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Ambiguous measurements do not reveal complete information about the system under test. Their quantum-
mechanical counterparts are semiweak (or in the limit, weak) measurements and here we discuss their role in
tests of the Leggett-Garg inequalities. We show that, while ambiguous measurements allow one to forgo the usual
noninvasive measurability assumption, to derive a Leggett-Garg inequality that may be violated, we are forced to
introduce another assumption that equates the invasive influence of ambiguous and unambiguous detectors. Based
on this assumption, we derive signaling conditions that should be fulfilled for the plausibility of the Leggett-Garg
test. We then propose an experiment on a three-level system with a direct quantum-optics realization that satisfies
all signaling constraints and violates a Leggett-Garg inequality.
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I. INTRODUCTION

The Leggett-Garg inequalities (LGIs) [1] were constructed
as tests of macrorealism, as defined by the following three
assumptions (the first two as stated in Ref. [1]; the third was
made explicit in, e.g., Refs. [2–4]).

A1. Macroscopic realism per se: A macroscopic system
with two or more macroscopically distinct states available to
it will at all times be in one or the other of these states.

A2. Noninvasive measurability (NIM): It is possible, in
principle, to determine the state of the system with arbitrarily
small perturbation on its subsequent dynamics.

A3. Arrow of time: The outcome of a measurement on the
system cannot be affected by what will or will not be measured
on it later.

The inequalities that follow from these assumptions
have been the subject of much work that was reviewed
a few years ago in Ref. [5] with many theoretical [6–12]
and experimental [13–21] developments having taken place
since.

Of the three assumptions, assumption A2 is particularly
vexatious since, while it assumes NIM to hold in principle,
noninvasivity must also be seen to hold true in practice,
otherwise any violation of an LGI can be assigned to
some unwitting invasivity of the measurement [22]. This
is the “clumsiness loophole” of Wilde and Mizel [23].
And, since quantum-mechanical measurements are in fact
invasive, NIM is a counterfactual and can never be ruled out
empirically.

Leggett and Garg’s proposal [1] for dealing with
this situation was to use ideal negative measurements,
and these have been employed in various recent experi-
ments [13,19,21,24,25]. This approach, however, just shifts
the locus of any presumed noninvasivity away from the system
itself and onto some degree of freedom in its environment.
There have been a number of attempts to formulate LGIs under
different assumptions [26–30], but these too must ultimately
suffer from similar loopholes.

This issue of invasivity relates to an important difference
between the LGIs and the formally similar Bell’s inequalities,
and this is the issue of signaling [4,9]. For spacelike separated
observers Alice and Bob in a Bell test, we have the no-signaling

condition

P (A) −
∑
B

P (A,B) = 0, (1)

where P (A) is the probability that Alice obtains result A and
P (A,B) is the joint probability of result A for Alice and B for
Bob. Thus, the influence of Bob’s measurement is statistically
undetectable to Alice (and vice versa). In the LGI setting, there
is no external physical principle such as locality to which we
can appeal that enforces a lack of signaling between the two
measurements. Let us define

δ(n3) = P (n3) −
∑
n2

P (n3,n2), (2)

where n2 and n3 are outcomes of measurements at times t2 and
t3 > t2, to quantify the signaling in an LGI context. Under
assumptions A1–A3, these signaling quantifiers should be
zero, just as in Bell’s test. Indeed the no-signaling-in-time
(NSIT) equalities δ(n3) = 0 [4], or ones very similar to
them [31], have been discussed as tests of macrorealism
themselves [4,7,12,32]. These studies show that, generically,
quantum-mechanical violations of an LGI are accompanied by
a violation of NSIT conditions (see Ref. [33] and also Sec. II).
From this, a macrorealist would conclude that, since there
is experimental evidence that the measurements can signal
forward in time, they are invasive and assumption A2 does not
hold in practice. Thus, observation that the NSIT equalities
hold may be taken as a necessary (but by no means sufficient)
condition that our measurements appear noninvasive. NSIT
also restores the symmetry between LGIs and Bell inequalities.

A number of ways of achieving LGI violations without
signaling have been discussed. Much has been written about
weak (or semiweak) measurements [34,35] and the violation
of the LGIs [36–43]. As Halliwell makes clear [9], weakly
measured quasiprobabilities naturally have the NSIT property
and can violate LGI inequalities. The importance of weak
measurements in unifying spatial and temporal correlations,
and hence LG and Bell inequalities, has been discussed in,
e.g., Ref. [44]. Outside the weak-measurement paradigm, the
work of George et al. [33] (see also Ref. [45]) stands out
as having reported a measurement of an LGI violation while
obeying the relevant no-signaling conditions (George et al.
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used the language of the measurements being “nondisturbing”
rather than no-signaling). These results, however, came in a
very specific setting, viz., the quantum three-box paradox,
leaving open the question as to whether their results represent
a peculiarity of this model, or whether similar situations can
be found in other, perhaps even macroscopic, systems.

In this paper we describe a general approach to LGI
violations using a set of ambiguous measurements [46] that
are realized quantum mechanically by a particular class of
positive operator-valued measure (POVM). We show that with
the quasiprobabilities inferred from such measurements we
are able to violate an LGI inequality without making the
NIM assumption. However, in order to justify use of these
quasiprobabilities as proxies for the real thing, we find we
must make an alternative assumption that equates the invasive
influence of ambiguous and unambiguous detectors on a
macroreal state. We will call this assumption equivalently
invasive measurability (EIM). We believe that an assumption
along these lines tacitly underlies previous work on weak
measurements and the LGI. While it may seem hard to justify a
priori that two potentially very different detectors are invasive
in the same way (although, see later), this assumption leads to
a testable consequence, namely, that the signaling quantifiers
for both detectors should be equal. These conditions we
call equal signaling in time (ESIT) and they can be tested
empirically. We note here that the assumption of EIM in
the presence of fulfilled NSIT conditions is similar to the
noncollusion of adroit measurements discussed by Wilde and
Mizel [23].

From our considerations we arrive at several conclusions.
(i) Violations of any single LGI are always accompanied

by violations of NSIT (this is a slight generalization of a result
given in Ref. [33]).

(ii) There exist specific combinations of quantum dynamics
and ambiguous measurements that can both violate LGIs
and satisfy ESIT. In the examples we discuss here, ESIT is
realized through the NSIT conditions for both ambiguous and
unambiguous measurements, each being exactly zero. We thus
show that the results of George et al. [33] can be generalized
to arbitrary systems, provided we choose the dynamics and
measurements appropriately.

(iii) In general, violations of LGIs in the weak-measurement
limit are accompanied by a violation of ESIT (and would thus
be unconvincing to a macrorealist). This must always be the
case when our measurements involve just two outcomes. How-
ever, we also show that there exist specific weak-measurement
scenarios with multiple outcomes in which ESIT remains
intact.

This paper proceeds as follows. In Sec. II we derive
a modified version of the LGI without making the NIM
assumption and show that directly measured probabilities,
even those from quantum mechanics, can never violate it.
In Sec. III we then introduce our ambiguous measurements,
discuss the necessity of the EIM assumption, and construct our
ambiguously measured LGI. We then analyze this quantum
mechanically in Sec. IV and show how the ambiguous LGI
can be violated while ESIT is preserved in general. In Sec. V
we discuss a concrete example of our formalism, eminently
realizable in terms of the quantum optics setup pursued in
Refs. [19,20]. In Sec. VI we make the connection with weak

measurements, before discussing the significance of our results
in Sec. VII.

II. THE LGI WITHOUT THE NONINVASIVE
MEASURABILITY ASSUMPTION

The most-studied LG correlator involves dichotomic ob-
servable Q = ±1 and reads

K ≡ 〈Q2Q1〉 + 〈Q3Q2〉 − 〈Q3Q1〉, (3)

where Qi = Q(ti) is the measurement outcome at times
t3 > t2 > t1. Under assumptions A1–A3, Leggett and Garg
showed that K � 1. We want to investigate this correlator
without assumption A2. To simplify matters, we first assume
the coincidence of the measurement at t1 and our preparation
step [11,13,19,40]. Declaring Q1 = +1, the LG correlator
becomes

K = 〈Q2〉 + 〈Q3Q2〉 − 〈Q3〉. (4)

We assume that our measurements unambiguously reveal one
of M different outcomes, each of which we associate with a
different “macroscopically distinct” state. We allot a Q value
to each via q(n) = ±1 with 1 � n � M [47]. In terms of the
probabilities P (ni) of obtaining result ni at time ti , the simple
expectation values in K read 〈Qi〉 = ∑

ni
q(ni)P (ni). Under

assumptions A1 and A3 (but not A2), adding a measurement
at time t3 does not affect the result at t2 and so we can
write 〈Q2〉 = ∑

n3n2
q(n2)P (n3,n2), where P (n3,n2) is the

joint probability of measuring n2 and n3. We then use the
signaling quantifiers δ(n3) in Eq. (2) to eliminate P (n3) from
K . The result is

K =
∑
n3,n2

[q(n2) + q(n2)q(n3) − q(n3)]P (n3,n2)

−
∑
n3

q(n3)δ(n3). (5)

The first term here is what we get under the standard derivation
of the LGI with NIM. The second term is new and describes
the effects of the invasiveness of our measurements. Taking
a maximally adverse position, independent maximization of
these two terms yields our modified NIM-free LGI [48]:

K � 1 + � with � ≡
∑
n3

|δ(n3)|. (6)

The idea is, therefore, to make measurements of both K and
� and compare them with this inequality. It is immediately
clear, however, that as long as P (n3,n2) and P3(n3) form
two sets of genuine probabilities, then Eq. (6) can never be
violated. This holds just as well for probabilities obtained
quantum mechanically, and is indeed irrespective of whether
the measurements are projective or more general.

III. AMBIGUOUS MEASUREMENTS

The foregoing makes clear that we are never going to
violate Eq. (6) with directly measured probabilities. The only
remaining possibility is therefore to replace the measured
probabilities with quasiprobabilities in a way that a macro-
realist would feel was a fair substitution. We maintain that this

042102-2



AMBIGUOUS MEASUREMENTS, SIGNALING, AND . . . PHYSICAL REVIEW A 96, 042102 (2017)

can only be the case when we perform two experiments and
compare them. The first experiment proceeds as above with our
detector at time t2 giving unambiguously one of 1 � n � M

outcomes. These results are repeatable. The second experiment
analyzes the same system, but with the detector at time t2
being ambiguous [46]. This detector gives one of 1 � α � MA

results with the key property that repeated measurements do
not necessarily lead to the same outcome. The macrorealist
will view this measurement as only revealing incomplete
information about the “real state” of the system.

We then look to relate the two experiments. By following
a measurement of unambiguous result n with an ambiguous
measurement, we obtain the conditional probabilities cαn that
state n gives response α. Using these results and Bayes’s rule,
the macrorealist would be happy to write the probability of
obtaining result α as

P (α) =
∑

n

cαnP(n). (7)

We use the notation P to denote a probability that is not
measured directly but rather inferred. Collecting coefficients
cαn into matrix c and assuming MA � M such that the
ambiguous measurements give us sufficient information to
reconstruct P(n), we write

P(n) =
∑

α

dnαP (α), (8)

where dnα are elements of the left inverse of c, i.e., d · c = 1.
Note that we cannot measure the quantities dnα directly, as we
do not know what it means to prepare in “state α.”

In analogy with Eq. (8), we next write down the inferred
joint probability:

P(n3,n2) =
∑

α

dn2αP (n3,α). (9)

For a macrorealist to agree that this inferred probability is the
same as the directly measured one, P (n3,n2), he or she would
have to assume that the evolution of the system from state n2

is the same with the ambiguous detector in place as it would
be had we actually measured result n2 with the unambiguous
detector. We codify this assumption, which we make here as
an alternative to NIM, as follows:

A2*. Equivalently invasive measurability (EIM): The in-
vasive influence of ambiguous measurements on any given
macroreal state is the same as that of unambiguous ones.

The degree of signaling due to the ambiguous measure-
ments is quantified by

δA(n3) ≡ P (n3) −
∑

α

P (n3,α). (10)

Inserting
∑

n dnα = 1 from the conservation of probability and
using Eq. (9), we obtain

δA(n3) = P (n3) −
∑
n2

P(n3,n2). (11)

Thus, as a consequence of assumption A2*, the macrorealist
will expect the signaling quantifiers δ(n3) and δA(n3) to be
the same. Let us quantify this by defining the “signaling

differences”

D(n3) ≡ δ(n3) − δA(n3), (12)

which, under EIM, obey

D(n3) = 0; ∀n3. (13)

In analogy with no-signaling in time, we dub these conditions
the equal-signaling-in-time equalities.

To obtain an LGI that may be violated, we take Eq. (5)
and replace the measured probabilities with the inferred ones,
Eq. (9). This yields the correlator

KA =
∑

n3,n2,α

[q(n2) + q(n2)q(n3) − q(n3)]dn2αP (n3,α)

−
∑
n3

q(n3)δA(n3), (14)

which involves measured quantities only. Perceiving this
correlator to be equivalent to Eq. (5), the macrorealist would
expect KA and δA(n3) to be related in the same way as the
original K and δ(n3). Thus we obtain

KA � 1 + �A, �A =
∑
n3

|δA(n3)|. (15)

This we will refer to as the ambiguously measured LGI.
The important point is that the macrorealist would only write
down this inequality down if they were convinced first of the
existence of the states n (for which we need the unambiguous
measurements), and second that assumption A2* is valid.

IV. QUANTUM FORMULATION

We now describe the situation quantum mechanically. Let
ρi be the system density matrix at time ti , and let the time
evolution from time ti to tj be given by ρj = �ji[ρi] =
UjiρU

†
ji with Uji the appropriate unitary operator. Our unam-

biguous measurement is described with orthogonal projectors
�n, 1 � n � M that obey

∑
n �n = 1 and �n�n′ = δnn′�n,

thus ensuring the repeatability of the measurement. In this case
the signaling quantifiers are given by

δQM(n3) =
∑

n,n′ �=n

X(n3,n,n′), (16)

with X(n3,n,n′) ≡ Tr{�n3�32[�nρ2�n′]}.
In the ambiguous case, the measurement is described by a

POVM with elements that we take to be sums of projection
operators

Fα =
∑
n2

cαn2�n2 , (17)

and have a clear interpretation in terms of the states n. With
P (α) = Tr{Fαρ2} and P (n) = Tr{�nρ}, this immediately re-
produces Eq. (7). The POVM elements are associated with the
Kraus operators as Fα = M2

α with Mα = M†
α = ∑

n

√
cαn �n,

such that the joint probabilities are given by P (n3,α) =
Tr{�n3�32[Mαρ2Mα]}. This gives the ambiguous signaling
quantifiers as

δ
QM
A (n3) =

∑
n,n′ �=n

γ (n,n′)X(n3,n,n′) (18)
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with γ (n,n′) = 1 − ∑
α

√
cαncαn′ . Similarly, from Eq. (14),

the LG correlator is

K
QM
A =

∑
n3n2

[q(n2) + q(n2)q(n3) − q(n3)]P (n3,n2)

−
∑
n3

q(n3)δQM
A (n3)

+
∑
n2,n3

[q(n2) + q(n2)q(n3) − q(n3)]κ(n3,n2),

with

κ(n2,n3) ≡
∑

n,n′ �=n


(n2,n,n′)X(n3,n,n′), (19)

and 
(n2,n,n′) ≡ ∑
α dn2α

√
cαncαn′ . The important result here

is that, whereas the first two terms in K
QM
A are exactly what we

get in the unambiguous case [see Eq. (5)], a third term appears
which is not directly related to the signaling quantifiers. This
new term opens up the possibility of violating Eq. (15).

If we look at the signaling difference, however, we find that

DQM(n3) =
∑

n,n′ �=n

[1 − γ (n,n′)]X(n3,n,n′). (20)

Unless we can set these quantities to zero, the macrorealist
can conclude that assumption A2* does not hold, and any
violation of the ambiguously measured LGI is due to the
noncomparability of the two experiments.

V. INVERTED MEASUREMENTS AND A
QUANTUM-OPTICS REALIZATION

Is it possible to satisfy ESIT D(n3) = 0; ∀n3 and still
violate Eq. (15)? We answer this question by considering
a simple measurement scheme which we call an “inverted
measurement.” The idea is that, whereas the unambiguous
detector identifies the system as being in state n, the inverted-
measurement detector identifies it as being in any state other
than n. So, with three unambiguous outcomes n ∈ {A,B,C},
our inverted measurement detects the three disjunctions:
A ∪ B,B ∪ C, and A ∪ C. From these, a macrorealist would
have no qualms inferring the (quasi)probabilities P(A) =
P (A ∪ B) + P (A ∪ C) − P (B ∪ C), etc. Such a detector has
MA = M and is described by the matrices

c = 1

M − 1
(J − 1), d = J − (M − 1)1, (21)

where 1 is the unit matrix and J is a matrix of ones.
With this detector, we obtain (M − 1)δQM

A (n3) = δQM(n3),
with δQM(n3) as in Eq. (16), and thus

DQM(n3) = (M − 2)δA(n3). (22)

Thus, if we can find a quantum dynamics that obeys NSIT, then
ESIT will be automatically satisfied. Furthermore, with this
measurement setup, the terms responsible for LGI violations
read

κ(n3,n2) = −δ
QM
A (n3) +

∑
n

[X(n3,n2,n) + X(n3,n,n2)],

(23)

FIG. 1. Sketch of a three-level system realized as optical channels
A, B, and C with nontrivial time evolution generated by the blocks
labeled U . We initialize by injecting a photon into channel C. Three
configurations are shown. (a) No measurement at t2. (b) Unambiguous
measurement. With blocking elements in channels B and C, detection
of the photon at t3 means that we can infer that the photon was
in channel A at time t2. (c) Ambiguous measurement. With only
channel C blocked, detection of the photon at t3 means that, from a
macrorealistic point of view, the photon was in either channel A or B

at time t2.

which remain finite even when δ
QM
A (n3) = 0. Thus this scheme

offers a route to satisfy NSIT for both measurements, ESIT
along with it, and still violate Eq. (15).

We now consider a three-level system as the lowest-
dimensional system for which inverse measurements make
sense. We label the states n ∈ {A,B,C}, choose measurement
assignments q(A) = −q(B) = q(C) = 1, and initialize the
system in state ρ1 = |C〉〈C|. Time evolution is governed by
U21 = U32 = U with

U =
⎛
⎝

1 0 0
0 cos φ sin φ

0 − sin φ cos φ

⎞
⎠ ×

⎛
⎝

cos χ 0 sin χ

0 1 0
− sin χ 0 cos χ

⎞
⎠

×
⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠, (24)

with parameters φ, χ , and θ .
A setup like this was realized optically in Refs. [19,20], and

our inverted-measurement scheme would have a particularly
straightforward implementation in this context (see Fig. 1).
The system state is encoded in one of three optical channels.
Measurements are made through a combination of photon
detectors on the far right (t3) and by placing a sequence
of blocking elements in the optical paths at t2. Projective
measurements of the probabilities P (n3,A) are unambiguously
obtained by blocking two paths at once [Fig. 1(b)] since if we
block, e.g., paths B and C the photon must have passed through
channel A at t2 to survive through to the detector. In contrast,
our inverted measurements are obtained by blocking just one
of the three channels [Fig. 1(c)]. With a block in channel C,
say, a detection of a photon at t3 would lead a macrorealist
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FIG. 2. The signaling quantifier δ
QM
A (B) as a function of param-

eters θ and φ for ambiguous measurements of a three-level system.
Parameter χ was chosen to set δ

QM
A (A) = 0. The black lines indicate

parameters for which δ
QM
A (B) = −δ

QM
A (C) = 0 and both NSIT and

ESIT are obeyed.

to infer that the photon state must have been either A or B at
time t2.

We then calculate δ
QM
A for this system and choose χ as a

function of φ and θ such that δ
QM
A (A) = 0. Since

∑
n3

δ
QM
A

(n3) = 0, we have δ
QM
A (B) = −δ

QM
A (C) such that when one of

these two remaining NSIT indicators is set to zero then all
three are zero. Figure 2 shows δ

QM
A (B) as a function of the two

angles θ and φ. Marked in black are the parameters for which
δ

QM
A (B) = 0. Figure 3 shows the corresponding LGI correlator

K
QM
A , which takes values up to a maximum of K

QM
A = 1.9.

Overlaid on this figure are the no-signaling lines from Fig. 2.
In many places, these lines coincide with the LG correlator
taking the value K

QM
A = 1. However, there are also several

regions where this is not the case, and in particular in the top
left corner of this figure we see a no-signaling line intersect
a region with K

QM
A > 1. For these parameter values, then, we

have NSIT, ESIT, and a violation of the LGI.
Figure 4 shows two cuts through Fig. 3. Figure 4(a) reveals

the maximum value of K
QM
A when signaling is zero to be

K
QM
A = 1.464. Figure 4(b) shows a straight cut through Fig. 3

for fixed θ . On this plot we also show the quantity 1 + �
QM
A ,

which represents the modified upper bound for K
QM
A . Only

around the points where �
QM
A is close to zero do we obtain LGI

violations.

VI. WEAK MEASUREMENTS

As an example of LGI violations with weak measurements,
let us consider a detector (MA = M) described by

c = 1 − ε

M
J + ε1, d = 1

ε
1 + ε − 1

εM
J. (25)

Each detector response is biased towards a certain (unam-
biguous) outcome, but in the limit ε → 0 this bias disappears

FIG. 3. The ambiguously measured LG correlator K
QM
A for our

three-level system as a function of angles θ and φ. Red and orange
colors correspond to K

QM
A > 1; blue corresponds to K

QM
A < 1. The

black lines are the no-signaling lines from Fig. 2 along which
δ

QM
A (n3) = 0; ∀n3. In the top-left quadrant we see the no-signaling

line intersect a K > 1 region, such that we have NSIT, ESIT, and a
violation of the LGI.

and the measurement becomes weak. To leading order in ε,
we obtain γ (n,n′) ≈ M

4 ε2 and 
(n2,n,n′) ≈ 1
2 (δn,n2 + δn′,n2 ).

Thus, with this detector in the ε → 0 limit, the ambiguous
NSIT quantities become

lim
ε→0

δ
QM
A (n3) = 0, (26)

and there is no signaling for the weak measurement. Mean-
while, for terms responsible for violation of the ambiguous
LGI, we obtain

lim
ε→0

κ(n2,n3) = 1

2

∑
n�=n2

[X(n3,n2,n) + X(n3,n,n2)],

which will be nonzero provided there are coherences between
basis states at time t2. Indeed, with these results we can rewrite
the LG correlator as

lim
ε→0

K
QM
A = Tr

{[
Q̂2 + 1

2

{
Q̂2,Q̂3

} − Q̂3
]
ρ1

}
(27)

where Q̂n = Q̂(tn) = U
†
n1(

∑
m q(m)�m)Un1 is the measured

operator in the Heisenberg picture at time tn and {·,·} denotes
the anticommutator. We thus arrive at the weakly measured
form of the LGI as discussed in, e.g., Ref. [9]. From Fritz [49],
we know that the maximum quantum-mechanical value of this
quantity is identical to that obtained in the projective case in
the Lüders limit [47,50], i.e., when the number of projectors is
exactly 2. Thus, we conclude that, in the weak-measurement
case,

lim
ε→0

K
QM
A � 1 + �

QM
Lüders � 3

2
, (28)

where �
QM
Lüders is the no-signaling quantity that would be

obtained under a projective Lüders measurement. Since this
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θ/π

φ/π

φ/π

FIG. 4. Two cuts through Fig. 3 for the inverted-measurement
case plus corresponding results for the weak measurements of Sec. VI.
(a) The correlator K

QM
A as a function of θ along the no-signaling line

that goes through the orange region in Fig. 3. Since �A = 0 along this
line, the LGI reverts to KA � 1 and violations of Eq. (15) occur within
the indicated red region. Black line, inverted measurement; blue line,
weak measurement. (b) The correlator K

QM
A along the straight-line

cut in Fig. 3 from φ = 0 to π with θ = 0.831π . The red region shows
the right-hand side of Eq. (15) and, since generally we have signaling
here, this quantity is greater than 1. Indeed, only near the maximum of
K

QM
A does 1 + �

QM
A drop significantly such that we obtain a violation

of Eq. (15). N.B.: The maximum of the K
QM
A curve here is slightly

displaced from the no-signaling point and thus has a value slightly
higher than the no-signaling maximum (1.482 vs 1.464). (c) The
same as panel (b) but for the weakly measured case with θ = 0.856π .
Again the maximum is slightly offset from the no-signaling maximum
(1.173 vs 1.147).

will generally be nonzero, no-signaling violations of the
weakly measured LGI are possible.

This, however, indicates a problem when the number of
outcomes for our unambiguous measurements is actually
M = 2, because then the quantity �

QM
Lüders in Eq. (28) is exactly

the same �QM for the unambiguous measurements. Thus
violations of the ambiguously measured LGI imply violations
of the unambiguous NSIT equalities. In the M = 2 case,
therefore, we have limε→0 DQM(n3) = δQM(n3) �= 0 for at
least some n3, from which the realist would conclude that
assumption A2* is invalid.

Away from this M = 2 case, however, this argument does
not apply, and we may obtain �QM = 0 while �

QM
Lüders > 0,

since they are different quantities. To show that this is the
case, we return to the three-level system of the last section for
which M = 3. For this model, we already know that �QM =
�

QM
A = 0 along the lines shown in Fig. 2. A plot of the weakly

measured LG correlator of Eq. (27) (not shown) then looks very
similar to Fig. 3 (but with less-pronounced maxima) and again
shows a region of LGI violation intersected by the no-signaling
line. Figure 4(a) shows the value of K

QM
A along this line, from

which we obtain a maximum violation of K
QM
A = 1.147 (and

thus �
QM
Lüders = 0.147). Figure 4(c) also shows a cut for fixed θ

through the maximum.

VII. DISCUSSION

In Sec. II we saw that in attempting to derive an LGI
without the NIM assumption A2 we ensure that it can never be
violated. This is not surprising because a realistic description
of nature by itself is not inconsistent with the probabilities of
quantum mechanics [2]. To obtain an inequality that we could
violate, we considered two measurements, one unambiguous
and one ambiguous [51]. By comparing the two, and replacing
a probability in an inequality derived for one experiment with
a (quasi)probability inferred from the other, we obtained our
“ambiguously measured LGI” which, as we have seen in our
examples, can be violated by quantum theory. To justify this
switch, however, we had to introduce the EIM assumption A2*,
in which the invasivity of the measurements in each of the two
experiments was taken to be equivalent. Making the role of
this assumption explicit in LGI tests with ambiguous or weak
measurements is one of the main results of this paper.

While the EIM assumption may not seem particularly
plausible in the abstract [52], for certain detectors, it might
be. In particular, consider measurements that are realized with
a set of individual detectors, each of which only interacts
with the system when it is in just one of the macroreal states
(as in ideal negative measurements). In this case, then, the
unambiguous measurement would be implemented by using
one of these detectors at a time, whereas the ambiguous
measurement would involve using more than one, deployed
in such a way that any knowledge of which particular detector
had fired was lost. Since in this case the components of the
ambiguous measurement are “just the sum” of those from the
unambiguous one, one could reasonably expect the influence
on the system of the two measurements to be the same. But,
more than consideration of any specific realization, just as NIM
leads to the NSIT conditions, so the EIM assumption leads to
the ESIT conditions, and these can be experimentally tested.
And while successful NSIT and ESIT tests can not exclude

NIM and EIM, respectively, they would at least provide the
macrorealist with some level of empirical confidence that
the experiment was functioning in conformity with these
principles.

In this paper we have discussed the concrete example of
a three-level system, under both inverted and weak measure-
ments, and found parameter regimes where it can satisfy both
NSIT and ESIT equalities while violating an LGI. In the weak
measurement case, it is important to note that while the NSIT
equality is guaranteed to hold for the weak measurement
itself this is not necessarily the case for the unambiguous
part of the experiment and thus, generally, ESIT would not
hold in these experiments. Only under certain model-specific
circumstances, and only when the system dimension is greater
than 2, can both NSIT and ESIT be fulfilled. As we show in
the Appendix, the three-box problem from the experiment of
George et al. [33] can be understood within the framework
discussed here and shows the required NSIT and ESIT
properties.

Faced, then, with the violation of an ambiguously measured
LGI, together with the satisfaction of ESIT, what would
a macrorealist conclude? Certainly, this would give more
cause for thought than having measured an LGI violation
in a single experiment, as there a measurement of the NSIT
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equalities would be enough to dismiss the measurements as
signaling. With the ambiguous prescription and ESIT, the
macrorealist would be faced with either giving up the com-
bination of assumptions A1 and A3 or finding an explanation
for how two different measurements can somehow conspire to
give exactly the same degree of signaling and yet somehow
influence the system in very different ways. This problem
is compounded in the case where ESIT is satisfied through
NSIT being satisfied for both experiments, as in this case both
experiments are individually nonsignaling. With this, then,
we arrive at a situation similar to that presented by Wilde
and Mizel [23] (with a recent realization [18]). While the
measurement procedures in their work were very different
from those considered here (involving different bases), the
problem created for the macrorealist is similar—in order
to maintain a macrorealistic description of the system, the
macrorealist is left with having to explain away a collusion
between two sets of measurements. When properly executed,
then, ambiguously measured LGIs provide a further way with
which we might narrow the “clumsiness loophole.”
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APPENDIX: QUANTUM THREE-BOX PROBLEM

The quantum three-box problem [33,45] can be cast in
the language used here. With the three states labeled as in

Sec. V Alice’s measurement at time t3 is characterized by two
projectors �

(3)
−1 = |C〉〈C| and �

(3)
+1 = 1 − |C〉〈C|, which we

have labeled with the respective q = ±1 assignments and a
superscript to distinguish them from the previous projectors.
Bob’s measurement at time t2 can be characterized by a four-
element POVM with

c = 1

2

⎛
⎜⎝

1 0 0
0 1 1
0 1 0
1 0 1

⎞
⎟⎠, (A1)

and the assignments q(A) = q(B) = −q(C) = +1. For the
time evolution operators we take

U21 = 1√
6

⎛
⎝

2 0
√

2
−1

√
3

√
2

−1 −√
3

√
2

⎞
⎠, (A2)

U32 = 1√
6

⎛
⎝

1 1 2√
3 −√

3 0√
2

√
2 −√

2

⎞
⎠. (A3)

Finally, we need to consider a different, but essentially
equivalent [5], version of the LGI:

K ′ = 〈Q2〉21 + 〈Q3Q2〉321 − 〈Q3〉31 � −1. (A4)

Calculating with the above formalism gives δ
QM
A (n3) =

δQM(n3) = 0 such that Bob’s measurements are nonsignaling
and ESIT is satisfied, along with K ′QM

A = −13/9, such that the
ambiguous LGI is violated. This is in agreement with Ref. [33].
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