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Saturation properties of helium drops from a leading-order description
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Saturation properties are directly linked to the short-range scale of the two-body interaction of the particles.
The case of helium is special; on one hand, the two-body potential has a strong repulsion at short distances. On
the other hand, the extremely weak binding of the helium dimer locates this system very close to the unitary limit
allowing for a description based on an effective theory. At leading order of this theory a two- and a three-body
term appear, each one characterized by a low-energy constant. In a potential model this description corresponds to
a soft potential model with a two-body term purely attractive plus a three-body term purely repulsive constructed
to describe the dimer and trimer binding energies. Here we analyze the capability of this model to describe the
saturation properties making a direct link between the low-energy scale and the short-range correlations. We will
show that the energy per particle, EN/N , can be obtained with reasonable accuracy at leading order extending
the validity of this approximation, characterizing universal behavior in few-boson systems close to the unitary
limit, to the many-body system.
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Introduction. At the beginning of the 1980s strong efforts
were made to calculate the ground-state properties of 4He and
3He droplets containing a specific number N of atoms [1–4].
After computing the energy per particle, EN/N , and the rms
radii of the droplets it was possible to study the evolution
of these quantities as N → ∞. For example, a liquid-drop
formula was proposed to fit EN/N in terms of x = N−1/3:

EN/N = Ev + Esx + Ecx
2 (1)

with Ev , Es , and Ec, the volume, surface, and curvature terms,
respectively. A similar behavior, in powers of x, has been
proposed for the unit radius, defined in terms of the rms
radius 〈r2〉1/2, as r0(N ) = √

5/3 〈r2〉1/2N−1/3. Extrapolated
results for the infinite liquid were obtained from calculations
on droplets using different values of N . The motivations for
that study were twofold. On one hand, the theoretical results
obtained with realistic interatomic potentials could be com-
pared to experimental results. In this respect, the calculation
on the infinite system, liquid 4He at equilibrium density,
predicts a value Ev = −7.11 K using the high-quality potential
HFDHE2 from Aziz et al. [5], in very good agreement with the

experimental value of −7.14 K at a density of 0.0219 Å
−3

. This
can be seen as a successful application of the potential theory to
describe the ground-state properties of liquid helium. A second
motivation was to analyze the capability of the extrapolation
formulas to predict the properties of the infinite system using
results computed in droplets having at most a few hundred
atoms. It was shown that stable values of Ev and the surface
tension t = Es/4πr2

0 (∞) could be obtained in agreement with
those calculated in the infinite system. This analysis gave
support to the liquid-drop formulas used in nuclear physics to
predict nuclear matter properties. Note that whereas different
properties can be measured in infinite liquid helium, this is not
the case for infinite nuclear matter.

Droplets of bosonic helium attracted attention in the 1990s
due to the fact that the dimer composed by two 4He atoms
is very loosely bound. Its energy is E2 ≈ 1 mK, and the

two-body scattering length, a ≈ 100 Å, has a very large
value if compared to the typical length of the system, the
van der Waals length �vdW, which for two helium atoms is
�vdW ≈ 2.5 Å. When a � �vdW the system can be studied
in first approximation in the zero-range limit. It provides a
good approximation for shallow states in which the particles
stay most of the time outside the interaction region and,
accordingly, the low-energy dynamics does not depend on the
details of the interaction. Moreover, E2 ≈ h̄2/(ma2), with m

the boson mass, vanishes at the unitary limit, corresponding
to a → ∞. As demonstrated by Efimov in a series of papers
[6,7], the three-body system has a geometrical series of excited
states that accumulate at zero energy. This is called the Efimov
effect and was experimentally confirmed more than three
decades after its prediction [8].

At present, there is intense experimental activity [9–12]
dedicated to the study of the behavior of few-body systems
close to the unitary limit. In this respect, the helium trimer
was indicated as a candidate for a direct observation of
an Efimov-type excited state. The possibility of observing
Efimov states in small clusters of helium has triggered intense
experimental activity using ultracold jets of helium going
through a diffraction grating [13]. Although it was not possible
to extract specific energy values, the diffraction patterns
were used to identify the number of atoms in the droplets.
This research culminated recently with a measurement of the
ground and excited states of the helium trimer giving a direct
confirmation of the existence of Efimov states [14].

Helium drops have been studied using modern helium-
helium interactions [15,16]. In particular, in Ref. [17] a
diffusion Monte Carlo (DMC) method has been used to
study clusters up to ten atoms interacting through the Tang,
Toennies, and Yiu potential [18]. From a more general
perspective, trimers and tetramers have been studied with
different interactions in which the potential strength has been
varied in order to drive the system to the unitary limit [19–22].
When a two-boson system interacting via a short-range
potential is close to the unitary limit, the three-boson system
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shows universal behavior. Its spectrum is governed by the
two-body scattering length a and the three-body parameter
κ∗ defines the energy of the n∗ level at the unitary limit,
h̄2κ2

∗/m. The system manifests a discrete scale invariance;
the ratio of binding energies for two consecutive states is
En

3 /En+1
3 = e2π/s0 , with the universal number s0 ≈ 1.006 24

[23]. The studies using potential models have shown that this
description is very well fulfilled if range corrections are taken
into account [24].

A three-boson system close to the unitary limit can be
described using an effective field theory (EFT) [25,26]. At
leading order (LO) the effective Hamiltonian includes a
two-body and a three-body contact term. The strength of
the two terms determines the values of a and κ∗. This kind
of study has triggered the idea of describing the dimer and
trimer using a soft potential model consisting in a two- plus
a three-body term in which the strengths can be fixed to
describe some particular observables; for example, the dimer
and trimer binding energies. This Hamiltonian can be used
to solve the Schrödinger equation for systems with N > 3
and the agreement (or differences) obtained from comparisons
to experimental data or results obtained with more realistic
interactions can be analyzed. This strategy has been explored
in Refs. [27–29] in which the results for the ground-state
energy of small clusters of helium calculated using a soft
potential model are extremely close (within a few percent)
to that obtained using a realistic helium-helium interaction.

From the above discussion we observe two, very distinctive,
descriptions of light helium clusters. On one hand, strong
efforts have been made to determine the best possible helium-
helium interaction. Different models exist in the literature
and they have been tested in drops as well as in infinite
liquid. On the other hand, the large scattering length of
the helium-helium system indicates that the helium trimer
and tetramer show universal behavior. The particular form
of the potential is not important and many features can be
determined from a few experimental data, such as a and
the trimer ground-state energy E0

3 (or first excited state
E1

3). Accordingly, a soft potential model can be constructed
in order to reproduce those observables. Here we want to
determine the saturation properties of the infinite system from
calculations on helium drops described using a soft potential
model making a direct link between the low-energy scale
(or long-range correlations) and the high-energy scale (or
short-range correlations). Moreover, this analysis will clarify
whether a four-body force is needed at a LO description.

In order to treat the helium clusters with increasing number
of particles we use two different methods. We expand the
many-body wave function in the hyperspherical harmonic
(HH) basis and calculate the ground-state energy for increas-
ing values of the grand orbital quantum number K . The
method using two- and three-body potentials is described
in Refs. [30,31]. Depending on the range of the three-body
force the pattern of convergence in terms of K could not be
sufficiently fast to guarantee a converged value for the energy
(the maximum value of K = 16 has been used). In this case an
extrapolation formula is needed to estimate the ground-state
energy. In order to decrease the uncertainty introduced by the
extrapolation procedure we implemented a DMC algorithm
which is known to provide very good estimates of the ground-

state energies. For low values of N (N � 10) the HH and
DMC results are in complete agreement. For greater values of
N and, in particular, for the shorter three-body force ranges
considered, the DMC method provides a converged value for
the energy, whereas the HH and DMC results coincide only
after the extrapolation procedure mentioned above. Due to the
big numerical effort needed for the DMC at high N values,
we use this method for selected cases. From the combination
of the two methods we obtain converged values for the
ground-state energy.

The potential model. To study the ground-state energy
of the N boson system, as a reference we use calculations
on helium drops interacting through the HFDHE2 potential.
Results using the Green’s function Monte Carlo (GFMC)
method are available as well as results using a variational
Monte Carlo (VMC) approach. The soft potential model is
constructed using a Gaussian representation of the HFDHE2
potential as

V (rij ) = V0e
−r2

ij /d
2
0 (2)

in which the two parameters, V0 and d0, are determined
from the dimer energy, E2 = 0.830 12 mK, and the two-
body scattering length a = 235.547a0, with a0 the Bohr
radius. These quantities are described with good accuracy
using V0 = 1.208 018 K and d0 = 10.0485a0 (with h̄2/m =
43.281 307 K a2

0). It should be noticed that with the simulta-
neous description of a and E2 the correct value of the effective
range reff = 13.977a0 is obtained as the three quantities are
related by the effective range formula, which in the case
of shallow states is kd = 1/a + reffk

2
d/2, with the binding

momentum defined from the relation E2 = h̄2k2
d/m. The

particular selection of the Gaussian parameters results in a
good description of the low-energy physics in the two-body
sector. Moving to the three-body sector, using the Gaussian
potential the binding energy of the trimer ground state is
139.8 mK; this value is greater than the value obtained with the
HFDHE2 potential of 117.3 mK. Accordingly, the two-body
soft potential has to be supplemented with a slightly repulsive
three-body force. This well-known characteristic corresponds,
in terms of EFT, to a LO description. Following Refs. [27–31]
we introduce a three-body force depending on the relative
distances of three particles

W (ρijk) = W0e
−2ρ2

ijk/ρ
2
0 , (3)

where ρ2
ijk = (2/3)(r2

ij + r2
jk + r2

ki) and the strength W0 and
range ρ0 are parameters to be fixed in order to have a reasonable
description of the light clusters ground-state binding energies
EN . In the following we employ the soft-Gaussian potential
(SGP) model consisting of a two-body plus a three-body term.
The SGP ground-state binding energies up to N = 10 are
shown in Fig. 1 (red dots) as a function of the three-body range
parameter ρ0. In each case the strength W0 is fixed to reproduce
the trimer ground state of the HFDHE2 potential (117.3 mK).
The SGP results are compared to those of the HFDHE2
potential [3] given in the figure as the (black) solid lines.
As can be seen from the figure there is a slight dependence on
the range ρ0, with low values giving a better description. To
show the sensitivity to the range of the three-body force and
to analyze the behavior of the energy per particle EN/N , in
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FIG. 1. Binding energies using the SGP for different values of the
three-body force range ρ0 (red dots) at the indicated N values (upper
panel). The specific case of N = 4 is shown in the lower panel. As a
reference, the values of the HFDHE2 potential are also shown (black
solid lines).

Fig. 2 we show this quantity as a function of N . We can observe
that, for the values of N given in the figure, EN/N calculated
with the HFDHE2 interaction has an almost linear behavior.
The results of the SGP follow this tendency, although a spread
depending on ρ0 appears as N increases.
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FIG. 2. Binding energy per particle as a function of the number
of particles N . The results of the SGP for different values of the
three-body force range ρ0 are shown as the cyan band. As a reference,
the values of the HFDHE2 potential from Ref. [3] are shown as solid
(red) circles.

In the present study the strength and range of the two-body
Gaussian potential are determined from E2 and a. In a more
general perspective a Gaussian potential can be thought of as
a regularized contact interaction and the observables in the
different N -body sectors can be studied in terms of the range
of the Gaussian defined as the inverse of the cutoff d0 = �−1

(for a recent discussion, see Ref. [32]). In this context the
range of the two- and three-body forces are related. Here we
follow a different strategy in which the two-body potential is
fixed by two data in the N = 2 sector. The strength of the
three-body potential is determined by E3 for different values
of its range ρ0. In this way the evolution of EN/N can be
studied as a function of the parameter ρ0. Note that the two-
and three-body potential terms evolve differently with N since
one is proportional to the number of pairs and the other to the
number of triplets. The intention of using ρ0 as an independent
parameter is to keep the evolution of these two terms as close
as possible to the results of the original potential. Eventually a
particular value of ρ0 can be detected as the optimum value to
use in the description of the saturation properties of the infinite
system. A similar strategy has been recently used in nuclear
physics [33] and in boson systems at unitary [34].

EN/N using a soft potential model. Here we extend the
study of EN/N for increasing values of N . The calculations of
Ref. [3] using the HFDHE2 potential show that this quantity
has an almost linear behavior for N � 10, as discussed before.
As N is increased further, EN/N saturates following the
trend given by Eq. (1). This behavior is confirmed by the
rms radius which increases almost linearly with N1/3 for
N > 20, resembling a liquid drop. Now we want to analyze
the evolution of the binding energy using the SGP. To this
aim, we calculate EN/N and radii up to N = 112; this value
seems to be sufficient to determine Ev from Eq. (1). The results
are given in Fig. 3. There is a large spread in both quantities
depending on the three-body range ρ0 given as the cyan band
for EN/N and as error bars for the rms radii. The HFDHE2
results are inside the energy per particle band, therefore an
optimum value of ρ0 can be identified. From inspection of the
results this particular value is ρ0 ≈ 8.5a0 and corresponds to
the range needed to get the closest value to the exact tetramer
binding energy, as can be seen in the lower panel of Fig. 1.
Using this value of ρ0 it is possible to determine Ev , Es , and
Ec defined in Eq. (1). From the results of the SGP in the range
20 � N � 112 we obtain (in K)

EN/N = 6.98–18.6x + 10.3x2 (4)

to be compared to the values (in K) Ev = 7.02, Es = −18.8,
and Ec = 11.2 and Ev = 6.91, Es = −18.9, and Ec = 12.0
obtained with the GFMC and VMC methods, respectively,
using the HFDHE2 interaction.

The infinite unit radius r0(∞) can be obtained from a
second-order expansion in terms of x = N−1/3. The SGP
results for the optimum ρ0 value predict r0(∞) = 2.24 Å, close
to the GFMC result for the HFDHE2 interaction of 2.22 Å and
a surface tension t = Es/4πr2

0 (∞) of 0.29 K Å
−2

, close to the

experimental value of 0.27 K Å
−2

and the HFDHE2 GFMC

result of 0.28 K Å
−2

. We consider the capability of the SGP
of following the energy per particle and the unit radius (giving
a reasonable prediction of the surface tension) a consequence
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FIG. 3. Binding energy per particle (upper panel) and rms radii
(lower panel) as a function of the number of particles N . The different
values of the range ρ0 of the SGP are shown as the cyan band (for
E/N ) or as error bars (rms radii). The dashed line is the prediction
of Eq. (5) (see text). The values of the HFDHE2 potential are also
presented.

of the propagation of the universal behavior observed in the
three-body sector to the infinite system. This is an unexpected
result. Accordingly, we can think in a different expansion of
EN/N in terms of N incorporating explicitly the energy values
of the light droplets. Considering that E3/3 is almost negligible
compared to EN/N as N → ∞, we can propose the following
formula:

EN

N
= E(0)

v

1 − (3/N )1/4

1 + 3E4
4E3

(3/N )
, (5)

where the exponent of 1/4 in the numerator and the energy
coefficient in the denominator are optimal choices to describe
the GFMC results. Using Eq. (5) to fit the GFMC results in the
region 4 � N � 112 the value E(0)

v ≈ 6.8 is obtained with a
comparable overall accuracy to Eq. (1) as shown in Fig. 3 by
the dashed line. If the range of the fit is limited to the region

4 � N � 10, where the energy per particle increases almost
linearly, the value E(0)

v ≈ 6.5 is obtained. A characteristic of
Eq. (5) is that E(0)

v can be determined using a single value of
EN/N . Making explicit the N = 4 case, we obtain

E(0)
v

E4
= 3.602

(
1 + 9E4

16E3

)
. (6)

This relation gives the saturation energy in units of E4.
Using the GFMC ratio E4/E3 = 4.55 we obtain E(0)

v /E4 =
12.8. From this analysis it could be thought that, besides
range corrections (to evaluate in a forthcoming analysis), the
saturation energy of the droplets could be proportional to E4 as
E(0)

v = ξ4E4 with ξ4 approaching a universal number at unitary
in a similar way in which is defined the Bertsch parameter in
the case of a Fermi gas [35].

Conclusions. There are two distinct approaches to describe
bosonic helium drops. It is possible to use a realistic atomic in-
teraction obtained from a detailed description of the electronic
cloud. These potentials are able to describe many observables
in the low- and high-energy domains, as well as transport
properties. A different view which evidences the fact that the
helium system is close to the unitary limit, is to construct a very
simple potential model able to reproduce a few data such as the
dimer and trimer energies and the large value of the two-body
scattering length. This model is constructed as a sum of a
two-body (attractive) and a three-body (repulsive) soft term. It
can describe with good approximation properties that emerge
as quasiuniversal, as, for example, the ratio E0

3/E
1
3 between

the ground and excited states of the helium trimer or the ratios
E0

4/E
0
3 and E1

4/E
0
3 between the ground-state trimer and the

two levels of the tetramer [36]. Our main conclusion is that
the universal properties observed in light drops propagate with
the number of particles allowing an estimate of the saturation
energy from the energy of very light drops. The limiting case
is given by Eq. (5) in which the saturation energy can be
determined by the ratio E4/E3 and one of the two values.
Following some ideas discussed in the literature [32,37], we
have speculated about the universal characteristic of the ratio
E(0)

v /E4 at unitarity.
A second observation of the present work is that a four-body

interaction is not needed to describe the saturation properties at
LO. We can conclude that the soft-Gaussian potential captures
the physics of the system close to unitarity building a bridge
between few- and many-body physics.
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