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Understanding and probing phase transitions in nonequilibrium systems is an ongoing challenge in physics.
A particular instance are phase transitions that occur between a nonfluctuating absorbing phase, e.g., an extinct
population, and one in which the relevant order parameter, such as the population density, assumes a finite
value. Here, we report the observation of signatures of such a nonequilibrium phase transition in an open driven
quantum system. In our experiment, rubidium atoms in a quasi-one-dimensional cold disordered gas are laser
excited to Rydberg states under so-called facilitation conditions. This conditional excitation process competes
with spontaneous decay and leads to a crossover between a stationary state with no excitations and one with a
finite number of excitations. We relate the underlying physics to that of an absorbing-state phase transition in
the presence of a field (i.e., off-resonant excitation processes) which slightly offsets the system from criticality.
We observe a characteristic power-law scaling of the Rydberg excitation density as well as increased fluctuations
close to the transition point. Furthermore, we argue that the observed transition relies on the presence of atomic
motion which introduces annealed disorder into the system and enables the formation of long-ranged correlations.
Our study paves the road for future investigations into the largely unexplored physics of nonequilibrium phase
transitions in open many-body quantum systems.
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Absorbing-state phase transitions are among the simplest
nonequilibrium phenomena displaying critical behavior and
universality. They can occur, for instance, in models describing
the growth of bacterial colonies or the spreading of an
infectious disease among a population (see, e.g., Refs. [1–3]).
Once an absorbing state, e.g., a state in which all the bacteria
are dead, is reached, the system cannot escape from it [4].
However, there might be a regime where the proliferation of
bacteria overcomes the rate of death and thus a finite stationary
population density is maintained for long times. The transition
between the absorbing and the active state may be continuous,
with observables displaying universal scaling behavior [5–9].
Although conceptually of great interest, the unambiguous
observation of even the simplest nonequilibrium universality
class—directed percolation—is challenging and has only been
achieved in recent years in a range of soft-matter systems and
fluid flows [10–16] (see also the references in Refs. [11,12]).
The exploration of such universal nonequilibrium phenomena
is currently an active topic across different disciplines with
a number of open questions concerning, among others, their
classification, the role of disorder, and quantum effects. In
particular, cold atomic systems have proven to constitute a
versatile platform for probing this and related physics [17–26].

Here, we experimentally observe signatures of an
absorbing-state phase transition in a driven open quantum
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system formed by a gas of cold atoms. We laser excite high-
lying Rydberg states under so-called facilitation conditions
[27–30], whereby an excited atom favors the excitation of
a nearby atom at a well-defined distance. This process can
lead to an avalanchelike spreading of excitations [19,20,22,23]
and competes with spontaneous radiative decay, which drives
the system towards a state without Rydberg excitations. As a
result, the system displays a crossover between an absorbing
state and a stationary state with a finite Rydberg excitation
density. We identify signatures suggesting that this crossover
is in fact a smoothed out continuous phase transition. An
intriguing feature of this phase transition is that it appears
to require atomic motion in order to occur in the disordered
atomic gas considered here.

In our experiments we prepare cold atomic samples of 87Rb
atoms in a magneto-optical trap (MOT) at an approximate tem-
perature of 150 μK. The density distribution is Gaussian with a
width σ = 230 μm and peak density n0 = 4.5 × 1010 cm−3.
The external driving, consisting of two copropagating laser
beams of wavelengths 420 and 1013 nm, couples the ground
state |g〉 and the high-lying (Rydberg) state 70S |r〉. Atoms
i and j in state |r〉 at positions ri and rj interact [31–36]
through van der Waals interactions Vij = C6/|ri − rj |6 with
a positive dispersion coefficient C6 = h × 869.7 GHz μm6

[37]. The coupling strength between |g〉 and |r〉 is given
by the (two-photon) Rabi frequency �, and the excitation
lasers can be detuned by an amount � from resonance.
The dephasing rate (due to the laser linewidth and residual
Doppler broadening) is γ = 4.4 MHz, which is greater than
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FIG. 1. Schematic diagram of the experimental setting and
processes involved, and experimental phase diagram. (a) Atomic
cloud with ground-state atoms (gray disks), excited atoms (red disks),
and atoms in the propagating facilitation region (black curved line). In
the upper panel, the processes driving the dynamics are highlighted:
Facilitated excitations, for which the detuning � compensates the
interaction V , are shown on the left (� is the Rabi frequency), and
atomic decay on the right (κ is the decay rate). (b) Phase diagram
showing the number of excitations NI in the stationary state as a
function of � and �. We observe a crossover from an absorbing state
with essentially zero excitations to a fluctuating phase with a finite
number of excitations.

the maximum value of � = 2π × 250 kHz. The system is thus
in the (incoherent) strongly dissipative regime [29,38–41]. We
focus on blue detuning � > 0, for which previous theoretical
and experimental work [19,20,22,23,30] has shown that, in the
presence of strong dephasing, the aforementioned facilitation
mechanism increases the probability to excite (or deexcite)
atoms in a spherical shell of radius rfac = (C6/h̄�)1/6 around
an excited atom [29,30]. The laser beam at 420 nm is focused
to a waist of around 8 μm, which is comparable to rfac

in this parameter regime, effectively reducing the excitation
dynamics to one dimension (1D).

Figure 1(a) schematically shows the main processes occur-
ring in our system: A configuration of ground-state atoms
(gray disks) and Rydberg excitations (red disks) is shown
[displayed here in a two-dimensional (2D) setting for ease of
visualization], and the collective facilitation shell that results
from the presence of a cluster of excitations is highlighted
(black continuous line). The dynamics is characterized by the
competition between facilitation and the spontaneous decay of
excitations at a rate κ = 12.5 kHz [42]. The system eventually
reaches a stationary state that depends on the relative strength
of these two processes.

Experimentally, we study the resulting stationary state
by applying the following protocol. At the beginning of
an experimental cycle (during which the MOT beams are
switched off), we excite 6 ± √

6 seed atoms (according to
a Poissonian seed distribution) in 0.3 μs with the excitation
laser on resonance with the Rydberg transition. Thereafter,
the atoms are excited at finite (two-photon) detuning � > 0
and Rabi frequency � for a duration of 1.5 ms, which is much
longer than the lifetime 1/κ of the 70S state [42]. Immediately
after that, an electric field is applied that field ionizes all the
Rydberg atoms with a principal quantum number n � 40 and
accelerates the ions towards a channeltron, where they are
counted with a detection efficiency of 40%. The observables of
interest are based on the distribution of the number of detected
ions at the end of each run. The procedure is repeated 100 times

for each set of parameters, with a repetition rate of 4 Hz, in
order to get reliable estimates of the mean NI and the variance
�N2

I of the number of detected ions.
In Fig. 1(b) we display the phase diagram resulting from

this measurement procedure. The order parameter NI is plotted
as a function of � and �. One can clearly see a crossover
between an absorbing state, with essentially zero excitations
for sufficiently small �, and a phase with a finite number
of excitations for larger �. In the remainder of this Rapid
Communication we will focus on the nature of this crossover.

To provide some qualitative theoretical insight, we first
conduct a simple mean-field analysis based on a 1D system that
follows the same dynamical rules. Adopting the semiclassical
description of Ref. [30], the (de)excitation of atom i occurs
at a rate �i that depends on the configuration of neighboring
excitations. If we neglect the correlations between atoms, the
average 〈ni〉 of the number operator ni ≡ |r〉i〈r| acting on site
i evolves in time according to

∂t 〈ni(t)〉 = 〈−|�i(1 − 2ni)|P (t)〉 − κ〈ni(t)〉, (1)

where |P (t)〉 ≡ ∑
C P (C; t)|C〉, the kets |C〉 are the classical

atomic configurations in the number basis (the eigenbasis of all
the ni), P (C; t) is the probability of configuration |C〉 at time t ,
and |−〉 ≡ ∑

C |C〉. At this point we introduce the simplifying
assumption that the rate �i can take only two values: the
facilitated rate �fac if the ith atom lies in the facilitation shell of
an existing excitation, or otherwise the spontaneous rate �spon,
corresponding to the rate in the absence of nearby excitations,

�fac ≡ �2/2γ, �spon ≡ (�2/2γ )[1 + �2/γ 2]−1. (2)

In a coarse-grained description of the system, where n ≡
N−1

V
∑

i∈V ni is the fraction of excited atoms in a region of
space V (spanning a few facilitation radii) with NV atoms
in it, we expect the average rate to be n�fac + (1 − n) �spon.
Assuming homogeneity, the spatially averaged dynamics is
given by

ṅ = �facn(1 − 2n) + �spon(1 − n)(1 − 2n) − κn. (3)

We first consider the limit �spon/�fac → 0 (i.e., �/γ → ∞),
where the dynamics is purely governed by the competition
between facilitation and decay. The stationary-state solution
for �fac < κ is the state without excitations, which constitutes
an absorbing state of the dynamics. For �fac � κ facilitation
prevails over decay, and the absorbing state becomes unstable,
leading to a finite density stationary state,

nmf =
{

0, if �fac < κ,

(1 − κ/�fac)/2, otherwise.
(4)

As nmf is continuous at �fac = κ , but its first derivative
with respect to �fac is not, this indicates the existence (at
the mean-field level) of a nonequilibrium continuous phase
transition between an absorbing state with zero excitations
and a fluctuating phase with a finite density [6]. Since in our
experiment atoms in the 70S state can migrate (via blackbody
radiation) to other Rydberg states, we additionally devised a
three-level model taking into account this effect, which shows
the same qualitative behavior (see Ref. [42]).

In Fig. 2(a) we plot nmf as a function of the Rabi frequency �

for different values of the detuning �, using the experimental
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FIG. 2. Mean-field stationary density, and experimental mean and variance of the number of excitations. (a) Density of excitations nmf in
the stationary state of the two-level mean-field model (see text) as a function of the Rabi frequency � for different values of the detuning �.
The correspondence between the detuning and the ratio between facilitated and spontaneous rates is as follows: For �/2π = 5 MHz the ratio is
�spon/�fac = 19.2 × 10−3, for �/2π = 10 MHz it is �spon/�fac = 4.9 × 10−3, and for �/2π = 15 MHz it is �spon/�fac = 2.2 × 10−3. The red
dashed line shows the behavior in the absence of spontaneous (de)excitations for �/2π = 15 MHz, which shows a continuous phase transition.
The inset shows the value of � at which the density reaches 0.01—which we denote �th—as a function of �. (b) Average number of excitations
at the end of the 1.5 ms time window in the experiment for �/2π = 10 MHz. One representative error bar is shown, corresponding to one
standard deviation. Inset: Same data in log-log plot for � > �c = 2π × (82.4 ± 0.2) kHz. A power-law nonlinear fit based on the expression
log(NI ) = α + β log(� − �c) has been applied to the data, yielding an exponent β = 0.31 ± 0.04. The horizontal error bars correspond to a
relative uncertainty of ±5% in the measurement of � due to fluctuations in the laser intensity, and possible misalignments of the beams. The
vertical error bars correspond to the measured standard deviations of the number of excitations. (c) Variance of the number of excitations as
a function of �/2π based on the same experimental data. The continuous line in (b) and (c) is a guide to the eye and results from a sliding
average, and the dashed vertical lines indicate the position of the critical point.

values of the dephasing and decay rates. For the largest value of
�, we also explore the stationary state in the absence of spon-
taneous excitations, �spon = 0 (see the red dashed line), which
shows the aforementioned phase transition. For nonvanishing
�spon/�fac, nmf is always positive and the nonanalyticity at
�fac = κ is smoothed out into a crossover (see the continuous
lines). For larger values of �, as �spon is suppressed, the system
is expected to be closer to the critical point. In the inset, we
show the position of the threshold �th, which we set to be
the value of the Rabi frequency for which nmf = 0.01. We take
this to be an approximate measure of the onset of the crossover
between the absorbing phase and the active phase away from
the critical point. We conjecture that the same physics lies at the
basis of the phase diagram in Fig. 1, which would thus signal
the presence of a smoothed phase transition in the experiment.
The smoothness stems from the spontaneous rate �spon which
acts as a field that offsets the system away from criticality. By
substituting our estimates of the experimental parameters, we
find �spon/�fac to be of the order of 10−3 for �/2π = 125 kHz
and |�/2π | = 10 MHz [42].

In the presence of a continuous phase transition, we
would expect the experimental data to show a smoothed-out
singularity in the fluctuations and a power-law behavior in the
number of excitations [6]. This is, indeed, compatible with
what we observe. In Fig. 2(b) the number of excitations NI is
plotted as a function of � for a fixed detuning � = 2π × 10
MHz. The continuous line results from a sliding average, and is
meant as a guide to the eye. In Fig. 2(c) we show the variance of
the number of excitations �N2

I for the same data as in Fig. 2(b),
which displays a clear peak around �/2π = 80 kHz. Ap-
proaching a critical point, the correlation length diverges, and
global density fluctuations should correspondingly diverge. In
the inset of Fig. 2(b), NI is plotted on a reduced interval in
logarithmic scale. Since the position of the peak gives the

approximate location of the critical Rabi frequency, �c is
chosen in its neighborhood as the value that maximizes the
goodness of the nonlinear fit. This procedure yields a value of
�c = 2π × (82.4 ± 0.2) kHz [dashed vertical line in Figs. 2(b)
and 2(c)] and a power-law dependence NI ∼ (� − �c)β with
an exponent β ≈ 0.31 ± 0.04 (see below for a discussion of
the significance of this result).

We turn now to a closer inspection of the role of disorder in
the atomic cloud. This will highlight the relevance of atomic
motion as a central ingredient for the observed physics [26]. In
order to undergo a phase transition, the system must establish
correlations over mesoscopic length scales, and to analyze
whether this is possible we have to consider two experimental
features that so far have not been discussed: positional disorder
and atomic motion. To this end, we use an effective 1D lattice
model comprising L sites occupied by N atoms (L > N )
located at random positions. We first address the hypothetical
situation in which the positions are frozen for the duration
of the experiment, so that the spatial configuration induces
quenched disorder on the excitation rates. A prerequisite for the
formation of a large cluster of excitations is the existence of a
large number of atoms located at a distance rfac from each other,
and a simple argument shows that the probability of finding
such regularly-spaced clusters is exponentially suppressed in
their size [42]. For example, if we estimate the effective length
of the cloud to be the distance between the positions at which
the density drops to 1% of the value at the peak (on either
side), which gives Leff � 990 μm, and if we consider there
are k = 10 sites per rfac, the experimental conditions translate
into a density ρ ≡ N/L ≈ 0.3. Under these conditions, the
resulting probability of occurrence of an occupied sublattice of
size Leff/10 ≈ 15 rfac is considerably smaller than 10−6. This
illustrates the fact that correlations over mesoscopic length
scales are extremely unlikely to develop in the cloud.
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FIG. 3. Mean and variance of the number of excitations as a
function of �/2π in a 1D model with atomic motion. Results based on
a chain of L = 1500 sites and N = 450 atoms with the experimental
laser and atomic level parameters, and a range of mobility λ based on
the experimental atomic motion. (a) Mean number of excitations nex

as a function of �/2π for mobilities λ = 0 (quenched disorder), 0.2,
1, 2, 10, 20 MHz. (b) Fluctuations of the excitation number �n2

ex as
a function of �/2π for different λ [color code and markers as in (a)].
The inset shows a logarithmic plot of nex vs (� − �c)/2π , where �c

is defined to be the value of � where the fluctuations reach a peak,
and associated power-law fits.

However, in our experiment the time scales are too long
for this frozen gas picture to hold. In fact, the mean atomic
velocity of our samples translates into a mean displacement
of around 0.19 m/s (for T = 150 μK), meaning that on the
time scale of an experimental cycle an atom can traverse a
distance comparable to the width of the cloud. The excitation
dynamics proceeds on an ever-changing background, which
corresponds to annealed disorder. To study this effect we use
the lattice model discussed above, with the atomic motion
parametrized by the mobility λ, which is the rate at which
atoms jump to neighboring sites (so long as they do not violate
the single occupancy condition). The inclusion of these jump
processes is a minimal way to account for thermal motion as
well as mechanical effects due to repulsion between Rydberg
states. For the spreading of excitations to become possible,
atomic motion should act in such a way that excitations have
at least an atom going through their facilitation shell before
decaying.

In Figs. 3(a) and 3(b) we plot the mean number of exci-
tations nex and the variance �n2

ex, respectively, as a function
of � for a chain with k = 10 sites per facilitation distance
rfac and L = kLeff/rfac = 1500. The density of occupied sites
of choice, ρ = 0.3 (N = 450), and the range of λ values
considered [see Fig. 3(a) for the color coding] have been

adjusted to match the experimental conditions (see Ref. [42]),
while the rest of the parameters are those of the experiment
(with � = 2π × 10 MHz). For λ = 0 (quenched disorder) the
growth of nex with � is mild and the fluctuations �n2

ex do
not display a peak. As λ is increased (i.e., for time-dependent
disorder), however, the growth becomes more abrupt and the
fluctuations display a clear peak. In the inset of Fig. 3(b)
we include a logarithmic plot of nex against (� − �c) for
λ > 0, where �c is the position of the peak. The results are
compatible with a power-law dependence nex ∼ (� − �c)β ,
especially for large mobilities, with an exponent that appears
to saturate around β ≈ 0.25 ± 0.04. From this we conclude
that in our model, and probably in our experimental system,
atomic motion proves crucial for the emergence of pronounced
fluctuations and scaling behavior.

In summary, we have presented experimental data that show
a crossover between an absorbing phase without Rydberg
excitations and an active phase with a finite fraction of Rydberg
excitations in an open dissipative atomic gas. Evidence for
the existence of an underlying nonequilibrium continuous
phase transition has been provided. In fact, the effective
mean-field model as well as the extracted scaling exponent
suggest a connection to directed percolation (DP), which is
one of the simplest nonequilibrium universality classes. DP has
previously been predicted to emerge in Rydberg lattice systems
[43]. The scaling exponent extracted from the experimental
data is compatible with that of DP in one dimension, βDP =
0.276 486(8) [6]. A crucial issue of the current experiment is
the nature and role of disorder. The point we have emphasized
above, namely, that quenched disorder heavily distorts the
critical behavior, whereas annealed disorder does not, has
been established for DP via field-theoretical and numerical
approaches [6,44–46]. A future goal is to fully characterize
and classify the nonequilibrium phases of driven Rydberg
gases, e.g., through more precise measurements of static and
dynamic exponents and also a field-theoretical study of the
universal properties. An exciting perspective is that Rydberg
gases allow the controlled inclusion of quantum effects, e.g.,
by reducing the dephasing rate. Future studies will thus
potentially access new dynamical regimes that go beyond
the current body of knowledge on out-of-equilibrium phase
transitions, which is largely focused on classical many-body
systems [6,7].
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