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Lidar is a well-known optical technology for measuring a target’s range and radial velocity. We describe
two lidar systems that use entanglement between transmitted signals and retained idlers to obtain significant
quantum enhancements in simultaneous measurements of these parameters. The first entanglement-enhanced
lidar circumvents the Arthurs-Kelly uncertainty relation for simultaneous measurements of range and radial
velocity from the detection of a single photon returned from the target. This performance presumes there is no
extraneous (background) light, but is robust to the round-trip loss incurred by the signal photons. The second
entanglement-enhanced lidar—which requires a lossless, noiseless environment—realizes Heisenberg-limited
accuracies for both its range and radial-velocity measurements, i.e., their root-mean-square estimation errors are
both proportional to 1/M when M signal photons are transmitted. These two lidars derive their entanglement-
based enhancements from the use of a unitary transformation that takes a signal-idler photon pair with frequencies
ωS and ωI and converts it to a signal-idler photon pair whose frequencies are (ωS + ωI )/2 and (ωS − ωI )/2.
Insight into how this transformation provides its benefits is provided through an analogy to continuous-variable
superdense coding.

DOI: 10.1103/PhysRevA.96.040304

Quantum metrology [1–3] addresses measuring unknown
parameters of a physical system using quantum-mechanical
resources. A typical single-parameter scenario involves in-
terrogating a physical system with M probes that undergo
independent, identical interactions with the system. These
probes then carry away information that can be used to estimate
the parameter of interest. When the M probes are in a product
state, the standard quantum limit (SQL)—with a root-mean-
square (rms) estimation error proportional to 1/

√
M—can

be achieved. Entangled probes, however, can realize the
Heisenberg limit (HL) [2,3], viz., an rms estimation error
that is proportional to 1/M [2–7]. SQL vs HL behavior for
single-parameter estimation can arise, e.g., in measuring time
delays [5], point-source separations [8–11], displacements
[12–14], or magnetic fields [15].

Significant complications occur, in the independent, iden-
tical interactions setting, when there are multiple unknown
parameters [12–15]. In particular, if these parameters are
associated with noncommuting observables, then the uncer-
tainty principle would seem to forbid obtaining unlimited
simultaneous knowledge of them from a single returned
probe [16–22]. In such cases, quantum-enhanced accuracy
can be obtained by entangling probes with locally stored
idlers [12–14,23–27], in addition to the benefit derived from
entangling different probes.

In this Rapid Communication we address quantum metrol-
ogy for a specific pair of parameters associated with non-
commuting observables: the lidar problem of measuring both
a target’s range and its radial velocity. We describe two lidar
systems that use entanglement between transmitted signals and
retained idlers to obtain significant quantum enhancements in
the simultaneous measurement of these parameters. The first
circumvents the Arthurs-Kelly uncertainty relation [22] for
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simultaneous measurements of range and radial velocity from
the detection of a single photon returned from the target. This
performance presumes there is no extraneous (background)
light, but is robust to the round-trip loss incurred by the
signal photons. For comparison, a system that does not use
entanglement would need to detect two returned signal photons
to achieve the same measurement performance. Thus our
system’s advantage can be quite significant when the lidar-
to-target-to-lidar path is very lossy. Note that it had previously
been thought [28,29] that there was no entanglement advantage
to be had in lossy, noiseless lidar scenarios, with Ref. [29]
proving that a coherent-state probe achieves near-quantum-
optimum error probability for discriminating between target
absence and presence in such a case.

Our second lidar—which requires a lossless, noiseless
environment—realizes HL accuracies for both its range
and radial-velocity measurements, i.e., their rms errors
are both proportional to 1/M when M signal photons
are transmitted. For comparison, both the M-photon time-
domain and M-photon frequency-domain Giovannetti-Lloyd-
Maccone (GLM) states [5]—which also assume a lossless,
noiseless operation—must probe the target to obtain the
same performance without stored idlers. Thus our system’s
advantage can be quite significant when the probing flux must
be kept as low as possible.

Lidars measure range from the round-trip time delay
incurred by an optical pulse in propagating to and from the
target. They measure radial velocity from the Doppler shift
on the light returned from a moving target. Our lidars use
time-energy entangled signal-idler photon pairs to enable joint
measurements of the noncommuting observables associated
with time delay and frequency shift, despite only the signal
photons having interacted with the target. Moreover, our first
lidar is, in essence, the M = 1 special case of the second,
although only the first is robust to round-trip propagation
loss. Both derive their entanglement-enhanced performance
from the use of a two-photon unitary transformation [30,31]
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FIG. 1. (a) Lidar sensing of target range and radial velocity. η is
the round-trip transmissivity, i.e., the fraction of the lidar’s transmitted
signal photons that return to the lidar’s receiver. (b) Equivalent
quantum-channel representation.

that takes a signal-idler photon pair with frequencies ωS

and ωI and converts it to a signal-idler photon pair whose
frequencies are (ωS + ωI )/2 and (ωS − ωI )/2. Interestingly,
as we will show, this transformation makes our lidars behave
much as continuous-variable superdense coding (CV-SDC)
[32] in quantum communication, hence providing an intuitive
explanation for their quantum advantage.

Lidar range and radial-velocity estimation. In our lidar
sensing problem, shown in Fig. 1(a), M quasimonochromatic
signal photons with a center frequency ωSc

illuminate a target
whose range r and radial velocity v (with v > 0 indicating
a target moving toward the lidar) are to be estimated from
the time delay, �tS = 2r/c, and the Doppler shift, �ωS =
2ωSc

v/c, imposed on each photon that returns to the lidar,
where c is light speed.

For a lidar that performs single-mode detection at its
receiver, the background light at optical wavelengths can be
ignored, e.g., the background light will have an average of
∼10−6 photons per mode in daytime operation at 1.55-μm
wavelength [33]. Thus, aside from the time delay and Doppler
shift incurred by each photon, the only propagation effect
we shall consider for the lidar-to-target-to-lidar channel is its
round-trip transmissivity η, which will typically satisfy η � 1,
making obtaining accurate time-delay and Doppler-shift infor-
mation from a small number of target-return photons a priority.

Figure 1(b) shows a channel model for the Fig. 1(a)
scenario. Each signal photon incurs a time delay �tS/2 on
its way to the target, a Doppler shift �ωS upon reflection
from the target, and another �tS/2 time delay en route back
to the lidar, where (without loss of generality) we impose the
round-trip transmissivity η. In what follows, D̂St

(�tS/2) will
denote the operator that time delays a signal photon by �tS/2,
and D̂Sω

(�ωS) will denote the operator that Doppler shifts a
signal photon by �ωS .

To begin our development, let us find the best that can
be done when only one photon is returned from the target.
Suppose that M transmitted photons are emitted one at a
time by the lidar’s transmitter, and that we know both those
emission times and which transmitted photon resulted in the
one returned to the lidar [34]. Because a target’s range and
its radial velocity are then easily calculated from that photon’s
time of arrival and its Doppler shift, all that follows will address
limits of simultaneous time and frequency measurements.
Furthermore, in our quest for quantum enhancements, we will
assume that each signal photon is entangled with a retained
idler photon in an initial pure state |ψ〉 and that each idler is
stored, in a lossless manner [35], for a time �tI that is sufficient
to enable its being jointly measured with its signal-photon
companion should that companion be the one that is returned
to the lidar.

Single-photon target-return lidar. When the lidar-to-target-
to-lidar round-trip transmissivity is very low, i.e., η � 1, then
the transmission of M � 1/η � 1 photons is necessary for a
reasonable assurance that one signal photon will be returned
from that target. To minimize the M value needed to estimate
the target range and radial velocity it would be best were it pos-
sible to simultaneously—and accurately—determine the time
delay �tS and the Doppler shift �ωS from the measurement of
a single returned photon. This wish would seem to violate the
Arthurs-Kelly uncertainty relation [22], which states that δtS
and δωS—the rms errors when time delay and Doppler shift
are estimated from such a simultaneous measurement—satisfy
δtS δωS � 1. However, because our lidar has the retained idler
photon for use in a joint measurement with its returned-signal
companion, we will see that the Arthurs-Kelly inequality can
be circumvented. Indeed, starting from a biphoton state with
a time-bandwidth product T W � 1 [39], we will show how
δtS � 1/2W and δωS � 1/2T can be achieved simultaneously
from an appropriate joint measurement.

Our single-photon lidar uses a nondegenerate spontaneous
parametric downconverter (SPDC) whose output—for the
signal-idler pair that will ultimately be measured—can
be taken to be the biphoton state |ψ〉 = ∫

dtS dtI ψ(tS,tI )
|tS〉S |tI 〉I with the time-domain wave function given by [39]

ψ(tS,tI ) ∝ e−t2
−/4σ 2

cor−t2
+/4σ 2

coh−i(�ωt−/2+ωP t+), (1)

where |t〉 denotes a single photon at time t , t− ≡ tS − tI ,
t+ ≡ (tS + tI )/2, σcor is the biphoton correlation time, σcoh

is the pump coherence time, �ω ≡ ωSc
− ωIc

> 0 is the
difference between the signal and idler’s center frequencies,
and ωP is the pump frequency. This state’s frequency-domain
representation,

∫
dωS dωI �(ωS,ωI ) |ωS〉S |ωI 〉I , where |ω〉

denotes a single photon with frequency ω, then has the wave
function

�(ωS,ωI ) ∝ e−(ω−−�ω)2σ 2
cor/4−(2ω+−ωP )2σ 2

coh , (2)

with ω− ≡ ωS − ωI and ω+ ≡ (ωS + ωI )/2.
The rms time durations of the SPDC’s signal and idler

photons are identical, and given by T =
√

σ 2
coh + σ 2

cor/4.
Likewise, their rms bandwidths are also identical, and given by

W =
√

1/16σ 2
coh + 1/4σ 2

cor, which we assume to be much less
than �ω. When σcor = 2σcoh, the biphoton reduces to a product
of pure-state signal and idler photons satisfying T W = 1/2.
A continuous-wave downconverter, however, typically has
σcoh � σcor [39], so that T ≈ σcoh � 1/W ≈ 2σcor, making
the signal and idler highly entangled, with entanglement
entropy SE = log2 (2T W ) � 1.

Conditioned on the biphoton from Eq. (1) being the one
whose returned signal and retained idler will be measured,
we have that |ψ(θ)〉 = D̂St

(�tS/2)D̂Sω
(�ωS)D̂St

(�tS/2) ⊗
D̂It

(�tI )|ψ〉, where θ = [�tS,�ωS]T , with T denoting the
transpose, is the state from which we will determine the signal
photon’s time delay and Doppler shift. Using the Cramér-Rao
(CR) bound [1,40–42], we show, in Appendix A, that unbiased
estimators of the signal photon’s time delay and Doppler
shift have rms errors that individually obey δtS � 1/2W and
δωS � 1/2T , and jointly satisfy

δtS δωS � (1 + 2T W )/8T 2W 2. (3)
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Without entanglement (T W = 1/2), we recover the Arthurs-
Kelly inequality, but with a highly entangled signal and idler
(T W � 1), we get δtS δωS � 1/4T W , which suggests that
δtS = 1/2W and δωS = 1/2T might be realized simultane-
ously. We next present a theoretical design for a measurement
that achieves that goal.

Our first step is to apply the biphoton unitary transformation
[43],

B̂SI =
∫

dωS

∫
dωI

∣∣∣∣ωS + ωI

2

〉
S

∣∣∣∣ωS − ωI

2

〉
I

S〈ωS | I 〈ωI |

=
∫

dtS

∫
dtI |tS + tI 〉S |tS − tI 〉I S〈tS | I 〈tI | , (4)

to the postselected state |ψ(θ)〉 to obtain the product
state B̂SI |ψ(θ)〉 = |ψS(θ)〉S ⊗ |ψI (θ)〉I , where, assuming
σcoh � σcor, we have that

|ψS(θ)〉S ∝
∫

dωS ei(ωS+�ω)(�tS+�tI )−(2ωS−ωP −�ωS )2T 2 |ωS〉S ,

(5)

and

|ψI (θ)〉I ∝
∫

dtI e−i(�ωS+�ω)tI /2−(tI −�tS+�tI )2W 2 |tI 〉I . (6)

Next, we measure the single-photon frequency observable of
the signal photon and the single-photon arrival-time observ-
able of the idler photon, i.e., ω̂S = ∫

dωS ωS |ωS〉SS〈ωS | and
t̂I = ∫

dtI tI |tI 〉I I 〈tI |. Using the resulting outcomes, ω̃S and
t̃I , we generate our time-delay and Doppler-shift estimates
�̃tS = t̃I + �tI and �̃ωS = 2ω̃S − ωP . These estimates are
unbiased, 〈�̃tS〉 = �tS and 〈�̃ωS〉 = �ωS , with standard de-
viations 1/2W and 1/2T , thus showing that our entanglement-
enhanced lidar simultaneously realizes the CR bounds on δtS
and δωS from a single-photon target return.

Connection to CV-SDC. Figure 2 shows entangled-state
and product-state representations of our single-photon li-
dar for the photon pair that is ultimately measured. In
Fig. 2(a), we start from a signal-idler (S-I ) product state
whose frequency-domain wave function is proportional to
e−(2ωS−ωP )2σ 2

coh−(2ωI −�ω)2σ 2
cor/4. Applying the single-photon uni-

tary transformation B̂
†
SI to this state then yields the biphoton

state from Eq. (1), although in experiments we start from
the biphoton state in Eq. (1) directly. After that biphoton
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FIG. 2. (a) Entangled-state and (b) product-state representations
of the single-photon target-return lidar.

undergoes the time delays and Doppler shift shown in Fig. 2(a),
the application of B̂SI converts them back to a product
state, from which a signal-photon frequency measurement
ω̃S and an idler-photon arrival-time measurement t̃I provide
the information needed for simultaneous Doppler-shift and
time-delay estimates. The product-state source output to
product-state measurement input is thus governed by the
single-photon unitary transformation

Û ≡ B̂SI

[
D̂St

(�tS/2)D̂Sω
(�ωS)D̂St

(�tS/2) ⊗ D̂It
(�tI )

]
B̂

†
SI .

(7)

After simple algebra, Û can be rewritten—up to a global
phase—as shown in Fig. 2(b):

Û = [
D̂St

(�tS + �tI )D̂Sω
(�ωS/2)

]
⊗ [

D̂It
(�tS − �tI )D̂Iω

(�ωS/2)
]
. (8)

This form of Û acting directly on the same signal-idler product
state that was the input in Fig. 2(a) immediately leads to our
single-photon lidar’s being able to sense the Doppler shift
from a signal-photon measurement and arrival time from an
idler-photon measurement.

The preceding Û representations bear a clear similarity to
CV-SDC [32]. In CV-SDC, Alice initially prepares quadrature-
entangled signal and idler beams with average photon numbers
n̄ � 1, then sends the idler to Bob while retaining the signal.
Next, Alice displaces her signal beam’s two quadratures with
her analog messages and sends that modulated beam to Bob.
Bob combines Alice’s modulated signal with his retained idler
on a 50-50 beam splitter to recover a product of displaced
squeezed-vacuum states from which he can obtain Alice’s
messages (with a pair of homodyne detectors) at a capacity
double that of coherent-state communication with an average
photon number n̄. CV-SDC’s continuous-variable entangle-
ment preparation, encoding, and product-state recovery are
analogous to the B̂

†
SI time delays and Doppler shift, and B̂SI

transformations in Fig. 2(a).
Lidar with simultaneous HL scaling. Giovannetti, Lloyd,

and Maccone showed [5] that when the M-photon,
M-mode, frequency-domain GLM signal state, |ψ〉Sω

∝∫
dωS e−ω2

S/4W 2 ⊗M
m=1 |ωS〉Sm

, interrogates a perfectly reflect-
ing target, then time-resolved detection of all M photons in the
absence of background noise enables the target’s round-trip
time delay �tS to be estimated with HL rms accuracy δtS =
1/2MW . Likewise, the M-photon, M-mode, time-domain
GLM signal state, |ψ〉St

∝ ∫
dtS e−t2

S /4T 2 ⊗M
m=1 |tS〉Sm

, enables
that target’s Doppler shift �ωS to be estimated with HL
rms accuracy δωS = 1/2MT in this lossless and noiseless
scenario. These measurements are an either-or proposition: If
an M-photon GLM state interrogates the target, we cannot get
both δtS = 1/2MW and δωS = 1/2MT . By sending an M/2-
photon, frequency-domain GLM state, followed by an M/2-
photon, time-domain GLM state, time-delay and Doppler-shift
measurements with δtS = 1/MW and δωS = 1/MT can be
obtained, but our second lidar will realize δts = 1/2MW and
δωS = 1/2MT from the transmission of M signal photons.

To simultaneously achieve HL accuracies, we employ two
GLM states together with the M-mode generalization of our
first lidar’s Û transformation (see Fig. 3). We start from GLM
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FIG. 3. Schematic for simultaneous time-delay and Doppler-shift
measurements with HL rms accuracies (M = 3).

signal and idler states |ψ〉St
and |ψ〉Iω

that are entangled by the
application of ⊗M

m=1B̂
(m)†
SI . Next, the signal photons illuminate

and return from the target, having accumulated a round-trip
delay �tS and a Doppler shift �ωS , while the idler photons
are stored at the lidar for a time �tI . Applying ⊗M

m=1B̂
(m)
SI to the

returned and retained photons then undoes the entanglement.
Paralleling the development of Eq. (8), we find that the state
transformation for this arrangement is

ÛM = [⊗M
m=1 D̂St m

(�tS + �tI )D̂Sωm
(�ωS/2)

]
⊗ [⊗M

m=1 D̂It m
(�tS − �tI )D̂Iωm

(�ωS/2)
]
. (9)

It now follows that a Doppler shift measurement on the
ÛM -transformed signal photons has an rms accuracy δωS =
1/2MT and a time-delay measurement on the ÛM -transformed
idler photons has an rms accuracy 1/2MW .

Discussion. We have exhibited lidars that provide
entanglement-enhanced accuracies in the simultaneous
measurements of target range and radial velocity. These
parameters are associated with noncommuting observables: a
single photon’s arrival time and frequency. Our general scheme
of transforming operations with noncommuting generators to
commuting observables can be applied to other simultaneous-
measurement scenarios that involve noncommuting
generators.

Two final items deserve discussion: idler storage loss
and realizing the B̂SI transformation. Loss of a single idler
photon kills the performance gain of our GLM-based lidar
over an unentangled system, but idler storage loss has a
more benign impact on our single-photon lidar. Lossless idler
storage enables our lidar to make simultaneous time-delay
(range) and frequency-shift (radial-velocity) measurements at
their individual CR-bound limits from the detection of one
signal photon, an event that occurs with success probability
η. Without entanglement, however, two signal photons must
be received to achieve this performance, an event that occurs
with success probability η2. When our single-photon lidar has
an overall idler storage efficiency ηI , its success probability is
ηIη. Consider idler storage in a short fiber-loop memory. Such
a memory could be loaded and unloaded with an optically
controlled directional coupler. A portion of the pump pulse
for Alice’s SPDC could gate that coupler to load the idler
photon into the memory, and—if the coupler could be arranged
to have single-photon sensitivity—the returned signal photon

could gate the coupler to unload the memory’s stored idler
photon. A target at a 37.5-km range would then require 50 km
of recirculating fiber propagation. With 0.2-dB/km fiber loss,
that would imply ηI = 0.1. So, for η � 0.1, as could well
be the case, our lidar would enjoy a substantial performance
advantage despite its 10-dB idler storage loss.

We have been exploring how B̂SI might be realized using
single-photon χ (2) interactions and linear optics [44–48]. Our
notional scheme, for approximating it over the bandwidth
occupied by the returned signal and retained idler’s biphoton
state, is shown in Appendix B. It uses single-photon-sensitive
SPDCs to convert single photons at frequencies ωS and ωI

to orthogonally polarized photon pairs at frequencies ωS/2
and ωI/2. One photon from each pair is then applied to a
single-photon-sensitive sum-frequency generator and a single-
photon-sensitive difference-frequency generator to produce
outputs at (ωS + ωI )/2 and (ωS − ωI )/2.
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APPENDIX A: TIME-FREQUENCY CRAMÉR-RAO BOUND

Let the positive operator-valued measurement 
̂θ̃ on the
postselected state |ψ(θ )〉 be an unbiased estimator of θ . The CR
bound [42] on this estimator’s error-covariance matrix, V(θ) =
〈(θ̃ − θ )(θ̃ − θ)T 〉, is

tr[GV(θ)] � tr
[
GJ−1

θ

] + [
√

det(G)/det(Jθ )]

× |〈ψ(θ )|[L�tS ,L�ωS

]|ψ(θ)〉|,
where G is an arbitrary 2×2 positive-semidefinite real-valued
cost matrix; det(·) denotes the determinant; [â,b̂] denotes the
commutator âb̂ − b̂â; Jθ is the quantum Fisher-information
matrix, whose jkth element, for j,k = �tS,�ωS , is
(Jθ )jk ≡ 4[Re(∂θj

〈ψ(θ)|∂θk
|ψ(θ)〉) + 〈ψ(θ)|∂θj

|ψ(θ)〉 〈ψ(θ )|
∂θk

|ψ(θ)〉]; and, for j = �tS, �ωS,Lj ≡ 2(∂θj
|ψ(θ)〉

〈ψ(θ )| + |ψ(θ)〉∂θj
〈ψ(θ)|) are the symmetric logarithmic

derivatives.
The time-domain wave function of |ψ(θ)〉 is ψθ (tS,tI ) =

ψ(tS − �tS,tI − �tI )e−i�ωS (tS−�tS/2), from which we ob-
tain Jθ = 4 diag[W 2,T 2], and |〈ψ(θ)|[L�tS ,L�ωS

]|ψ(θ)〉| =
4. Next, using G = diag[1,0] and diag[0,1] in the CR bound,
we get δtS � 1/2W and δωS � 1/2T . Maximizing the CR
bound for G = diag[W 2,zT 2] over z � 0 then gives (3):

δt2
S δω2

S � δω2
S

W 2

(
1

4
+ 1

16T 2W 2
(
4T 2δω2

S − 1
))

� (1 + 2T W )2/64T 4W 4.

APPENDIX B: APPROXIMATING B̂SI

Figure 4 depicts a notional scheme for approximating the
biphoton unitary transform B̂SI over the bandwidth occupied
by the joint state |ψ(θ)〉. The SPDCs are type-II phase matched
and satisfy the extended phase-matching condition [49] over
an appropriately broad bandwidth, and they are presumed to
have 100% conversion efficiency for single-photon pumps.
Thus a frequency-ωS signal photon arriving at the upper
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ωI/2
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FIG. 4. Notional scheme for approximating the biphoton trans-
form B̂SI . SPDC: Single-photon-sensitive spontaneous parametric
downconverter with extended phase matching. SFG: Single-photon-
sensitive sum-frequency generator. DFG: Single-photon-sensitive
difference-frequency generator.

SPDC in Fig. 4 is converted into a pair of orthogonally
polarized frequency-ωS/2 photons, and a frequency-ωI idler
photon arriving at the lower SPDC in Fig. 4 is converted
into a pair of orthogonally polarized frequency-ωI/2 photons.
Polarizing beam splitters (not shown in Fig. 4) then direct one

frequency-ωS/2 photon and one frequency-ωI/2 photon to a
sum-frequency generator (SFG) [50] and the other frequency-
ωS/2 and frequency-ωI/2 photons to a difference-frequency
generator (DFG) realized by four-wave mixing with a strong
pump beam [51,52]. Both the SFG and DFG are presumed
to have 100% conversion efficiency at the single-photon
level over an appropriately broad bandwidth. Their respective
outputs are thus single photons at frequencies (ωS + ωI )/2
and (ωS − ωI )/2.

The SPDC and SFG blocks in Fig. 4 require single-photon-
sensitive χ (2) interactions [46–48], such as those previously
considered for use in quantum computation [45] and optimum
mixed-state discrimination [53]. The DFG block in Fig. 4
employs four-wave mixing with a strong (hence classical)
pump, which makes it effectively a single-photon-sensitive
χ (2) interaction. Thus our notional scheme for realizing the
B̂SI transformation only requires single-photon-sensitive χ (2)

interactions and linear optics.
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