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Oscillating potential well in the complex plane and the adiabatic theorem
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A quantum particle in a slowly changing potential well V (x,t) = V (x − x0(εt)), periodically shaken in time at
a slow frequency ε, provides an important quantum mechanical system where the adiabatic theorem fails to predict
the asymptotic dynamics over time scales longer than ∼1/ε. Specifically, we consider a double-well potential
V (x) sustaining two bound states spaced in frequency by ω0 and periodically shaken in a complex plane. Two
different spatial displacements x0(t) are assumed: the real spatial displacement x0(εt) = A sin(εt), corresponding
to ordinary Hermitian shaking, and the complex one x0(εt) = A − A exp(−iεt), corresponding to non-Hermitian
shaking. When the particle is initially prepared in the ground state of the potential well, breakdown of adiabatic
evolution is found for both Hermitian and non-Hermitian shaking whenever the oscillation frequency ε is close
to an odd resonance of ω0. However, a different physical mechanism underlying nonadiabatic transitions is found
in the two cases. For the Hermitian shaking, an avoided crossing of quasienergies is observed at odd resonances
and nonadiabatic transitions between the two bound states, resulting in Rabi flopping, can be explained as a
multiphoton resonance process. For the complex oscillating potential well, breakdown of adiabaticity arises from
the appearance of Floquet exceptional points at exact quasienergy crossing.
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I. INTRODUCTION

The evolution of a quantum system under external adiabatic
driving has been of fundamental interest to physicists since
the earlier days of quantum mechanics [1,2]. A major result in
quantum adiabatic evolution is provided by the the quantum
adiabatic theorem (QAT) [1–4], which finds widespread
applications in several areas of physics such as in atomic
and molecular physics [5–7], quantum Hall physics [8], the
physics of geometric phase [9], quantum computation [10–12],
quantum annealing [13–15], and quantum simulations [16] to
mention a few. In its simplest form, as originally proposed by
Born and Fock [1], the QAT applies to a quantum system
with discrete and nondegenerate energy levels and states
that, if the system is initially prepared in an instantaneous
eigenstate (commonly the ground state) of the slowly changing
time-dependent Hamiltonian Ĥ (εt), with an instantaneous
eigenvalue E0 = E0(εt) which remains separated all the time
by a finite gap from the rest of the spectrum, in the ε → 0 limit
the system evolves, remaining in the same instantaneous eigen-
state, up to a multiplicative phase factor. Several extensions
of the QAT theorem, that include the cases of a Hamiltonian
with a continuous energy spectrum, gapless Hamiltonians, and
time-periodic Hamiltonians with slowly changing parameters,
have been subsequently reported [2–4,17–19].

While the correctness of the QAT is beyond any dispute,
some inconsistencies have been disclosed when attempting
to apply the QAT to certain Hamiltonian models [20,21].
The origin and explanation of such inconsistencies have
raised a rather lively debate among physicists over the
past decade, and several facets of the problem have been
discussed, sometimes with different views [22–37]. Rather
generally, failure of adiabatic following is observed when the
Hamiltonian varies on different time scales, or in case the
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evolution of the quantum state is observed at extremely long
time scales and the Hamiltonian contains oscillating terms
[24,25,28,29,33,36,37]. Indeed, the QAT ensures adiabatic
following provided that the Hamiltonian Ĥ changes with time
as Ĥ (x,εt), where ε is assumed small, and the time dependence
vanishes after some finite time, that is, Ĥ (x,εt) = Ĥ (x,∞)
for t > t∞, typically t∞ of order ∼1/ε [36]. When the slow
change never really stops or continues for a time much longer
than 1/ε, the predictions of the adiabatic theorem can fail.
This happens, for example, when the Hamiltonian undergoes a
periodic change (though small and at extremely low frequency
ε) and the evolution of the system is observed for an extremely
long time: after many oscillation cycles, for special driving
frequencies corrections to the adiabatic solution can sum
up constructively, resulting in nonadiabatic transitions and
Rabi flopping between energy levels [37]. Such nonadiabatic
transitions show similar features to field-induced multiphoton
resonances and multiphoton Rabi oscillations encountered in
laser-driven atomic systems [38–40].

Recently, great attention has been devoted to extend
the conditions of the adiabatic theorem to non-Hermitian
Hamiltonians [41–50]. In non-Hermitian systems, the usual
approximations and criteria of the QAT are not necessarily
valid, and several results have been found concerning exten-
sions and breakdown of the adiabatic theorem [42–44,46,47].
A unique feature of non-Hermitian Hamiltonians, as compared
to Hermitian ones, is the appearance of exceptional points
(EPs), i.e., spectral singularities in the point spectrum of the
Hamiltonian corresponding to the coalescence of two (or more)
eigenvalues and of corresponding eigenfunctions [51–55].
Interestingly, EPs can deeply modify adiabatic evolution, with
the appearance of a chiral behavior when the Hamiltonian is
slowly varied to encircle an EP, while an adiabatic following
is observed when the EP is encircled in one direction (e.g.,
clockwise); nonadiabatic transitions are observed when the EP
is encircled in the opposite direction (e.g., counterclockwise)
[44,45,49,50]. Recent experimental progress in engineered

2469-9926/2017/96(4)/042101(12) 042101-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.042101


STEFANO LONGHI PHYSICAL REVIEW A 96, 042101 (2017)

electromagnetic, electronic, and optical systems has made it
possible to access the intriguing properties of non-Hermitian
Hamiltonian models and the impact of non-Hermitian dy-
namics on adiabatic evolution in an unprecedented way.
For example, the chiral behavior of EPs has been recently
demonstrated in a classical system using deformed metallic
waveguides [50].

In this work we show that periodic shaking of a potential
well in “complex” space provides a noteworthy example
where breakdown of the adiabatic theorem can be observed in
Hermitian and non-Hermitian realms under different physical
mechanisms. The periodically shaken double-well potential
has been widely investigated in the open literature as a basic
model of tunneling control in different areas of physics [56].
Depending on the strength and frequency of the shaking,
suppression or enhancement of tunneling can be observed
[57–60]. Here we consider a double-well potential V (x)
sustaining two bound states spaced in frequency by ω0, which
is periodically shaken in a “complex” plane, leading to a
time-dependent potential V (x,t) = V (x − x0(t)). The main
reason of considering a “complex” shaking of the potential,
in addition to a real one, is to reveal a distinct mechanism
of failure of the adiabatic theorem which is peculiar to
non-Hermitian potentials and related to the appearance of
Floquet EPs. While in the oscillating Hermitian potential
failure of the adiabatic theorem results in a kind of Rabi
flopping, in the oscillating non-Hermitian potential failure of
the adiabatic theorem results in the emergence of a dominant
state and a chiral dynamical behavior, which is impossible
to observe in the Hermitian case. We assume either a real
spatial displacement (Hermitian shaking), x0(εt) = A sin(εt),
or a complex spatial displacement (non-Hermitian shaking),
x0(εt) = A − A exp(−iεt). In the former case the potential
V (x,t) remains real and shape invariant, whereas in the latter
case the potential becomes complex and is not anymore
shape invariant. By application of rigorous Floquet theory
[61], we show that breakdown of the adiabatic following
is observed for both Hermitian and non-Hermitian periodic
shaking when the driving frequency ε is tuned close to the
critical frequencies εN , satisfying the odd-resonance condition
εN � ω0/(2N − 1) (N = 1,2,3,...). However, the physical
mechanism underlying nonadiabatic transitions is very distinct
in the two cases. For the Hermitian shaking, nonadiabatic
transitions arise from a multiphoton resonance process near
avoided crossings of quasienergies and lead to Rabi flopping
between the two levels, with a mechanics similar to the one
recently investigated in Ref. [37]. On the other hand, for the
complex oscillating potential well, breakdown of the adiabatic
theorem is rooted into the appearance of a Floquet EP, i.e., a
singular regime where coalescence of both quasienergies and
Floquet eigenstates occur.

II. PERIODICALLY SHAKEN POTENTIAL WELL
IN A COMPLEX PLANE

A. Model and basic equations

We consider the dynamics of a quantum particle in a slowly
shaken one-dimensional quantum well, which in scaled units
is described by the dimensionless Schrödinger equation for the

wave function ψ = ψ(x,t):

i
∂ψ

∂t
= −∂2ψ

∂x2
+ V (x − x0(εt))ψ ≡ Ĥ (x,εt)ψ, (1)

where V (x) is the potential well at rest, x0 = x0(εt) is
the time-dependent spatial displacement, and x0(0) = 0. The
adiabatic limit corresponds to take ε → 0 and to consider
the dynamics for long times, namely, up to the time scale
of order ∼1/ε or longer. For a periodically shaken potential,
x0(εt) is a periodic function of time with period Tε = 2π/ε.
The potential V (x) is a real function of space variable x,
with V (x) → 0 as x → ±∞. We assume that V (x) can be
analytically prolonged into the complex plane z = x + iξ

in a stripe S: |Im(z)| = |ξ | < L embedding the real x axis,
with |V (z)| → 0 as |z| → ∞, z ∈ S. The spatial displacement
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FIG. 1. Periodical shaking of a potential well in complex plane.
(a) Closed path x0 = x0(εt) of the oscillation in complex plane
z = x + iξ . The potential V is holomorphic in the stripe S : |ξ | < L

of the complex plane. Path 1 on the real axis x corresponds to
the Hermitian shaking x0(εt) = A sin(εt), whereas path 2 embedded
in the stripe S corresponds to the non-Hermitian shaking x0(εt) =
A − A exp(−iεt). (b) Double-well potential sustaining two bound
states with energies E1 = −σ 2

1 (ground state) and E2 = −σ 2
2 (excited

state), with σ1 = √
3 and σ2 = √

2 [Eq. (30)]. The corresponding
wave functions u1(x) and u2(x) are depicted by thin solid lines.
(c, d) Behavior of the periodically shaken potential well, over one
oscillation cycle, for (c) Hermitian shaking x0(εt) = A sin(εt) with
A = 1, and (d) non-Hermitian shaking x0(εt) = A − A exp(−iεt)
with A = 0.6. In (c) the potential remains real, whereas in (d) the
potential becomes complex. The two panels in (d) depict the real (left
panel) and imaginary (right panel) parts of the potential.
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x0(εt) is generally assumed to be complex, describing a closed
loop inside the stripe S of analyticity of V (z) [Fig. 1(a)].
We note that for a real spatial displacement x0(εt) (Hermitian
shaking), the potential V (x,t) = V (x − x0(t)) is real and shape
invariant at any time t [Figs. 1(b) and 1(c)]: the particle
dynamics corresponds to the ordinary Hermitian dynamics in
a shape-invariant and periodically shaken potential well [56].
For a complex spatial displacement x0(εt) (non-Hermitian
shaking), the potential V (x,t) is not anymore shape invariant
and becomes a complex function [Fig. 1(d)]: in this case
the dynamics is described by a time-periodic non-Hermitian
Hamiltonian Ĥ (εt). We assume that the potential well V (x)
sustains N nondegenerate bound states |u1(x)〉, |u2(x)〉,...,
|uN (x)〉 with energies E1 < E2 < ... < EN < 0. Since the
potential V (x) is real, any eigenfunction un(x) can be assumed
to be real as well, and the orthonormality conditions∫ ∞

−∞
dx un(x)um(x) = δn,m (2)

hold. The eigenfunctions un(x) can be analytically prolonged
in the stripe S of the complex z plane, where they do not
show poles or branch cuts. Since Ĥ (x,εt) = H [x − x0(εt),0],
the instantaneous eigenfunctions of Ĥ (x,εt) at time t are
merely given by |un(x − x0(εt))〉 with energies En(t) = En

(n = 1,2,...,N ). This means that the instantaneous energies do
not change in time, while the instantaneous eigenfunctions at
time t are simply obtained from the initial ones by application
of the spatial displacement x → x − x0(εt). Note that for any
given time t the orthonormality conditions∫ ∞

−∞
dx un(x − x0(εt))um(x − x0(εt)) = δn,m (3)

hold. This follows from the fact that the integral on the
left-hand side of Eq. (3) can be computed by deformation
of the contour path in the complex plane inside the stripe S
of analyticity so as to coincide with the integral on the real
x axis [Eq. (2)]. Note that the integral on the left-hand side
of Eq. (3) is not the ordinary (Hermitian) scalar product of
|un(x − x0(εt))〉 and |um(x − x0(εt))〉 when x0(εt) is complex,
indicating that in the non-Hermitian case the eigenfunctions
cease to be orthonormal under the ordinary Hermitian scalar
product.

In the spirit of the adiabatic approximation and neglecting
excitation into the continuum of states, we look for a solution
to Eq. (1) of the form

ψ(x,t) =
N∑

n=1

cn(t)un(x − x0(εt)) exp

[
−i

∫ t

0
dηEn(η)

]

=
N∑

n=1

cn(t)un(x − x0(εt)) exp(−iEnt), (4)

with cn(0) = δn,1. The evolution equations of the complex
amplitudes cn(t) are readily obtained after substitution of
Ansatz (4) into Eq. (1) and using the orthonormal conditions
(3). One has

i
dcn

dt
= εẋ0(εt)

∑
m

κn,mcm exp[i(En − Em)t] (5)

where we have set

κn,m ≡ i

∫ ∞

−∞
dx un(x)

dum

dx
, (6)

and where the dot denotes the derivative with respect to the
argument εt of x0. After integration by parts, from Eq. (6)
it readily follows that the diagonal elements κn,n, which
account for the geometric (Berry) phase, vanish, whereas the
off-diagonal elements are purely imaginary with κn,m = κ∗

m,n.
For a Hermitian shaking (x0 real), norm conservation implies∑

n |cn(t)|2 = 1; however, for the non-Hermitian shaking (x0

complex), conservation of the norm is not ensured, and
unbounded growth or decay of the amplitudes cn could be
observed. In both cases, we say that the system undergoes
adiabatic following provided that |cn(t)|2 � |c1(t)|2 for any
n �= 1 and for unbounded time t . Provided that the energy E1

is spaced from the excited energy level E2 by a sufficient gap,
the QAT ensures that an adiabatic following is met for a time
scale at least of order ∼1/ε, i.e., at least for a few oscillation
cycles of the shaking. However, from the QAT that never can be
said about the evolution of amplitudes cn at longer time scales,
where failure of the adiabatic following could be observed.

B. Two-level model

Here we focus our analysis to the case of two bound states,
i.e., we assume that the potential well sustains two bound
states solely u1(x) (ground state) and u2(x) (excited state),
with energies E1 and E2, or that excitation to higher excited
states is negligible. An example of a potential well sustaining
two bound states and periodically shaken in a complex plane
is discussed in Sec. IV. We also assume harmonic oscillation
at frequency ε by assuming

x0(εt) = −iA1 exp(iεt) + iA2 exp(−iεt) + i(A1 − A2).

(7)

Hermitian shaking is obtained by taking A1 = A2 = A/2,
yielding x0(εt) = A sin(εt). The evolution equations for the
amplitudes c1 and c2 [Eq. (5)] read

i
dc1

dt
= −iε[V1 exp(iεt) + V2 exp(−iεt)]c2 exp(−iω0t),

(8)

i
dc2

dt
= iε[V1 exp(iεt) + V2 exp(−iεt)]c1 exp(iω0t), (9)

where we have set

V1 ≡ κA1 , V2 ≡ κA2 , κ ≡
∫ ∞

−∞
dxu2(x)

du1

dx
, (10)

and ω0 ≡ E2 − E1. After setting

c1(t) = a1(t) exp(−iω0t/2), c2(t) = ia2(t) exp(iω0t/2),

(11)

Eqs. (8) and (9) can be cast in the form

i
da1

dt
= −ω0

2
a1 + εf (εt)a2, (12)

i
da2

dt
= ω0

2
a2 + εf (εt)a1, (13)
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where the modulation function f (εt) is defined by

f (εt) ≡ V1 exp(iεt) + V2 exp(−iεt). (14)

III. NONADIABATIC TRANSITIONS

The two-level equations (12) and (13) with periodic coef-
ficients provide the starting point to demonstrate breakdown
of the adiabatic following for special driving frequencies ε

when the dynamics is observed for time scales longer than
the oscillation cycle ∼1/ε. After setting a(t) = (a1(t),a2(t))T ,
Floquet theory states that the solution to Eqs. (12) and (13)
with the initial condition a(0) = (1,0)T is given by

a(t) = �(t) exp(−iRt)a(0), (15)

where �(t + 2π/ε) = �(t) is a 2 × 2 periodic matrix, with
�(0) = 1, and the two eigenvalues μ1 and μ2 of the Floquet
matrix R define the quasienergies (Floquet exponents). The
quasienergies are unique up to integer multiples than the
oscillation frequency ε. Therefore, quasienergy degeneracy is
attained whenever the difference μ2 − μ1 is an integer multiple
other than ε. A different way to write Eq. (15) is to introduce the
Floquet eigenstates associated to the quasienergies μ1 and μ1.
Indicating by q1 and q2 the eigenvectors ofR corresponding to
the eigenvalues μ1 and μ2, the Floquet eigenstates are defined
by W1(t) = �(t)q1 and W2(t) = �(t)q2. Provided that q1 and
q2 are linearly independent, the solution a(t) can written as
a superposition of Floquet states with coefficients α and β,
namely,

a(t) = αW1(t) exp(−iμ1t) + βW2(t) exp(−iμ2t). (16)

The values of α and β are determined such as to satisfy
the initial condition a(0) = (1,0)T . Note that the Floquet
eigenstates W1(t) and W2(t) are periodic functions of time
with period 2π/ε. Note also that, while Eq. (15) is always a
valid result, Eq. (16) fails to describe the correct dynamics
when the matrix R becomes defective, i.e., at an EP where
both quasienergies and the Floquet eigenstates coalesce.
This singular case can occur for non-Hermitian shaking of
the potential well and is discussed further in the following
Sec. III B.

The quasienergies μ1,μ2 and corresponding Floquet states
can be computed by standard methods; see Appendix A for
technical details. For Hermitian shaking, the quasienergies are
real; however, for non-Hermitian shaking they can become
complex. The appearance of complex quasienergies makes the
dynamics rather trivial, since the Floquet state corresponding
to the quasienergy with the largest imaginary part becomes the
dominant mode after some time. Therefore, here we will limit
to consider the case of non-Hermitian shaking but with real
quasienergies. For the modulation function f (εt) defined by
Eq. (14), it turns out that the quasienergies are real provided
that V1V2 is real (see Appendix A), and the quasienergies
can be chosen to satisfy the condition μ2 = −μ1. Moreover,
for V1V2 �= 0 the dynamics is pseudo-Hermitian, i.e., it can
be reduced to an equivalent Hermitian dynamics with a
sinusoidal shaking of the potential in real space. Therefore
in the following we can limit ourselves to consider the two
different cases: (i) V1 = V2 = A/2 real (Hermitian shaking)
and (ii) V1 = 0.

A. Hermitian shaking: Nonadiabatic transitions
and Rabi flopping at multiphoton resonances

For a sinusoidal shaking of the potential well in real space,
x0(εt) = A sin(εt), one has V1 = V2 = Aκ/2, and breakdown
of adiabatic following for the driven two-level model [Eqs.
(12) and (13)] is observed close to Floquet quasidegeneracies
[37]. In the spirit of the adiabatic limit ε → 0, an approximate
expression of the quasienergies and corresponding Floquet
eigenstates can be obtained by a standard WKB analysis of
Eqs. (12) and (13) (see, for instance, [37,62,63]). This yields

μ1,2 � ∓ ε

2π

∫ 2π/ε

0
dt

√(
ω0

2

)2

+ ε2f 2(εt), (17)

W1(t) � W(WKB)
1 (t)

≡ 1

ω0

(
ω0/2 + λ(εt)

−εf (εt)

)
exp

[
i

∫ t

0
dηλ(εη) + iμ1t

]
,

(18)

W2(t) � W(WKB)
2 (t)

≡ 1

ω0

(
εf (εt)

ω0/2 + λ(εt)

)
exp

[
−i

∫ t

0
dηλ(εη) + iμ2t

]
,

(19)

where we have set λ(εt) ≡
√

(ω0/2)2 + ε2f 2(εt). Note that,
at leading order in ε, apart from a phase factor one has
W(WKB)

1 (t) ≈ (1,O(ε))T , W(WKB)
2 (t) ≈ (O(ε),1)T , and

μ1,2 � ∓ω0

2

(
1 + 2V1V2ε

2

ω2
0

)
+ O(ε4), (20)

i.e., within the limits of validity of the WKB approximation,
W1(t) is level-1 dominant whereas W2(t) is level-2 dominant.
Note that μ1 (μ2) is a decreasing (increasing) function of ε. If
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is observed for even resonances (N even). As ε is continuously
varied to cross the resonance, the Floquet eigenstates in each branch
remain level-1 or level-2 dominant, as shown in the figure. Panel
(b) corresponds to an avoided crossing of quasienergies, which is
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are flipped from level-1 to level-2 dominant (or vice versa).
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the quasienergies μ1 and μ2 are far from being degenerate,
the WKB analysis provides an accurate estimate of the
Floquet eigenstates and, according to Eq. (16), one should
choose α � 1 and β � 0. Therefore, far from quasienergy
degeneracies, adiabatic following is expected for an arbitrarily
long time. A possible breakdown of adiabatic following can
be observed close to quasienergy degeneracies, i.e., when
the difference (μ2 − μ1) is an integer multiple other than ε

(see also the recent study [37]). The values of the oscillation
frequency ε corresponding to (near) quasienergy degeneracy
can be estimated from the WKB form of the Floquet exponents
[Eq. (17)] by imposing

∫ 2π/ε

0
dt

√(
ω0

2

)2

+ ε2f 2(εt) = Nπ, (21)

where N is a (sufficiently large) integer number. Substitution
of Eq. (14) into Eq. (21), at leading order in ε one obtains
the following values ε = εN of oscillation frequencies for

quasienergy degeneracy:

εN � ω0

N

(
1 + 4V1V2

N2

)
. (22)

When the oscillation frequency ε is close to εN , the exact
form of the Floquet eigenstates cannot be predicted by the
WKB analysis, since near the degeneracy point a mixing of
W(WKB)

1 (t) and W(WKB)
2 (t) is possible, and we do not know a

priori what is the right linear combination of W(WKB)
1 (t) and

W(WKB)
2 (t) that gives the exact form of Floquet eigenstates.

However, some general considerations can be drawn by con-
sidering the behavior of the quasienergies μ2 = −μ1 versus
ε near εN . Two cases can be found, which are summarized in
Fig. 2. In the former case, which is observed at even resonances
[Eq. (22) with N even], there is a crossing of quasienergies
corresponding to the exact degeneracy of the quasienergies
at ε = εN (Hermitian degeneracy). Since the behavior of
Floquet eigenstates varies continuously with ε near εN and
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since far from ε = εN the two Floquet eigenstates are level-1
and level-2 dominant states [according to Eqs. (18) and (19)],
there is not any mixing of states (18) and (19), and adiabatic
following is again expected in this case [Fig. 2(a)]. The other
case corresponds to an avoided crossing of quasienergies
[Fig. 2(b)], which is observed at odd resonances εN [Eq. (22)
with N odd]. In this case a mixing of states (18) and (19)
near ε = εN is necessary to ensure continuous change of
the Floquet eigenstates, from dominant level 1 to dominant
level 2, in each quasienergy branch, as schematically shown
in Fig. 2(b). The exact Floquet eigenstates near ε � εN are
thus given by linear combinations W1(t) = γ11W(WKB)

1 (t) +
γ12W(WKB)

2 (t) and W2(t) = γ21W(WKB)
1 (t) + γ22W(WKB)

2 (t) of
WKB eigenstates with suitable γi,j coefficients, which rapidly
change as the avoided crossing point is swept. As a result,
the exact Floquet eigenstates near the quasidegeneracy point
are neither level-1 nor level-2 dominated. In particular, for
γ11 = γ12 = γ21 = 1/

√
2, a γ22 = −1/

√
2 full mixing of level

occupation is obtained, and in Eq. (16) one has to assume
α � β � 1/

√
2 to satisfy the initial condition. The evolution

of amplitudes a1(t) and a2(t) is governed by the interference of
the two Floquet eigenstates with phase mismatch (μ2 − μ1)t .
Owing to the nonvanishing separation 2� of quasienergies
at the avoided level crossing [Fig. 2(b)], the phase mismatch
leads to alternating in-phase and out-of-phase superposition of
the exact Floquet eigenstates, corresponding to Rabi flopping
between levels 1 and 2 at the Rabi frequency �R = π/�.

Figure 3(a) shows, as an example, the numerically com-
puted behavior of the quasienergies versus normalized os-
cillation frequency ε/ω0 for V1 = V2 = 0.5, clearly showing
Hermitian degeneracy and avoided crossing at even and

odd resonances, respectively. The rapid change of Floquet
eigenstates, from dominant level 1 to dominant level 2, near
the odd resonances (avoided crossing) is shown in Fig. 3(b),
which depicts the behavior of the unbalance factor θ versus
ε/ω0. The unbalance factor is defined as

θ = |max|An| − max|Bn||, (23)

where An and Bn are the Fourier components of either one of
the Floquet eigenstates W1(t) or W2(t) (see Appendix A). A
value of θ close to 1 means that the Floquet eigenstates are
level-1 and level-2 dominant, according to the WKB analysis.
On the other hand, a value of θ close to zero means that
the occupation of the two levels in the Floquet eigenstates is
balanced. An inspection of Fig. 3(b) clearly shows that, far
from the odd resonances N = 3,5,7,..., θ is almost close to 1
(at least for large N ), indicating that the Floquet eigenstates are
either level-1 or level-2 dominant and well approximated by
W(WKB)

1,2 (t). Conversely, close to the odd resonances abrupt and
very narrow drops of θ to zero are observed, indicating that
at the avoided quasienergy crossing the Floquet eigenstates
equally populate the two levels. Figure 4 shows typical
examples of the two-level dynamics in the time domain for
an oscillation frequency that spans either an odd resonance
[N = 5, Fig. 4(a)] or an even resonance [Fig. 4(b), N = 4]. The
results are obtained by numerical simulations of the two-level
equations (12) and (13) using an accurate fourth-order Runge-
Kutta method with variable step, for a modulation function
f (t) = 2V cos(εt) with V = 0.5 and with the initial condition
a1(0) = 1, a2(0) = 0. Note that in the latter case [Fig. 4(b),
even resonance] the system remains almost in the initial
level for extremely long times, i.e., an adiabatic following

FIG. 4. Numerically computed evolution of the level occupation probabilities |a1(t)|2 and |a2(t)|2 for the reduced two-level model [Eqs. (12)
and (13)] and for a sinusoidal shaking f (εt) = 2V cos(εt) with amplitude V = 0.5. At initial time the particle occupies level 1. Panels in (a)
show the dynamical behavior when the oscillation frequency ε spans the N = 5 resonance, corresponding to avoided crossing of quasienergies,
whereas panels in (b) show the dynamical behavior when ε spans the N = 4 resonance (Hermitian degeneracy). In the former case failure of
the QAT is clearly observed owing to the appearance of Rabi oscillations. In the left and central panels of (a) the Rabi oscillations are detuned,
whereas in the right panel they are at resonance. The frequency of Rabi oscillations at resonance turns out to be �R � 2.14 × 10−4ω0, which
is in agreement with the result �R = π/� predicted by Floquet theory, where 2� is the separation of the quasienergies at the avoided level
crossing for the N = 5 resonance [see the inset in Fig. 3(a)].
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is observed well beyond the time scale 1/ε. Conversely, for an
odd resonance [Fig. 4(a)] nonadiabatic transitions are clearly
observed in the form of Rabi oscillations between levels 1
and 2 when the oscillation frequency ε crosses the resonance
frequency εN . The frequency of Rabi oscillations observed
in the numerical simulations turns out to be in excellent
agreement with the theoretical value �R = π/� predicted
by the Floquet analysis, where 2� is the separation of the
quasienergies at the avoided level crossing. From a physical
viewpoint, breakdown of the QAT for the Hermitian shaking of
the potential well can be explained as a result of a multiphoton
absorption process, from the ground state E1 to the excited
state E2, yielding multiphoton Rabi oscillations between the
two levels [38–40]. A similar phenomenon has been predicted
for a periodically driven two-level model in Ref. [37] and
suggested to be a rather universal phenomenon of periodically
and slowly changing Hermitian Hamiltonians.

B. Non-Hermitian shaking: Nonadiabatic transitions
near Floquet exceptional points

Let us consider a non-Hermitian shaking of the potential
well corresponding to V1 = 0. Such a case is obtained by
assuming the oscillation path x0(εt) = A − A exp(−iεt), i.e.,
A1 = 0 and A2 = iA in Eq. (7), yielding V1 = 0 and V2 =
iκA. In this case it can be shown (see Appendix B) that the
exact quasienergies are given by

μ1 = −ω0

2
, μ2 = ω0

2
, (24)

so that the exact quasi-energy-level crossing (μ2 − μ1 = Nε)
is found at the resonance frequencies ε = εN with

εN = ω0

N
. (25)

For ε far from any odd resonance, the Floquet eigenstates
are linear independent, with W1(t) and W2(t) being level-1
and level-2 dominant, respectively. However, as ε approaches
an odd resonance, i.e., ε → ω0/(2N − 1), the coalescence
of quasienergies is associated to a simultaneous coalescence
of Floquet eigenstate, with W1(t) showing a rather abrupt
change and becoming level-2 dominant like W2 (see Appendix
B). This means that, at an odd resonance ε = ε2N−1, the
non-Hermitian periodic two-level Hamiltonian, defined by
Eqs. (12) and (13), shows a Floquet EP. Here we wish to show
how the appearance of an EP breaks the QAT. To this aim, let us
first notice that the evolution of the amplitudes a1(t) and a2(t),
as described by Eq. (15), can be mapped into an equivalent
evolution of a non-Hermitian time-independent Hamiltonian
at discretized times t = 0,Tε,2Tε,3Tε,..., where Tε = 2π/ε is
the oscillation period. In fact, at t = nTε (n = 0,1,2,3,...) from
Eq. (15) one has

a(nTε) = exp(−iRnTε)a(0), (26)

where we used the property �(nTε) = 1. The exponential
matrix exp(−iRnTε) on the right-hand side of Eq. (26)
can be viewed as the propagator, over a time nTε , of the
time-independent Hamiltonian R, i.e., Eq. (26) can be viewed
as the solution to the Schrödinger equation

i
da
dt

= Ra(t). (27)

At an EP, the Floquet matrix R is defective, i.e., the two
eigenvalues of R (quasienergies) and corresponding eigenvec-
tors coalesce [51]. As discussed in Appendix B, the (unique)
eigenvector q2, satisfying the equation Rq2 = (ω0/2)q2,
corresponds to a level-2 dominant Floquet eigenstate, i.e.,
q2 ≈ (0,1)T . An associated (or generalized) eigenvector Q2 of

FIG. 5. (a) Breakdown of the QAT near an EP for the two-level model Eqs. (12) and (13) and for the non-Hermitian shaking f (εt) =
iV exp(−iεt), with amplitude V = 0.5. The four panels show the numerically computed evolution of |a1(t)|2 and |a2(t)|2 for a set of oscillation
frequencies close to the n = 5 odd resonance, clearly showing breakdown of adiabatic following as the EP ε = ω0/n is approached. The initial
condition is a1(0) = 1 and a2(0) = 0. (b) Same as (a), but for the initial conditions a1(0) = 0 and a2(0) = 1.
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the defective matrix R can be then introduced [51] by solving
the matrix equation (

R − ω0

2

)
Q2 = q2. (28)

The associated eigenvector Q2 corresponds to level-1 dom-
inant state, i.e., Q2 ≈ (1,0)T . The most general solution to
Eq. (27) is given by

a(t) = [(−iγ t + δ)q2 + γ Q2] exp(−iω0t/2), (29)

as one can readily check by direct calculations. The constants γ

and δ are determined by the initial condition a(0) = (1,0)T ≈
Q2, i.e., γ ≈ 1 and δ ≈ 0. Equation (29) clearly shows that, at
long times, a(t) is dominated by the secularly growing term
∼−itq2, and thus level E2 becomes more occupied than level
E1, indicating breakdown of the QAT. Figure 5(a) shows,
as an example, breakdown of the QAT for non-Hermitian
shaking near an EP as obtained by numerical simulations of the
two-level equations (12) and (13) for a modulation function
f (εt) = iV exp(−iεt), corresponding to the non-Hermitian
shaking x0(εt) = A − A exp(−iεt) of the potential well with
V = κA. The above analysis also indicates that, if the system
is initially prepared in level 2 (rather than in level 1), i.e., for
a1(0) = 0 and a2(0) = 1, level 2 remains the dominant one
in the dynamics and nonadiabatic transitions are prevented;
in fact, with such an initial condition one should take in
γ ≈ 0 and δ ≈ 1 in Eq. (29), so that |a1(t)/a2(t)|2 remains
small for growing time t . This behavior is confirmed by
direct numerical simulations, as shown in Fig. 5(b). Such
an asymmetric behavior, i.e., the appearance of nonadiabatic
transitions for the system initially prepared in one of the
two levels but not in the other one, is a peculiar feature of
non-Hermitian dynamics without any counterpart in Hermitian
systems [44,45,49,50]. From a physical viewpoint, asymmetric
breakdown of the QAT can be explained by observing that
the modulation (coupling) function f (εt) = iV exp(−iεt)
has a one-sided Fourier spectrum, i.e., it is composed by
negative-frequency components solely, so that it can induce
only “upward” transitions, i.e., transitions to higher energy
levels [64,65]. Therefore, while a multiphoton transition from
the ground level E1 to the excited level E2 is allowed, transition
from level E2 to level E1 is forbidden for non-Hermitian
shaking.

IV. AN EXAMPLE: PERIODICALLY SHAKEN
DOUBLE-WELL POTENTIAL

As an illustrative example, we consider a periodically
shaken double-well potential sustaining two bound states
solely with energies E1 = −σ 2

1 (ground state) and E2 =
−σ 2

2 (excited state), spaced by the energy ω0 = σ 2
1 − σ 2

2 ;
see Fig. 1(b). The potential well can be synthesized by
supersymmetric quantum mechanics and reads explicitly
[66]

V (x) = −2ω0
[
σ 2

1 cosh2(σ2x) + σ 2
2 sinh2(σ1x)

]
[σ2 sinh(σ1x) sinh(σ2x) − σ1 cosh(σ1x) cosh(σ2x)]2 .

(30)

The eigenfunctions u1(x) and u2(x), corresponding to the
energies E1 = −σ 2

1 and E2 = −σ 2
2 , are given by

u1(x) = N1

−σ1 cosh(σ1x) + σ2 tanh(σ2x) sinh(σ1x)
, (31)

u2(x) = N2 sinh(σ1x)

σ2 sinh(σ1x) sinh(σ2x) − σ1 cosh(σ1x) cosh(σ2x)
,

(32)

where N1 and N2 are normalization constants. We checked
breakdown of adiabaticity for either Hermitian and non-
Hermitian periodic shaking of the double-well potential by
numerical integration of the Schrödinger equation (1) using
a standard pseudospectral split-step method for parameter
values σ2 = √

2 and σ1 = √
3. The oscillation frequency ε was

chosen close to the third-order resonance ε � ω0/3 = 1/3.
At initial time the wave function ψ(x,0) is set equal to the
ground-level eigenfunction u1(x), and the evolution of the
occupation level amplitudes

a1(t) =
∫

dxu1(x − x0(εt))ψ(x,t)dx,

(33)
a2(t) =

∫
dxu2(x − x0(εt))ψ(x,t)dx,

are computed up to the long time scale t ≈ 7 × 104. Figure 6(a)
shows the numerical results corresponding to the Hermitian
shaking x0(εt) = A sin(εt) with A = 1, clearly showing break-
down of the QAT owing to multiphoton Rabi oscillations. Note
that during the dynamics most of the excitation remains in
either level 1 or level 2, excitation to the continuum of states
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FIG. 6. Behavior of |a1(t)|2 and |a2(t)|2 for the periodically
shaken double-well potential of Fig. 1(b) as obtained by numerical
integration of the Schrödinger equation (1) using a pseudospectral
split-step method. Integration domain: −8 < x < 8, space discretiza-
tion dx = 0.0627, time discretization dt = 0.01. (a) Sinusoidal Her-
mitian shaking x0(εt) = sin(εt), (b) non-Hermitian shaking f (εt) =
0.6 − 0.6 exp(−iεt). Oscillation frequencies are set close to the
three-photon resonance ε � ω0/3 = 1/3.
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(ionization) being negligible. Such a result justifies the approx-
imation made in Sec. II to neglect the continuum of states and
the consider a two-level model. Breakdown of the QAT for the
non-Hermitian shaking x0(εt) = A − A exp(−iεt) is shown
in Fig. 6(b) for an oscillation amplitude A = 0.6. Note that a
secular growth of amplitude a2(t) is observed at the oscillation
frequency ε = 0.3359, which is the signature of the Floquet
EP. This value of ε turns out to be slightly detuned from the
one predicted by the theoretical analysis ε = 1/3, probably
due to a slight deviation of the energy-level separation of the
potential well from the theoretical one ω0 = 1 arising from
space-time discretization of the Schrödinger equation in the
numerical analysis.

V. APPLICATION OF NON-HERMITIAN SHAKING
TO PERTURBATIVE MODE SELECTION

As a simple physical application of non-Hermitian shaking
and breakdown of the adiabatic theorem arising from a
Floquet EP, we briefly discuss light mode selection in an
optical directional coupler, made of two evanescently coupled
straight optical waveguides, induced by a perturbative periodic
longitudinal modulation of complex refractive index. Coupled
optical waveguide structures, including the optical directional
coupler system, have been often used to emulate in photonics a
wealth of quantum phenomena in the matter [59,67–69]. Here
we focus on mode selection in a directional coupler [59,69];
however, our simple model could be applied to realize mode
selection in other effective two-level systems, such as in two
coupled optical microrings with temporal modulation of their
complex resonance frequencies.

Indicating by b1(z) and b2(z) the amplitudes of light waves
trapped in the two waveguide modes, evolution of the light field
along the longitudinal propagation direction z of the coupler
is governed by coupled-mode equations [59,68,69]

i
db1

dz
= −κeb2 + εf (z)b1, (34)

i
db2

dz
= −κeb1 − εf (z)b2, (35)

where κe is the coupling constant between waveguide modes
due to evanescent coupling and εf (εz) describes a small and
slowly-varying change, along the longitudinal propagation
distance z, of the effective mode index (real and imaginary
parts) in the two waveguides. Here ε is a dimensionless
parameter that measures the smallness of the change of the
effective mode index as compared to the unperturbed one in the
waveguides. The real part of εf (εz) describes a change of
the effective propagation constant arising from a modulation
of the real part of the refractive index, whereas the imaginary
part of εf (εz) accounts for amplification or attenuation of
the optical field due to optical gain or loss. Note that the
modulation of the effective mode index is assumed antisym-
metric in the two waveguides. Antisymmetric and periodic
variation of the real part of the effective refractive index in
the coupler, i.e., of the real part of εf (εz), can be obtained
by suitable periodic bending of the waveguide axis [59,70],
whereas optical loss and gain controlling the imaginary part

of εf (εz) can be provided by selective optical absorption and
optical gain in the structure.

To study the evolution of the light beam in the directional
coupler, it is worth projecting the dynamics into the symmetric
(S) and antisymmetric (A) supermodes of the coupler via the
transformation

a1(z) = b1(z) + b2(z)√
2

, a2(z) = b1(z) − b2(z)√
2

. (36)

The amplitudes a1 and a2 of S and A supermodes thus satisfy
the coupled-mode equations

i
da1

dz
= −κea1 + εf (εz)a2, (37)

i
da2

dz
= κea2 + εf (εz)a1. (38)

Note that, after the formal substitution z → t and κe → ω0/2,
Eqs. (37) and (38) are formally equivalent to the two-level
equations (12) and (13) of the periodically shaken quantum
potential in complex plane. Therefore, assuming a non-
Hermitian modulation of the form (14) with V1 = 0, according
to the results of Fig. 5 at a Floquet EP the dominant mode is the
A mode (level 2). This means that, regardless of the initial light
excitation of the coupler, the small (perturbative) modulation
of the complex refractive index along the propagation direction
enforces the antisymmetric mode. Non-Hermitian shaking at a
Floquet EP thus provides a means to realize perturbative mode
selection in the coupler.

VI. CONCLUSIONS

The quantum adiabatic theorem is a cornerstone in quantum
physics, which finds important applications in different areas
of quantum physics. In its simplest version, it states that
a quantum system, initially prepared in the ground state,
evolves, remaining in the instantaneous ground state when
the Hamiltonian is slowly changed in time [Ĥ = Ĥ (εt) with
ε → 0], provided that the instantaneous ground energy level
remains separated from the other energy levels by a finite gap.
However, such a prediction holds when the system is observed
up to a log time scale of order ∼1/ε. At longer time scales,
nonadiabatic transitions can be observed, especially when the
Hamiltonian contains oscillating terms [28,37]. Breakdown of
adiabatic evolution is even more striking when the Hamiltonian
is described by a non-Hermitian operator [44,45,49,50], which
can be experimentally realized in electromagnetic, electronic,
and optical systems [50,69,71–78]. In this work we have
shown that breakdown of adiabatic evolution can arise in a
renowned model of quantum physics, namely, in a periodically
shaken double-well potential [56]. In an ordinary Hermitian
model, periodic shaking occurs in real space and can be
exploited to either suppress or enhance quantum tunneling
[56]. Here we extended the oscillation of the potential well
into the complex plane, i.e., we considered a time-dependent
potential V (x,t) = V (x − x0(t)) with a spatial displacement
x0(t) in either real space (Hermitian shaking, x0 real) or in
complex space (non-Hermitian shaking, x0 complex). We have
shown that for both Hermitian and non-Hermitian shaking
of the potential well, breakdown of the QAT is observed for
long observation times whenever the oscillation frequency ε
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is tuned close to an odd resonance. However, the physical
mechanism underlying nonadiabatic transitions is very distinct
in the two cases. For the Hermitian shaking, nonadiabatic
transitions arise from a multiphoton resonance process near
avoided crossings of quasienergies and lead to Rabi flopping
between the two levels, with a mechanics similar to the one
recently investigated in Ref. [37]. On the other hand, for
the complex oscillating potential, breakdown of the adiabatic
theorem is rooted in the appearance of a Floquet EP, i.e.,
a singular regime where coalescence of both quasienergies
and Floquet eigenstates occurs. Our results shed important
physical insight into the long-time behavior of oscillating
Hamiltonians. In particular, they show how breakdown of
adiabatic evolution in non-Hermitian oscillating Hamiltonians
can arise from the appearance of Floquet exceptional points,
i.e., from the coalescence of both quasienergies and Floquet
eigenstates, rather than from the most commonly avoided
crossing of quasienergies, such as in Hermitian oscillating
Hamiltonians.

APPENDIX A: GENERAL PROPERTIES OF
QUASIENERGIES AND FLOQUET EIGENSTATES

The Floquet eigenstates and corresponding quasienergies
can be found by looking for a solution to Eqs. (12) and (13) of
the form(

a1(t)
a2(t)

)
= exp(−iμt)

∞∑
n=−∞

(
An

Bn

)
exp(−inεt), (A1)

with An,Bn → 0 as |n| → ∞. Substitution of Ansatz (A1)
into Eqs. (12) and (13) and using Eq. (14) yields the following
hierarchical equations for the Fourier coefficients An and Bn:(

μ + nε + ω0

2

)
An = ε(V1Bn+1 + V2Bn−1), (A2)(

μ + nε − ω0

2

)
Bn = ε(V1An+1 + V2An−1). (A3)

The quasienergies μ can be viewed as the eigenvalues of
an infinitely extended matrix. In practice, one truncates the
index |n| up to some large enough value N , i.e., one assumes
n = −N,...,N with An = Bn � 0 for |n| > N , and calculates
numerically μ as an eigenvalue of a (2N + 1) × (2N + 1)
matrix. Since μ is defined apart from integer multiples other
than ε and given the form of the hierarchical equations (A2)
and (A3), there are no more than two distinct values of
quasienergies, as it should be. Let us now prove two properties
of the quasienergies and Floquet eigenstates.

1. An, Bn decay as |n| → ∞ faster than exponential.
Such a property readily follows by considering the asymptotic
behavior of Eqs. (A1) and (A2) for large |n|, which yields the
following recurrence relation for An:(

V 2
1 An+1 + V 2

2 An−2
)
/n2 � An, (A4)

and a similar one for Bn. Such a recurrence relation shows
that |An| decays toward zero like ≈ (1/n!)2 as |n| → ∞. The
same holds for Bn.

2. If V1V2 is a real and nonvanishing number, then the
quasienergies μ1 and μ2 are real and can be chosen to
satisfy the condition μ2 = −μ1. In fact, if V1V2 is a real

and nonvanishing number, we can set V1 = |V1| exp(iφ),
V2 = |V2| exp(−iφ), with φ real and |V1,2| > 0. Let us make
the substitution

An = αn exp(iθn) , Bn = βn exp(iθn), (A5)

where the complex angle θ is defined by the relation

exp(iθ ) =
√

|V2|
|V1| exp(−iφ). (A6)

Note that since An,Bn decay faster than an exponential as
|n| → ∞, the same decay behavior holds for the amplitudes
αn,βn, even though the imaginary part of θ is nonvanishing.
After substitution of Eq. (A5) into Eqs. (A2) and (A3), one
obtains (

μ + nε + ω0

2

)
αn = ε�(βn+1 + βn−1), (A7)(

μ + nε − ω0

2

)
βn = ε�(αn+1 + αn−1), (A8)

where we have set � ≡ √|V1V2|. In their present form,
Eqs. (A7) and (A8) can be viewed as the hierarchical equations
associated to the two-level equations (12) and (13) with the si-
nusoidal modulation function f (εt) = 2� cos(εt). Therefore,
since the problem is a Hermitian one, the quasienergies μ1

and μ2 should be real. Moreover, since f (−εt) = f (εt), it
follows that μ2 = −μ1. In fact, if W1(t) = (u(t),v(t))T is a
Floquet eigenstate with quasienergy μ1 for the modulation
function f (εt) = 2� cos(εt), then it readily follows that
W2(t) = (v(−t), − u(−t))T is a Floquet eigenstate as well
with quasienergy μ2 = −μ1.

Property 2 stated above shows that for a non-Hermitian
shaking of the potential well with V1V2 a real and nonvanishing
number, the quasienergy spectrum is real despite the non-
Hermitian nature of the shaking [the potential V (x,t) =
V (x − x0(εt)) is complex]. In this case the problem can be
mapped mutatis mutandis to the Hermitian problem of the
oscillating potential well in real space with a sinusoidal spatial
displacement of appropriate amplitude. The non-Hermitian
nature of the problem is accounted for by the renormalization
of the Fourier amplitudes of the Floquet eigenstates according
to Eq. (A5).

APPENDIX B: NON-HERMITIAN SHAKING
AND FLOQUET EXCEPTIONAL POINTS

Let us consider a non-Hermitian shaking with V1 = 0 and
V2 �= 0; however a similar analysis could be done by taking
V1 �= 0 and V2 = 0. For V1 = 0, the quasienergies μ and
corresponding Fourier components of Floquet eigenstates can
be readily calculated in a closed form from the hierarchical
equations (A2) and (A3).

The first quasienergy is given by μ1 = −ω0/2, and the
Fourier components of the corresponding Floquet eigenstate
W1(t) read

An =

⎧⎪⎨
⎪⎩

N1 n = 0
εV 2

2
n(−ω0+nε−ε)An−2 n = 2,4,6,...

0 otherwise

, (B1)
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Bn =
{

n+1
V2

An+1 n = 1,3,5,...

0 otherwise
, (B2)

where N1 is a normalization constant.
The second quasienergy is given by μ2 = ω0/2 with cor-

responding Floquet eigenstate W2(t) with Fourier coefficients
given by

Bn =
⎧⎨
⎩

N2 n = 0
εV 2

2
n(ω0+nε−ε)Bn−2 n = 2,4,6,...

0 otherwise
, (B3)

An =
{

n+1
V2

Bn+1 n = 1,3,5,...

0 otherwise
, (B4)

where N2 is a normalization constant. An inspection of
Eqs. (B3) and (B4) clearly shows that W2(t) is level-2
dominant for a small value of ε, with W2(t) � (0,1)T + O(ε).
Similarly, from Eqs. (B1) and (B2) it follows that W1(t) is
level-1 dominant, i.e., W1(t) � (1,0)T + O(ε), provided that
ω0 is sufficiently far from ε(n − 1) for any n = 2,4,6,....
In fact, as ε approaches an odd resonance, let us say

ω0 � (2N − 1)ε, the denominator in the fraction on the
right-hand side of Eq. (B1) becomes extremely large (singular)
for n = 2N , so that the Fourier amplitudes A2N , B2N−1

become the dominant terms in the Fourier series. To avoid
the singularity, the constant N1 should assume an extremely
small value. Taking into account that

B2N−1

A2N

� ω0

εV2
≈ 1/O(ε), (B5)

it follows that the dominant Fourier coefficient of W1(t)
near an odd resonance is B2N−1, i.e., W1(t) becomes level-2
dominant (like W2). Moreover, it can be readily shown
that close to an odd resonance the two linearly independent
solutions to Eqs. (12) and (13), namely, W1(t) exp(iω0t/2)
and W2(t) exp(−iω0t/2), become equal (parallel) to each
other and level-2 dominant. This is a clear signature that
ε = εN = ω0/(2N − 1) is a Floquet exceptional point, i.e., a
coalescence of both quasienergies and corresponding Floquet
eigenstates occur. In terms of the 2 × 2 Floquet matrix R
entering in Eq. (15), this means that the eigenvalues and
corresponding eigenvectors of R coalesce, i.e., that the matrix
R is defective.
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