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Disorder-induced localization of excitability in an array of coupled lasers
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We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers
with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable
waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers.
The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices
of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks,
neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics
of neuronal cell populations.
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I. INTRODUCTION

The localization of waves in disordered systems is a fasci-
nating phenomenon which can occur in many fields of physics.
In a seminal paper published in 1958 [1], Anderson showed
that electron transport in an atomic lattice can be inhibited in
the presence of a sufficient amount of disorder, leading to an
exponential localization of the electronic wave functions with
a consequent transition of the system from metallic to insulator
behavior. This phenomenon, differing substantially from the
trivial localization due to a deep potential well, was shown to be
related to a constructive quantum interference of the electronic
wave functions induced by the scattering from the random
impurities, and was later called Anderson localization in the
literature. Localization can be induced either by disorder on
the atomic site energy or by randomness affecting the hopping
integrals between different lattice sites. The first case is the
one originally considered by Anderson, and is referred to as
diagonal localization, while the second case corresponds to
so-called out-of-diagonal localization [2]. Disorder-induced
localization has been studied deeply in solid state physics both
theoretically and experimentally [3] but also in many other
physical systems such as microwaves [4], ultrasounds [5],
Bose-Einstein condensates [6], and light [7]. The signature
of the localization of photons was first identified in pioneering
works such as Refs. [8,9]. Later [10], it was shown that light
traveling in a disordered two-dimensional photonic lattice can
experience a transition from a transport regime to a localized
one depending on the amount of randomness introduced in
the system. Subsequent experiments on waveguide arrays
have demonstrated that out-of-diagonal disorder can induce
localization also in optical systems [11] and investigated the
role of nonlinearity in the localization dynamics [12]. Despite
the huge amount of literature devoted to the study of Anderson
localization and to the fascinating field of disordered photonics
[13], to the best of our knowledge, localization phenomena
have yet to be studied in lattices of coupled excitable optical
systems. In such systems, beside having an interest on their
own, they could constitute an important ingredient for the
emulation and understanding of similar phenomena occurring
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in populations of neurons. Excitability is a phenomenon that
takes place when a dynamical system originally at a stationary
state undergoes an all-or-nothing big excursion in phase space,
after being triggered by a strong enough perturbation with at
least one of its dynamical variable producing a spikelike pulse
and subsequently relaxing back to equilibrium, until a new per-
turbation excites the process again. Although the most familiar
example of excitable behavior is probably neuron cell activity
[14,15], excitability has been diffusely studied in optics and,
in particular, in laser systems, too [16–23]. Understanding the
collective behavior and the dynamical properties of coupled
excitable optical elements has inspired growing interest in
recent years [24–28]. A well-known example of an excitable
optical system is a semiconductor laser with an intracavity
saturable absorber [16]. In this case, the laser is kept in the
off solution but relatively close to threshold. Additive noise
in the system provided by spontaneous emission or by some
external perturbations can trigger the stimulated emission
process, leading to a sudden gain depletion accompanied
by the generation of a huge, spikelike, light pulse. After a
so-called refractory time, related to the regeneration of the
population inversion, the laser is ready to be excited again. We
have recently shown that temporal and intensity dynamics in
an array of coupled semiconductor lasers with an intracavity
saturable absorber can cooperatively exhibit synchronization,
when the coupling strength is large enough [28]. Indeed, in
this strong-coupling regime, excitable waves can propagate
through the array, leading to the synchronous behavior of
the nonlinear oscillators. In this Rapid Communication we
study numerically the effect of out-of-diagonal disorder in a
one-dimensional array of coupled semiconductor lasers with
a saturable absorber operating in the excitable regime. We
demonstrate that when the amount of disorder exceeds a
critical threshold, excitable waves cannot propagate freely in
the lattice and excitability becomes exponentially localized in
space.

II. THE MODEL

We consider a one-dimensional lattice where the lattice
site is defined by a semiconductor laser with a saturable
absorber described by the Yamada model [16,29]; each laser
is then coupled locally to its nearest neighbors. The coupling
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considered here is a lossy one and corresponds physically to a
nondelayed mutual injection between nearest-neighbor lasers,
resulting in an effective discrete Laplacian operator which
describes field diffusion across the array. For a population of
n coupled lasers the dynamics of the ith oscillator is described
by the following coupled nonlinear equations [28],

Ḟi = 1

2
(Gi − Qi − 1)Fi + σi + Ki,i+1

2
Fi+1 + Ki,i−1

2
Fi−1

−
(

Ki,i−1

2
+ Ki,i+1

2

)
Fi,

Ġi = γi(Ai − Gi − IiGi),

Q̇i = γi(Bi − Qi − aiQiIi), (1)

where the time-dependent dynamical variables describing the
ith laser are the complex electric field amplitude Fi , the
inversion Gi , and the absorption Qi . Ii = |Fi |2 is the ith
laser field intensity, σi is a delta-correlated complex Gaussian
additive noise term with 〈σi(t1)σj (t2)〉 = √

2Dδ(t1 − t2)δij , γi

is the absorber and gain decay rate, Ai is the bias current of the
gain, ai the differential absorption relative to the differential
gain, and Bi the background absorption. The dot denotes a
temporal derivative. Ki,i±1 describes local coupling between
first neighbor lasers scaled to the intensity damping rate of the
single uncoupled laser. Note that throughout the study only the
case of reciprocal couplings Ki,i+1 = Ki+1,i ∀i, is considered.
We have chosen the following parameters values, Ai = 6.5,
Bi = 5.8, ai = 1.8, and γi = 10−3, ∀i; the noise strength D has
been kept constant across all the array and periodic boundary
conditions have been assumed. Disorder has been introduced
into the system by letting the coupling Ki,i±1 vary randomly
from laser to laser following a uniform distribution. In
particular, we write Ki,i±1 = K0 + ρi,i±1, with K0 an average
coupling and ρi±1 a random number constant in time drawn
from a uniform distribution in the interval [−r, + r] with
ρi,i+1 �= ρi,i−1 in general. In a solid-state physics analogy, this
choice would correspond to a randomization of the hopping
probability between neighbor sites of the atomic lattice.

III. DIFFUSIVE REGIME

In the absence of disorder in the coupling constants,
the coupling term reduces to the Laplace discrete diffusion
operator K0/2(Fi+1 + Fi−1 − 2Fi). In the strong-coupling
regime, if without loss of generality we add noisy perturbations
only to the central element of the array, when a sufficiently
large perturbation is able to initiate the stimulated process,
the laser will emit a giant pulse. Its energy is fed from the
central laser to the two closest neighbors, which will also be
able to “fire”, generating the corresponding spikelike pulses.
The process repeats and a wave of excitability propagates
through the array. This is the diffusive, or ballistic, regime and
constitutes the starting point for the localization phenomena
(see Fig. 1). In this strong-coupling regime the lasers are
synchronized in time: Qualitatively, the temporal interval
within which all the lasers emit a pulse is much shorter than
the single laser refractory time. Furthermore, the phases of the
lasers appear to be locked or partially locked for a significant
amount of time, as shown in Fig. 1(b).

FIG. 1. The spatiotemporal dynamics corresponding to the diffu-
sive regime: The excitability wave emanates from the center of the
array where the intensity noise is added. Field intensity is plotted vs
laser (x axis) and time (y axis) in (a), while in (b) the corresponding
phase evolution is shown, demonstrating a substantial locking among
the lasers during the firing events. Parameters used are D = 0.1 and
Ki,i±1 = K0 = 0.1 ∀i.

IV. LOCALIZED REGIME

In the presence of disordered coupling terms in the array,
when the excitability wave propagates, the left-right asymme-
try induced by the randomness in the values of one laser’s
closest neighbor couplings leads to a preferential propagation
direction of the wave, making one neighbor laser more likely
to fire than the other one. This fact can lead ultimately to a
multiple backscattering of the electric field with a consequent
inhibition of wave propagation, and it results in an exponential
localization of excitable behavior across the system if the
strength of the randomness r is larger than a given threshold.

In Fig. 2(a) we have depicted an example of spatiotemporal
dynamics for the coupled lasers in a localized regime.
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FIG. 2. In the presence of disorder, the excitable behavior of the
laser array is localized as the spatiotemporal dynamics depicted in
(a) shows. The average intensity across the array averaged over the
“firing events” of 150 multiple realizations of disorder in the coupled
lasers’ system is fitted by an exponential function [dashed red line in
(b)]. Parameters used are r = 0.4, D = 0.1, and K0 = 0.5; n = 150
coupled lasers have been considered. We excluded from the fit the
central laser as well as its three nearest neighbors on each side.

A substantial localization of the excitable behavior of the
system takes place.

In order to characterize quantitatively the localization we
have defined a “firing event” as a small time window located
around the interval of time when the coupled lasers generate
an excitable wave. Within the firing event temporal window
we have recorded the maximum intensity emitted by each
laser and averaged it over all firing events occurring during
one simulation. After averaging the intensity distribution over
many different realizations of the disorder in the system (i.e.,
different draws of the Ki,i±1’s for fixed r), we have then fitted
the tails of such a resulting averaged intensity distribution with
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FIG. 3. The phase transition from a diffusive to localized regime
is illustrated by plotting the average localization exponent 〈α〉 and
relative standard deviation vs the randomness strength r , for laser
chains having different numbers of elements n (see legend). The
amount of randomness necessary to achieve localization decreases by
increasing the lattice size. Each point has been calculated averaging
over five values of α obtained from 150 different realizations of
disorder with the same strength r . The remaining parameters used are
the same as in Fig. 2.

an exponential function [see Fig. 2(b)]

f = b + exp (−α|i − i0|), (2)

where i0 is the position of the central laser. Repeating the
above-mentioned procedure for five times allows one to obtain
an average localization exponent 〈α〉 and a relative standard
deviation. The localization length can be hence defined as
the inverse of 〈α〉. Note that the method used is reliable
and takes into account the fluctuations in the height of the
different spikes emitted. Indeed, although in a single firing
event some lasers may emit higher spikes than others, lasers
that emit the most intense pulses change randomly (within the
localization length) in successive firing events and in different
realizations of the disorder, hence the average is justified.
The dip in the average intensity [Fig. 2(b)] is due to a pulse
reshaping dynamics: When the central laser fires, its pulse
is rather noisy, as one could expect from an additive noise
injection. As the pulse propagates outwards along the array,
its shape changes, giving rise to higher pulses on the three
nearest-neighboring lasers and then settling on a constant
height afterwards, when a steady-state regime is attained.
This occurs both in the diffusive and in the localized regime,
and explains the presence of the dip in the data. Further
details about such a collective pulse reshaping mechanism
will be published elsewhere. In Fig. 3 the average localization
exponent 〈α〉 has been plotted versus the amount of disorder
r for chains having different numbers of lasers n. Figure 3
shows that the system undergoes a transition from diffusive to
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FIG. 4. The average localization exponent dependence on the
noise strength D for n = 150 coupled lasers. Each point, and relative
standard deviation, is the result of an average of over 20 different
values of 〈α〉, each one obtained through 150 realizations of the
disorder and with the same value of D. Parameters used are K0 = 0.5
and r = 0.4.

localized dynamics for r > rc, where rc ≈ 0.3 is the critical
point which depends on the length of the chain. Although the
trend shown may allow one to imagine that, for arbitrarily
large lattices, localization could occur with an arbitrary small
noise strength (rc → 0), the latter fact cannot be stated yet with
certainty and further investigations are needed in this direction.
We have verified that for every value of the disorder strength r

used, the lasers are always operating in the excitable regimes
and excitability waves can propagate normally through the
array if all the coupling coefficients are set identically equal
to K0 ± r . As confirmation of this fact, Fig. 1 indeed shows
that, for the case of n = 150, if all the lasers are identically
coupled with a coupling constant smaller than the minimum
considered in Fig. 3, the propagation of excitable waves is
not inhibited. This check supports the fact that the observed
localization phenomenon is due to a nontrivial dynamical
scattering process, and it cannot be explained either by a purely
particlelike dynamics or by some artificial local breaking of the
links between neighbor elements of the array. It is important
to stress that the synchronization of the laser is preserved
in the localized regime, and indeed, the temporal interval
within which all the lasers inside the localization length emit
a pulse is much shorter than the single laser refractory time.
The backscattering mechanism involved here is a complicated
one, where phase and intensity dynamics coexist together with
a major role played by the dissipation, and it is hence most
likely the contribution of all these three players that determines
the effective degradation of the diffusion of excitability.

Knowing the impact of spontaneous and/or injected noise
on the behavior of complex nonlinear excitable systems is
of primary importance in order to achieve the desired per-
formances and to gain control over their dynamical behavior,
as the paradigmatic case of coherence resonance in excitable
lasers shows [16,28]. Consequently, we have characterized the
dependence of the average localization exponent on the lasers’
additive noise intensity D for fixed randomness strength r .
The results of this analysis are summarized in Fig. 4 and show
a decreasing trend of 〈α〉 with increasing noise strength D.

As far as the terminology is concerned, it is important to
mention the fact that the concept of Anderson localization,
originally referring to the inhibition of electronic transport in
an atomic lattice caused by disorder, is used in a broad sense
in studies conducted in nonlinear optics. The system studied
in this Rapid Communication presents substantial differences
with respect to the original work by Anderson as well as with
respect to some studies about the localization of light induced
by disorder, in particular, here the dissipation plays a funda-
mental role. For this reason we do not think it is appropriate
to call the phenomena discussed here Anderson localization
of excitability, but simply disorder-induced localization of
excitability.

V. CONCLUSIONS

In conclusion, we have demonstrated the exponential
localization of excitability in a one-dimensional lattice of
excitable lasers due to out-of-diagonal disorder, physically
corresponding to random variations of the lasers’ coupling
coefficients. Our work suggests that disorder-induced localiza-
tion of excitability can be potentially observed experimentally
and deserves further investigation both in higher-dimensional
excitable photonic systems as well as in other fields of
science where excitability plays a major role, for instance,
in populations of neurons. We believe that our results are
especially relevant in the general study of signal transmission
and control in networks of excitable systems where disorder
is present as a natural feature, or vice versa, where it can
be engineered to induce the manifestation of some particular
phenomena. The field of neuromomorphic photonics is indeed
a promising candidate platform where such fundamental
effects can be studied and tailored, which hopefully could
also provide insights for a cross-disciplinary interaction with
computational neuroscience.
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