones, �0 and G0,α ,

where

�
ϕ

0 = �0({εϕ
α ,μϕ}) =

∏
α

[1 ∓ e−β(εϕ
α −μϕ )]∓1, (16)

Gϕ
α(t,0) = G0,α(t ; {εϕ

α ,μϕ}), (17)

with incorporating ϕ dependence by shifting εα and μ by

εϕ
α = εα − U

2
+ ϕc; μϕ = μ − iϕ̃ + ϕc − i
t

βh̄
ϕq. (18)

Here the convention ϕc = (ϕ− + ϕ+)/2 and ϕq = ϕ− − ϕ+
is used. When we recover the Keldysh structure, the part
〈eiθ(1)e−iθ(2)〉θ in Eq. (15) means the contour-ordered vertex
correlator. We can calculate it as the action regarding θ is
free particle with mass U/h̄2. Though local fluctuation 〈θ2(t)〉
diverges, it is finite and equal to

〈Tc e−iθ(t)eiθ(0)〉θ =
(

e− iU
2h̄

|t | e
iU
2h̄

t

e− iU
2h̄

t e
iU
2h̄

|t |

)
. (19)

Combining all the above, we can evaluate exactly all one-
particle Green’s functions for locally interacting systems.

Let us briefly illustrate how it operates in practice. The
lesser component of Eq. (15) gives

G<
α (t,0) = 1

�U

〈
�

ϕ

0 Gϕ,<
α (t,0)

〉
ϕ

e
iU
2h̄

t , (20)

and the noninteracting lesser Green’s function is

Gϕ,<
α (t,0) = ±e− i

h̄
ε

ϕ
α t

ih̄
nϕ

α. (21)

The occupation nϕ
α = 〈n̂α〉 has to be determined by the partition

function �ϕ via the standard relation

nϕ
α = − 1

β

∂

∂εα

ln �
ϕ

0 . (22)

It means that G<
α (t,0) of locally interacting systems is

expressed in a form of the annealed average over three random
(static) Gaussian variables ϕ = (ϕ∓,ϕ̃):

G<
α (t,0) = ∓ 1

ih̄�U

〈
e− i

h̄
(εϕ

α − U
2 )t ∂�

ϕ

0

β∂εα

〉
ϕ

. (23)
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We can likewise find the greater Green’s function,

G>
α (t,0) = 1

ih̄�U

〈
e− i

h̄
(εϕ

α + U
2 )t

[
�

ϕ

0 ∓ ∂�
ϕ

0

β∂εα

]〉
ϕ

. (24)

From these results of G<
α and G>

α , we can construct all the
other one-particle Green’s functions.

IV. EQUIVALENCE TO THE OPERATOR METHOD

We now check that the results Eqs. (23) and (24) actually
reproduce the Green’s functions evaluated by the operator
method in Appendix A. To see it, we expand �

ϕ

0 in terms
of the canonical partition function ZN of nonshifting levels εα ,

�
ϕ

0 =
∞∑

N=0

ZN e
Nβ(μ+ U

2 −iϕ̃− i
t
βh̄

ϕq )
. (25)

We find that the integration over ϕq simply enforces ϕc/U to
non-negative integers N in the limit of 
t → ∞:∫

d[ϕq] e
i
t
h̄U

ϕcϕq e− i
t
h̄

ϕqN = δ(ϕc − UN ). (26)

Accordingly, we may say that ϕc/U plays a role of winding
numbers of the emergent compact gauge field configuration; a
naive saddle-point (or Hartree-Fock) approximation regarding
ϕ misses such nonperturbative contribution. We need to
take account of all the contribution of N on principle (see
Ref. [18] for its implication on the tunneling density of states).
By completing the remaining Gaussian average over ϕ̃, we
organize the result as

G<
α (t,0) = ±1

ih̄

∞∑
N=0

e− i
h̄

[εα+U (N−1)]t nα|N, (27a)

G<
α (ε) = ∓2iπ

∞∑
N=0

nα|N δ[ε − εα − U (N − 1)]. (27b)

Here we have introduced the quantity nα|N , the “fractional
parentage” of the occupation number onto the fixed N . It is
defined by

nα|N = − 1

β�U

∂ZN

∂εα

eβNμ−β U
2 N(N−1), (28)

and satisfies 〈n̂α〉 = ∑∞
N=0 nα|N . Similarly, we find the greater

Green’s function to be

G>
α (t,0) = 1

ih̄

∞∑
N=0

e− i
h̄

(εα+UN)tpα|N, (29a)

G>
α (ε) = −2iπ

∞∑
N=0

pα|N δ(ε − εα − UN ), (29b)

by using pα|N , the fractional parentage of the hole occupation
onto a fixed N , defined by

pα|N = 1

�U

[
ZN ∓ 1

β

∂ZN

∂εα

]
eβNμ−β U

2 N(N−1). (30)

The spectral function ρα(ε) is straightforwardly calculated as

ρα(ε) =
∞∑

N=0

{pα|N δ(ε − εα − UN )

∓ nα|N δ[ε − εα − U (N − 1)]}. (31)

In these forms, one can confirm the equivalence with the ones
by the operator method in Appendix A.

V. DISCUSSION

We have shown that we can treat a locally interacting system
correctly using the standard definition of the coherent path
integral. The results are connected with their noninteracting
counterpart. [See Eqs. (2) for the partition function, and
Eqs. (23) and (24) for Green’s functions.] The relation
(2) shows that the thermodynamics of a locally interacting
system is exactly equivalent to the annealed average of the
noninteracting Hamiltonian with random imaginary potential
ϕ̃. Such simple correspondence, however, cannot be held for
Green’s functions (23) and (24)—they are still written by a
free-particle model under the influence of static random fields,
as is seen in Eq. (15), but we can assign no single random
Hamiltonian for its dynamics, because three independent
random variables are needed: ϕ∓ along the two real-time paths
and ϕ̃ on the thermal path. We stress that this supplement to
the free-particle theory can fully capture various many-body
characteristics like atomic correlations, nonrigid bands, and
asymmetry of particle and hole excitations. While a spectral
function in the conventional one-particle and/or quasiparticle
picture has only a single peak, the function ρα(ε) of Eq. (31)
has multiple peaks with different weights at ε = εα + UN .
At those energies, the retarded self-energy diverges and the
retarded Green’s function vanishes, which signals the demise
of the quasiparticle picture [8].

To treat the nonperturbative many-body effect, it is im-
portant to take account of two aspects: discreteness of the
particle number and large phase fluctuations beyond quadratic
order. They are closely related. We can implement discreteness
of N by compacting the conjugate phase � modulo 2π

(satisfying [N̂,�̂] = i). The nonpositive nature of N makes
� non-Hermite [19]. Since the phase �(t) couples linearly
with Ṅ (t), we may take the HS field φ(t) as φ(t) = h̄�̇(t). It
means that we need to treat fluctuations of φ(t) consistently
by respecting such nontrivial nature of �. A common practice
after introducing the HS field φ(t) is to complete the quadratic
integration over the field (ψα,ψ̄α) and then to take the
saddle-point approximation regarding φ. Assuming a uniform
solution φ(t) = ϕsp, one can determine the self-consistent
saddle-point solution ϕsp by the average number 〈N̂〉 = ϕsp/U

in that approximation. This contrasts with the exact locking of
ϕc/U to non-negative integers in Eq. (26). A physical picture
given by the saddle-point approximation is fundamentally
wrong, having no dynamical gap generation and retaining
the noninteracting Fermi-Dirac form of the occupation 〈nα〉.
We find the gauge transformation technique is effective
to incorporating many-body effects. Without any additional
ansatz of the slave particle, one can describe many-body
charge-blocking physics.
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In hindsight, it is because the local occupation number
is conserved that one can solve locally interacting systems
exactly. When we couple a locally interacting system linearly
with external environments (reservoirs), the local occupation
is no longer conserved, and the integrals over ϕ and θ are
coupled unlike Eq. (15). It seems unlikely that we can complete
the remaining path integrals exactly. Nevertheless, the present
analysis of path integrals provides a useful and systematic
means to describe the local strong correlation that perturbation
theory cannot treat. In a quantum dot coupled to the leads,
two types of strongly correlated phenomena are known to
emerge: the Coulomb blockade (or charge-blocking due to
correlation) and the Kondo physics [20]. When we surmise a
decoupling approximation in evaluating the ϕ and θ integrals
as in Eq. (15), repeating the same calculation leads us to
the spectral function that is similar to Eq. (31). The only
difference is that the δ functions in Eq. (31) now acquire finite
width due to the coupling with the reservoirs. It corresponds
to the spectral function of the Coulomb blockade regime
[21,22]. It was further suggested that if one implements a
self-consistent decoupling scheme, one may well understand
the Kondo physics [17]. It is interesting to see how such
decoupling approximation can be improved by taking account
of the compact and non-Hermitian nature of phase fluctuations.
Our work in this direction is under way.

VI. SUMMARY

To summarize, we have demonstrated how one can eval-
uate the coherent-state path integrals for locally interacting
systems, following its standard definition and being aware
of the operator ordering subtlety. The results agree with the
ones by the operator method. In the process of calculating, we
find that locally interacting systems is equivalent to certain
free-particle models embellished with dynamical phase as
well as static random variables. Since we can view locally
interacting models as the strong interaction limit of a wide
range of strongly correlated materials, we use such free
theories as an alternative yet viable simple description for
strongly correlated materials.
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APPENDIX A: CALCULATION VIA THE
OPERATOR METHOD

1. Grand partition function

Since the effect of the interaction is to increase the energy
by UN (N − 1)/2 for fixed-N states, we can express the grand
partition function of the Hamiltonian (1) as

�U (μ) = Tr[e−β(Ĥ−μN̂)] =
∞∑

N=0

ZN eβμN−β U
2 N(N−1),

(A1)

where ZN is the canonical partition function of the noninter-
acting system, defined by

�0(μ) =
∞∑

N=0

ZN eβμN =
∏
α

[1 ∓ e−β(εα−μ)]∓1. (A2)

The sign ∓1 refers to bosonic or fermionic systems. One can
write the explicit form of ZN via the inverse transformation of
the above as

ZN =
∫ 2π

0

dθ

2π
e−iNθ �0(μ = iθ ). (A3)

2. Green’s functions

We can solve exactly various one-particle Green’s functions
for the locally interacting Hamiltonian (1). The system is not
needed to be in thermal equilibrium; a generic stationary state
will suffice. A quick way to proceed is to examine the equation
of motion for a field operator ψα ,

ih̄
∂ψα(t)

∂t
= (εα + UN̂ )ψα(t), (A4)

which is true for either bosonic or fermionic systems. We can
immediately solve its time evolution as

ψα(t) = e− i
h̄

(εα+UN̂ )tψα = ψα e− i
h̄

[εα+U (N̂−1)]t . (A5)

With this property, we can calculate various Green’s functions.
For instance, the lesser and greater Green’s functions are found
to be

G<
α (t,0) = ± 1

ih̄
〈n̂α e− i

h̄
[εα+U (N̂−1)]t 〉, (A6)

G>
α (t,0) = 1

ih̄
〈e− i

h̄
(εα+UN̂ )t (1 ± n̂α)〉, (A7)

where the average 〈· · · 〉 refers to some stationary state average.
In the energy space, they become

G<
α (ε) = ∓2iπ〈n̂α δ(ε − εα − U (N̂ − 1)〉, (A8)

G>
α (ε) = −2iπ〈(1 ± n̂α) δ(ε − εα − UN̂ )〉. (A9)

We can construct all other Green’s functions using the results of
G<,>

α . The spectral function ρα(ε) = − Im GR
α (ε)/π is found

to be

ρα(ε) = 〈(1 ± n̂α) δ(ε − εα − UN̂ )

∓ n̂α δ(ε − εα − U (N̂ − 1))〉. (A10)

For fermionic systems, the results take particularly simple
forms resembling the free particle, by the property n̂2

α = n̂α .
Indeed, the spectral function becomes

ρα(ε) = 〈δ(ε − εα − UN̂ ′
α)〉, (A11)

with introducing N̂ ′
α = N̂ − n̂α . All Green’s functions like-

wise have free-fermion forms only with replacing εα 	→ εα +
UN̂ ′

α . When we further assume that the system is in thermal
equilibrium with μ and β, the Kubo-Martin-Siggia relation
makes the average occupation number be characterized by the
Fermi-Dirac distribution as

〈n̂α〉 =
〈

1

eβ(εα+UN̂ ′
α−μ) + 1

〉
, (A12)
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though local interaction makes it deviate considerably from
the Fermi-Dirac function regarding εα − μ.

APPENDIX B: DERIVATIONS OF EQS. (2)–(4)

In this appendix, we present the step-by-step derivations
of Eqs. (2)–(4) in the main text. We start with the Gaussian
integral formula

e−β U
2 N2 =

∫
d[ϕ̃] e−β

ϕ̃2

2U
−iβϕ̃N , (B1)

where d[ϕ̃] include the normalization factor and N is just
a number. By using the above and Eqs. (A1) and (A2), we
immediately prove Eq. (2) as∫ ∞

−∞
d[ϕ̃] e−β

ϕ̃2

2U �0(μ + U
2 − iϕ̃)

=
∫ ∞

−∞
d[ϕ̃] e−β

ϕ̃2

2U

∞∑
N=0

ZNeβ(μ+U/2−iϕ̃)N, (B2a)

=
∞∑

N=0

ZNeβ(μ+U/2)N−βUN2/2 = �U (μ). (B2b)

We can extend the Gaussian formula (B1) to the operator
identity by inserting the complete basis of the occupation
number representation |{nα}〉 with the total number N =∑

α nα:

e−β U
2 N̂2 =

∑
{nα}

|{nα}〉 e−β U
2 N2〈{nα}|, (B3a)

=
∑
{nα}

|{nα}〉
∫

d[ϕ̃] e−β
ϕ̃2

2U
−iβϕ̃N 〈{nα}|, (B3b)

=
∫

d[ϕ̃] e−β
ϕ̃2

2U
−iβϕ̃N̂ . (B3c)

This proves the operator identity (3) in the text. With this
identity, we can rewrite the operator e−βĤ as

e−βĤ =
∫

d[ϕ̃] e−β
ϕ̃2

2U
−β

∑
α (εα+iϕ̃−U/2)n̂α . (B4)

We now represent both sides of Eq. (B4) to establish the
modification of the Hubbard-Stratonovich transformation in
the coherent-state path integral. Since the Hamiltonian Ĥ is
normal ordered, the left-hand side (LHS) of Eq. (B4) is simply
represented as

(LHS) =
∫

D[ψ,ψ̄] e−S/h̄, (B5)

S =
∑
α,β

∫ βh̄

0
dτ ψ̄α

[
(h̄∂τ + εα)δαβ + U

2
ψ̄βψβ

]
ψα. (B6)

Now we can express the right-hand side (RHS) of Eq. (B4) as

(RHS) =
∫

d[ϕ̃]
∫

D[ψ,ψ̄] e− β

2U
ϕ̃2−Se/h̄, (B7)

=
∫

D[θ ]
∫

d[ϕ̃]
∫

D[ψ,ψ̄] e− β

2U
ϕ̃2−S1/h̄−Sθ /h̄.

(B8)

Here the Euclidean action Lagrangian S1 and Sθ are defined
as

S1 =
∫ βh̄

0
dτ

∑
α

ψ̄α

(
h̄∂τ + εα − U

2
+ iϕ̃

)
ψα, (B9)

Sθ =
∫ βh̄

0
dτ

h̄2

2U
(∂τ θ )2, (B10)

and, on Eq. (B8), we have inserted the path integral over
bosonic field θ that satisfies the periodic boundary condition∫

D[θ ] e−Sθ /h̄ = 1. (B11)

Next, we introduce a new (dynamical) field φ̃(τ ) = ϕ̃ −
h̄∂τ θ (τ ) to combine ϕ̃ and θ , and redefine field ψα to absorb
the phase factor. This is the reverse manipulation of the
gauge transformation in Refs. [15–18], with the corresponding
Jacobian D[θ ]d[ϕ̃] = D[φ̃]. It enables us to express the
right-hand side of Eq. (B4) as

(RHS) =
∫

D[φ̃]D[ψ,ψ̄] e−Se/h̄−Sφ/h̄, (B12)

where Se and Sφ are defined in Eqs. (4c) and (4d); this proves
Eqs. (4a)–(4d) in the text.

APPENDIX C: SUBTLETY OF THE
HUBBARD-STRATONOVICH DECOUPLING IN THE

CONTINUOUS TIME FORMULATION

We explicitly point out where matters the subtlety of the
Hubbard-Stratonovich transformation in the continuous time
formulation. Below we write for the one-site bosonic system,
but the same argument applies equally to multilevel extension
as well as fermionic systems.

We examine how one can evaluate the matrix element
〈z|e− it

h̄
U
2 n̂2 |w〉 regarding the bosonic coherent state |z〉 =

ez̄b−b†z|0〉, with or without the Hubbard-Stratonovich trans-
formation. Direct evaluation of the matrix element leads to

〈z|e− it
h̄

U
2 n̂2 |w〉 = e− 1

2 (z̄z+w̄w)
∞∑

n=0

(z̄w)n

n!
e− it

h̄
U
2 n2

. (C1)

We now decompose the interaction term using the operator
identity.

e− it
h̄

U
2 n̂2 =

∫ ∞

−∞
d[ϕ] e

it
h̄

( ϕ2

2U
−ϕn̂) = 〈e− it

h̄
ϕn̂〉ϕ, (C2)

where d[ϕ] includes the normalization factor and 〈· · · 〉ϕ
indicates the Gaussian average over ϕ. One can check the
correctness of this decomposition by putting it on the left-hand
side of Eq. (C1) and using the Wick theorem with 〈ϕ2〉ϕ =
h̄U/(−it):

〈z| 〈e− it
h̄
ϕn̂〉ϕ |w〉

= e− 1
2 (z̄z+w̄w)

∞∑
n=0

(z̄w)n

n!
exp

[〈
1

2

(−it

h̄
ϕn

)2〉
ϕ

]
. (C3)

So far so good. Now the subtlety appears when we try to
formulate it using the path integral. When we expand the
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expression for infinitesimal time δt up to the linear order,
we see it behave as

〈z|e− iδt
h̄

U
2 n̂2 |w〉 ≈ e− 1

2 (z̄z+w̄w)
∞∑

n=0

(z̄w)n

n!

[
1 − iδt

h̄

U

2
n2

]
.

(C4)

Yet, this correct behavior cannot be reproduced when we
truncate Eq. (C3) up to the linear order of δt . The corre-
sponding contribution comes from the quadratic order term
proportional to (δt)2〈ϕ2〉. In other words, if we naively
formulated the continuous-time path integral just by expanding
it regarding the linear δt and exponentiating it, we would get
a wrong result. The missing U/2 term exactly results from
this slack manipulation; the use of the modified Hubbard-
Stratonovich transformation resolves the issue by avoiding
such manipulation carefully.

APPENDIX D: EXTENSIONS OF THE OPERATIVE
HUBBARD-STRATONOVICH DECOUPLING

Our discussion relies on the operator version of the
Hubbard-Stratonovich transformation and its path-integral
representation. We can generalize the argument to more
general forms of interaction composed by a set of mutually
commuting operators, such as {n̂α}. It is because we can find
the simultaneously diagonalized basis |{nα}〉 and the operator
identity can be formulated straightforwardly [see Eq. (B3)].

Therefore, the following operator identity is established:

e−β 1
2

∑
α,β Uαβ n̂α n̂β

=
∫

d[ϕ̃] e− β

2

∑
αβ ϕ̃α (U−1)αβ ϕ̃β−iβ

∑
α ϕ̃α n̂α . (D1)

The path-integral representation of the Hubbard-Stratonovich
transformation should be modified accordingly to be consistent
with this operator identity.

The situation gets tricky when one treats a term involving
mutually noncommuting operators. A common example is

the spin exchange term Ŝ
2
, which one sometimes tries to

decompose in a spin-rotational way using the Hubbard-
Stratonovich transformation. The decomposition relies on the
integral identity

eβJ S2 =
∫

d[m] e−β m2

4J
−β mS, (D2)

where m refers to a three-component vector that obeys the
Gaussian distribution respectively and d[m] includes the
normalization. We emphasize that though the above identity
is correct for any vector S, one cannot promote it to an
operator identity with the spin operator Ŝ, because of its non-
commutative nature. One can easily check this fact by taking
the trace of both sides of Eq. (D2) for spin one-half operator:
The left-hand side yields 2 e

3
4 βJ , whereas the right-hand side

yields 2 e
βJ

4 (1 + βJ/2). Therefore, applying such types of the
HS decoupling involving noncommutative operators should be
cautioned in the path-integral formulation.
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