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We propose a method to find asymptotic states of a class of periodically modulated open systems which are
outside the range of validity of the Floquet theory due to the presence of memory effects. The method is based
on a Floquet treatment of the time-local, memoryless dynamics taking place in a minimally enlarged state space
where the original system is coupled to auxiliary—typically nonphysical—variables. A projection of the Floquet
solution into the physical subspace returns the sought asymptotic state of the system. The spectral gap of the
Floquet propagator acting in the enlarged state space can be used to estimate the relaxation time. We illustrate
the method with a modulated quantum random walk model.
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I. INTRODUCTION

Periodically driven systems can exhibit a spectrum of
states which are unattainable in the static limit. This makes
the idea of modulations appealing to various fields, ranging
from dynamical chaos theory [1] and chemical kinetics [2]
to neuroscience [3] and quantum physics [4–8]. In the latter
field, periodic driving has been used to realize new topological
states [9,10], engineer artificial gauge fields [11,12], and create
so-called ‘Floquet time crystals’ [13–15].

Typically, one models periodically modulated systems via
linear differential equations with time-periodic coefficients
whose solution is provided by Floquet theory [16,17]. The key
prerequisite for constructing such a model is the time-local
character of the system dynamics, which means that the
future of the system depends on its current state and not
on its history. For a system with time-local and contractive
(in terms of some proper norm) dynamics, the fate of the
system is specified by the asymptotic state(s). A periodically
modulated system interacting with a broadband environment in
the Markovian limit evolves towards an asymptotic state which
is periodic with the period of the modulations [18–20]. On the
model level, this state represents a limit-cycle solution of the
dissipative equations describing the system dynamics [17].
Very recently, an idea to combine modulations and dissipation
to explore many-body quantum states [21,22] has emerged as
a natural extension of the established Hamiltonian-oriented
approach [7,12,23–25]. Still, the use of Floquet theory in the
dissipative context implies that the equations used to describe
the dynamics remain local in time [26–28].

What are the asymptotic Floquet states of systems governed
by time-nonlocal evolution equations? This question is of
special relevance in the context of quantum non-Markovian
dynamics, a topic being actively explored now in both the
theoretical [29] and the experimental [30] domains. Here
we present a method to get the answer for a broad class of
periodically modulated systems whose evolution is governed
by memory-kernel (MK) master equations. We show that the
corresponding asymptotic solutions possess the periodicity of
the modulations and have the form prescribed by the recently
introduced generalized Floquet theorem [31].

II. METHOD

We consider a physical system, classical or quantum, whose
state is described by an n-dimensional vector x(t) obeying a
generalized master equation of the form

ẋ(t) =
∫ t

t0

dt ′K(t,t ′)x(t ′) + z(t), (1)

with an integrable MK matrix K(t,t ′) and an asymptotically
vanishing inhomogeneous term limt→∞ z(t) = 0 [33]. The
vector x(t) may describe, for example, an n-state classical
system or the density matrix of a quantum system in a
suitable representation [34,35]. We assume the MK to be
biperiodic, i.e., K(t + T ,t ′ + T ) = K(t,t ′), where T denotes
the period of the modulation. The above requirements ensure
that, in the limit t → ∞, the action of the operator Lt {x(t)} =∫ t

t0
dt ′K(t,t ′)x(t ′) + z(t) commutes with that of the one-period

translation operator ST {x(t)} = x(t + T ), thus entailing the
applicability of the generalized Floquet theorem to the asymp-
totic dynamics induced by Eq. (1) [36]. Note that the condition
of biperiodicity is automatically satisfied if the MK depends
exclusively on the difference τ = t − t ′ or if the MK is periodic
with respect to t (t ′) and depends only on t (t ′) and τ .

Our approach to determining the asymptotic solution of
Eq. (1) is based on the idea of embedding the system in an
enlarged state space where the physical variable x(t) is coupled
to an auxiliary vector variable u(t). The coupling is realized in
such a way that the resulting extended system described by the
new vector vT(t) = [xT(t),uT(t)] (concatenation) obeys a time-
local equation satisfying the conditions of the standard Floquet
theorem. The latter provides the solution for the state of the
extended vector v(t) whose projection into the physical x sub-
space constitutes the asymptotic Floquet state of the system.

The concept of embedding is well known within the theory
of classical stochastic processes [37–42] where it is related
to the celebrated Erlang’s method of stages [43]. Embedding
schemes are also employed [44–46] in the recently established
field of quantum non-Markovian processes [29,35,47]. How-
ever, in the above cases the embedding is physical, i.e., the
new auxiliary variables (states or degrees of freedom) have
the same physical meaning as the original variable(s). In other
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words, the enlarged system is obtained by attaching ancillas to
the original system (see, e.g., Ref. [45]). In the quantum case,
such physical embedding might be very hard (or not possible)
to construct for a given kernel, and even when constructed, it
might be very complicated to deal with. Here we do not restrict
ourselves to the physical embedding. Instead we propose a
minimal enlargement of the system, by introducing a set of
nonphysical auxiliary variables, which leads to a new set of
equations, now local in time.

For the n × n MK matrix in Eq. (1) we consider the structure

K(t,t ′) =
k∑

j=1

�je
−γj (t−t ′)Ej (t)Fj (t ′), (2)

with �j ,γj ∈ C, and Ej (t) = Ej (t + T ), Fj (t) = Fj (t + T ) ∈
Cn×n. In the stationary case, Ej (t) ≡ Ej and Fj (t ′) ≡ Fj ; this
form relates to Erlang’s method of stages [48]. The structure
given by Eq. (2) allows us to reproduce—exactly or arbitrary
well—a large class of MKs, including oscillatory ones [49].

With the kernel (2), the time evolution given by Eq. (1) for
the physical system described by x is equivalently obtained
by solving a time-local set of equations in which the n-
dimensional vector x is coupled to an auxiliary variable u
of the dimension p = n × k. The equations for the extended
system read (from now on we set t0 = 0)

ẋ(t) = −H(t)u(t),
u̇(t) = −G(t)x(t) − Au(t),

(3)

where H(t) = (�1E1(t), . . . ,�kEk(t)), GT(t) = (FT
1 (t), . . . ,

FT
k (t)), and A = diag(γ11n×n, . . . ,γk1n×n).

To assess the equivalence of Eqs. (1) and (3) we set
G(t)x(t) ≡ w(t) and note that the equation for u reads,
in Laplace space, u(λ) = [λ1 + A]−1u(0) − [λ1 + A]−1w(λ).
Going back to the time domain, multiplying the resulting equa-
tion on the left by −H(t), and using the first of equations (3), we
end up with Eq. (1) with K(t,t ′) = H(t)e−A(t−t ′)G(t ′), provided
that the following relation is satisfied:

z(t) = −H(t)e−Atu(0). (4)

Thus, the requirement for the evolution of the physical part x(t)
of the enlarged system to coincide with that given by Eq. (1)
fixes the initial condition for the auxiliary variable u(t).

The system of equations (3) can be put in the compact form

v̇(t) = M(t)v(t), (5)

where v = (x1, . . . ,xn,u1, . . . ,unk)T is the (p = n + nk)–
dimensional vector describing the enlarged system, with the
matrix M assuming the block structure

M(t) =
(

0 − H(t)
−G(t) A

)
, (6)

where 0 ∈ Rn×n. A memory kernel of the form of Eq. (2),
with T -periodic E(t) and F(t), entails T -periodicity for matrix
M(t). This in turn ensures that Eq. (5) qualifies to invoke the
Floquet theorem, which leads to a solution of the form v(t) =
S̃(t,0)eRtv(0), where S̃(t,0) is a T -periodic p × p matrix and
R a constant p × p matrix [17]. The projection of the vector
v(t) onto the physical manifold, Pxv(t) = x(t), yields, for the

solution in the original state space,

x(t) = S(t,0)eRtv(0), (7)

with an n × p matrix S = PxS̃. This is the form expected
from the generalized Floquet theorem [31]. In the time-local
limit, i.e., K(t,t ′) = δ(t − t ′)Kt.l.(t), the solution reduces to
the standard Floquet form, with p = n [17].

Equation (5) can be solved by constructing the Floquet
propagator UT = T exp[

∫ T

0 M(τ )dτ ], where T denotes the
time-ordering operator, and then finding its invariant, UT y = y
[17]. This vector yields the asymptotic solution at strobo-
scopic instants in time, i.e., y = va(sT ), s ∈ Z. The spectral
properties of the propagator can be used to characterize the
relaxation time towards the asymptotic state. A conventional
candidate is the spectral gap [50], g = 1 − |λm|, with λm

being the second largest (by absolute value) eigenvalue of
UT after λ1 = 1. A straightforward diagonalization of the
propagator and the use of the obtained λm as the quantifier of
the relaxation speed are not suitable in our case. This is because
this eigenvalue addresses the whole enlarged space, including
the part which is not accessible with any physically meaningful
initial condition. To address the physical manifold only, we
suggest the Arnoldi iteration method, starting with the initial
vector vT(0) = [xT(0),uT(0)], where u(0) satisfies Eq. (4), with
consecutive diagonalization of the Hessenberg matrix [51].

III. APPLICATION: A PERIODICALLY DRIVEN
QUANTUM RANDOM WALK

Here we apply the method described above to the non-
Markovian master equation for a continuous-time quantum
random walk model, which yields, by construction, a com-
pletely positive and trace-preserving (CPT) quantum evolution
[32,34]. The model has a direct interpretation in terms of an
operator generalization of a classical semi-Markov process, a
multisite jump process defined by a transition matrix and a
waiting-time distribution f [35,52]. This classical process is
itself described by a generalized master equation of the form
of Eq. (1) and turns out to be Markovian only for exponentially
distributed waiting times τ between consecutive jumps, i.e.,
f (τ ) = λ exp(−λτ ).

In our application, a qubit whose density matrix is denoted
by ρ(t) undergoes a trivial continuous background evolution
(provided by the identity map 1), interrupted by the instanta-
neous actions of a CPT map E [32,34]. These ’collisions’ occur
at random instants in time, with the time intervals between
consecutive collisions distributed according to a waiting-time
distribution of the biexponential form

f (τ ) = 2A

a
e−γ τ/2 sinh(aτ/2), (8)

with a =
√

γ 2 − 4A > 0.
We generalize the original model [32,34] by assuming

that the collision map itself periodically evolves in time,
E(t + T ) = E(t) (see Fig. 1). The time-periodic CPT E(t)
can be constructed as a convex combination of L CPT
maps E(t) = ∑L

s ls(t)Es , where ls(t) � 0,
∑L

s ls(t) = 1 for
∀t ∈ [0,T ], and ls(t + T ) = ls(t). Note that, in order to get
a nontrivial asymptotic state, ρa(t) �= 1/2, at least one of the
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FIG. 1. Continuous-time quantum random walk with a time-
periodic map. A qubit undergoes repeated instantaneous ac-
tions of a time-dependent map E(t) at random instants in time
. . . ti−1,ti ,ti+1 . . . . The time interval between consecutive collisions,
τi = ti+1 − ti , is controlled by the waiting-time distribution f (τ ).
There is no evolution of the qubit between collisions. The map E(t)
is obtained as a convex combination of constant CPT maps (in this
case, of two maps labeled with colored squares) with time-periodic
coefficients. Averaging over an infinite number of realizations of the
process results in the master equation (12).

maps Es has to be nonunital. We choose the time-periodic map

E(t) = l1(t)E1 + l2(t)E2 + l3(t)E3, (9)

with l1(t) = sin2(�t), l2 = sin2(�t) cos2(�t), and l3 =
cos4(�t), so that T = π/�. The map E1 is the nonunital
amplitude damping map defined by the following action on
the 2 × 2 qubit density matrix [53]:

E1[ρ] = M0ρM
†
0 + M1ρM

†
1, (10)

where M0 =
(

1 0
0 b

)
and M1 =

(
0 d

0 0

)
, with b2 = 1 − d2.

The remaining two maps are E2(3)[ρ] = M2(3)ρM
†
2(3), with

M2(3) = (σy(x) + σz)/
√

2.
The density operator of the qubit is the average over all the

possible realizations of the described process,

ρ(t) = g(t)ρ0 +
∞∑

n=1

∫ t

0
dtn . . .

∫ t2

0
dt1f (t − tn)

× E(tn) . . . E(t2)f (t2 − t1)E(t1)g(t1)ρ0, (11)

where the function g(t) = 1 − ∫ t

0 dτf (τ ) yields the probabil-
ity that no collision has occurred up to time t . The resulting
dynamics is equivalently obtained as the solution of the
non-Markovian master equation

ρ̇(t) =
∫ t

0
dt ′K(t − t ′)E(t ′)ρ(t ′) + I(t)ρ0, (12)

where K(t) = [ d
dt

f (t) + f (0)δ(t)]1 and I(t) = d
dt

g(t)1 =
−f (t)1 (see the Appendix). Equation (12) is one of the few
known instances of a well-defined MK quantum master equa-
tion. Within the path-integral formalism, evolution equations
of the general form of (1) are also found for driven dissipative
quantum systems [6,54].

In order to cast Eq. (12) in the form of Eq. (1), it is
convenient to express the action of the quantum map E(t) on
the qubit density matrix as the matrix multiplication of a four-
dimensional vector x with a 4 × 4 matrix E(t). The vector x has

components xi = Tr{ρσi−1}/
√

2 (i = 1, . . . ,4) with σ0 = 1
and σ1,2,3 ≡ σx,y,z. In this four-dimensional representation, the
time-periodic matrix E(t) reads

E(t) =

⎛
⎜⎜⎝

1 0 0 0
0 bf1(t) + f3(t) 0 f2(t)
0 0 bf1(t) − f2(t) f3(t)

d2f1(t) f2(t) f3(t) b2f1(t)

⎞
⎟⎟⎠.

The four-dimensional vector x(t) obeys Eq. (1), with z(t) =
−f (t)x0, and a 4 × 4 kernel matrix of the form of Eq. (2), with
k = 2, where E1(t) = E2(t) = 14×4 and F1(t) = F2(t) = E(t)
and where �1,2 = ±Aγ±/a and γ1,2 = (γ ± a)/2 [cf. Eq. (8)].

The embedding procedure with kernel (2), consist-
ing of two terms, yields a 12-component vector v =
(x1, . . . ,x4,u1, . . . ,u8)T. Its evolution is governed by the time-
local Eq. (5), with time-periodic matrix

M(t) =
(

0 −H
−G(t) A

)
. (13)

Here 0 is the null 4 × 4 matrix, H = (�11, �21),

G(t) =
(

E(t)
E(t)

)
, and A =

(
γ11 0
0 γ21

)
, (14)

FIG. 2. Periodically modulated continuous-time quantum ran-
dom walk of a qubit. Dynamics, spectral gap, and limit-cycle solution
for three values of the parameter d2 of the amplitude damping map
E1 [see Eq. (10)] are shown. (a) Relaxation of the state |0〉 population
obtained by numerical integration of Eq. (1) with initial condition
ρ(0) = |0〉〈0| (dotted lines), and asymptotic periodic states (solid
lines) obtained from the Floquet propagator UT of the embedded
system. (b) Relevant spectral gap g of UT . (c) Limit cycle solutions for
the Bloch vector. The waiting-time distribution, Eq. (8), has parameter
A = 0.24γ . The modulation frequency is � = 0.1γ .
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where 1 ∈ R4×4. Note that the embedding procedure yields
both the transient and the asymptotic dynamics for the physical
variable x(t) provided that the initial condition for the auxiliary
vector, determined using Eq. (4), is

u(0) = −
(

x1(0)

γ1
, . . . ,

x4(0)

γ1
,
x1(0)

γ2
, . . . ,

x4(0)

γ2

)T

.

In Fig. 2(a) we show the time evolution of ρ00(t) =
〈0|ρ(t)|0〉 obtained by the direct integration of Eq. (1), starting
from ρ(0) = |0〉〈0| (dashed lines). After several periods, the
solutions land on the asymptotic limit cycles (solid lines)
obtained from the Floquet propagator UT with three Arnoldi
iterations. The corresponding limit cycles of the Bloch vector
of components ai = Tr{ρσi} (i = x,y,z) are presented in
Fig. 2(c). As shown in Fig. 2(b), the relevant spectral gap
increases with the value of d2, which in turn corresponds to a
shorter time scale of relaxation towards the asymptotic state
[see dashed lines in Fig. 2(a)].

IV. CONCLUSIONS

We have presented a method to find the asymptotic Floquet
states for a class of periodically modulated systems governed
by memory-kernel master equations. The method has been
applied to a time-periodically modulated model of piecewise
dynamics of a qubit, a quantum generalization of a classical
semi-Markov process [47]. The asymptotic Floquet states are
especially interesting in this context. In the stationary limit,
the difference in non-Markovian and Markovian evolutions is
noticeable only during the relaxation towards the asymptotic
stationary state [29], which, for example, in the case of the
qubit is a point inside (or on) the Bloch sphere. This point can
be reached by following infinitely many trajectories, some of
them corresponding to Markovian evolution and some not, so
once the relaxation is over it is impossible to decide what kind
of evolution the system has undergone. It is different when the
qubit is periodically modulated because its asymptotic state
represents a one-dimensional, time-parametrized manifold
[see Fig. 2(c)]. This manifold is specific to the Liouville
superoperatorL and it could be that some Floquet states are not
attainable with a Markovian L. Outside of the quantum field,
memristors [55] and metamaterials with memory [56,57] are
considered now as perspective candidates for a new generation
of nanoscale devices. They are typically modeled with Eq. (1);
modulations can be introduced in these systems in different
ways, thus creating room for new regimes.

ACKNOWLEDGMENTS

The authors gratefully acknowledge fruitful discussions
with P. Talkner. S.D. and P.H. acknowledge support from
the Russian Science Foundation under Grant No. 15-12-
20029 (S.D.) and from the Deutsche Forschungsgemein-
schaft (DFG) via Grants No. DE1889/1-1 (S.D.) and
No. HA1517/35-1 (P.H.).

APPENDIX: DERIVATION OF EQ. (12)

Consider the general case in which the continuous back-
ground evolution between jumps is provided by some CPT map

F(t). In the application we consider the case of a continuous-
time quantum random walk [32] by setting F(t) ≡ 1. The
jumps are caused by the instantaneous actions of a CPT map
E(t) at random instants in time distributed according to a
waiting-time distribution f (t). The starting point for deriving
the generalized master equation (12) for density matrix ρ(t) in
the case of modulated piecewise dynamics, meaning that the
map E is itself time dependent, is the sum over trajectories

ρ(t) = G(t)ρ0 +
∞∑

n=1

∫ t

0
dtn . . .

∫ t2

0
dt1F̃(t − tn)

× E(tn) . . . E(t2)F̃(t2 − t1)E(t1)G(t1)ρ0, (A1)

where

G(t) = g(t)F(t),

F̃(tj+1 − tj ) = f (tj+1 − tj )F(tj+1 − tj ). (A2)

Here the function g(t) gives the probability that no jump has
occurred up to time t and is therefore defined by g(t) = 1 −∫ t

0 dτf (τ ).
In order to obtain the piecewise dynamics described by

Eq. (A1) in the form of a master equation, we start by
evaluating the series order by order in the number n of jumps,
i.e., of actions of the map E .

(i) Zero jumps (n = 0):

ρ(0)(t) = G(t)ρ0. (A3)

(ii) One jump (n = 1):

ρ(1)(t) =
∫ t

0
dt1F̃(t − t1)E(t1)G(t1)ρ0

=
∫ t

0
dt1F̃(t − t1)E(t1)ρ(0)(t1). (A4)

(iii) Two jumps (n = 2):

ρ(2)(t) =
∫ t

0
dt2

∫ t2

0
dt1F̃(t − t2)E(t2)

× F̃(t2 − t1)E(t1)G(t1)ρ0

=
∫ t

0
dt2F̃(t − t2)E(t2)

×
∫ t2

0
dt1F̃(t2 − t1)E(t1)ρ(0)(t1)

=
∫ t

0
dt2F̃(t − t2)E(t2)ρ(1)(t2), (A5)

and so on.
We find the recursive relation

ρ(n)(t) =
∫ t

0
dt ′F̃(t − t ′)E(t ′)ρ(n−1)(t ′) (n � 1),

ρ(0)(t) = G(t)ρ0. (A6)

Summing the series we get

ρ(t) = G(t)ρ0 +
∫ t

0
dt ′F̃(t − t ′)E(t ′)

∞∑
n=1

ρ(n−1)(t ′)

= G(t)ρ0 +
∫ t

0
dt ′F̃(t − t ′)E(t ′)ρ(t ′). (A7)
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Finally, taking the time derivative of Eq. (A7) we obtain

ρ̇(t) = d

dt
G(t)ρ0 +

∫ t

0
dt ′

∂

∂t
F̃(t − t ′)E(t ′)ρ(t ′)

+ F̃ (0)E(t)ρ(t)

=
∫ t

0
dt ′K(t − t ′)E(t ′)ρ(t ′) + I(t)ρ0, (A8)

where

K(t) = d

dt
F̃(t) + F̃(0)δ(t),

I(t) = d

dt
G(t). (A9)

In the static case E(t) ≡ E , Eq. (A8) coincides with Eq. (7) in
Ref. [34]. If instead we set F(t) ≡ 1, the case considered in
the application is recovered.
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