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Distant entanglement enhanced in PT -symmetric optomechanics
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We study steady-state continuous-variable entanglement in a three-mode optomechanical system consisting
of an active optical cavity (gain) coupled to a passive optical cavity (loss) supporting a mechanical mode. For a
driving laser which is blue-detuned, we show that coupling between optical and mechanical modes is enhanced
in the unbroken-PT -symmetry regime. We analyze the stability and this shows that steady-state solutions are
more stable in the gain and loss systems. We use these stable solutions to generate distant entanglement between
the mechanical mode and the optical field inside the gain cavity. It results in a giant enhancement of entanglement
compared to what is generated in the single lossy cavity. This work offers the prospect of exploring quantum state
engineering and quantum information in such systems. Furthermore, such entanglement opens up an interesting
possibility to study spatially separated quantum objects.
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I. INTRODUCTION

Significant advances in the study of light-matter interaction
have been carried out through optomechanics [1]. Ground-state
cooling of macroscopic objects [2–4], squeezing quantum
noises below the quantum standard limit [5,6], quantum entan-
glement [7–25], and macroscopic quantum superposition [26]
have been deeply improved. This promotes a wide variety of
quantum applications, such as quantum sensors [27], quantum
information processing [28], quantum metrology [29], and
quantum computational tasks [30]. However, there are still
some limitations to fully handle certain quantum optome-
chanical applications and so numerous efforts are ongoing.
Indeed, quantum entanglement is often limited by various
factors such as the stability conditions that place constraints
on the magnitude of the effective optomechanical couplings
[31–33] and the amplification effect in the unstable regime
[34]. In particular, thermal noise of the mechanical modes can
strongly impair the generation of such nonclassical states.

Very recently, systems described by non-Hermitian Hamil-
tonians (see [35] and the references therein) have been used
to engineer cavity optomechanics (COM) [36–40]. This has
led to low-power phonon emissions [36], emergency of chaos
at low-power threshold [37], and nonreciprocal topological
energy transfer [39]. These three-mode COM systems consist
of an active optical cavity (gain) coupled to a passive optical
cavity (loss) supporting a mechanical mode [41–43]. Taking
advantage of the intriguing properties of these systems, we
aim to improve the stability and to enhance the magnitude
of the effective optomechanical couplings. Two regimes can
be identified, i.e., the unbroken-PT -symmetry regime, which
happens for strong optical tunneling rate, and the broken-PT -
symmetry regime, which happens for weak optical tunneling
rate [44]. The transition between these two regimes corre-
sponds to the exceptional point (EP). It has been shown that
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the intracavity photon number is significantly improved in
such systems even at low driving power [36]. This leads to
an enhancement of the effective optomechanical couplings.
That yields a robust entanglement generation between the
mechanical mode and the optical field inside the gain cavity.
Furthermore, this entanglement is improved by adding a
parametric amplifier (PA) in the loss cavity. It should be noted
that the use of a PA for entanglement generation has been
considered in Refs. [14,15].

Our findings can be stated as follows. For a driving laser
which is blue-detuned, the effective optomechanical coupling
is enhanced and is more stable in the unbroken-PT -symmetry
regime. It results in a strong entanglement between the
mechanical mode and the optical field inside the gain cavity.
Such quantum correlation between distant modes is known as
distant entanglement [45,46] and might present an interesting
possibility to study spatially separated quantum objects. Our
results are different from those in Refs. [45,46], where the
cavities that are used are lossy cavities and therefore do not
exhibitPT symmetry. Owing to the presence ofPT symmetry
in our configuration, the generated entanglement is enhanced
compared to what is done in Refs. [45,46]. Furthermore, the
addition of a squeezing element in the loss cavity improves
the magnitude of the effective optomechanical coupling that
induces some amount of entanglement as well.

The work is organized as follows. In Sec. II, the system and
the dynamical equations are described. The stability analysis is
presented in Sec. III. Section IV is devoted to the continuous-
variable (CV) entanglement generation and their robustness
against the thermal decoherence. We conclude the work in
Sec. V.

II. SYSTEM AND DYNAMICAL EQUATIONS

We consider a system of two coupled microresonators (see
Fig. 1), one with an optical gain κ (active optical cavity) and
the other with loss γ (passive optical cavity) [41–43]. In such
system, both the coupling strength J and the gain-to-loss ratio
of the resonators can be tuned, as experimentally demonstrated
in Ref. [43]. The mechanical mode, with frequency ωm and
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FIG. 1. Setup of the gain and loss COM used. An active optical
cavity (gain) is coupled to a passive optical cavity (loss) supporting
a mechanical mode. A squeezing element (PA) is inserted inside the
loss cavity.

effective mass m, contained in the passive resonator is driven
by an external field having a frequency ωp. The Hamiltonian
of this system can be written as (h̄ = 1) [35]

H = H0 + Hint,

H0 = ωmβ†β − �(α†
1α1 + α

†
2α2),

Hint = J (α†
1α2 + α

†
2α1) − gα

†
2α2(β†+β) + √

γ εin(α†
2 + α2).

(1)

The lowering operators β, α1, and α2 describe the mechanical
resonator, the active optical cavity, and the passive optical
cavity, respectively. The COM coupling coefficient is given
by g. We choose a driving pump whose frequency is blue-
detuned � = ωp − ωc > 0, where ωc is the cavity frequency.
The Hamiltonians representing the optical gain and loss and
the mechanical damping are not explicitly shown here.

From the above Hamiltonian, one derives the following set
of dynamical equations:

α̇1 =
(

i� + κ

2

)
α1 − iJα2 + √

καin
1 ,

α̇2 =
{
i[� + g(β† + β)] − γ

2

}
α2 − iJα1 − i

√
γ εin,

β̇ = −
(

iωm + γm

2

)
β + igα

†
2α2 + √

γmβin, (2)

where γm is the mechanical damping and βin stands for the
thermal driving at finite environmental temperature T . The
driving field εin = αin + αin

2 consists of a coherent amplitude
αin and a vacuum noise operator αin

2 . Similarly, the vacuum
noise operator associated to the field α1 is αin

1 .
In order to gain insight into the behaviors of the system

that we are interested in, namely, the unbroken-PT -symmetry
and the broken-PT -symmetry regimes, we consider only the
optical modes in Eq. (2) and ignore the driving [41]. By diag-
onalizing these optical modes, we obtain the eigenfrequencies
of the two supermodes as well as the associated linewidths
as given by the real and imaginary parts, respectively, of the
complex frequencies

ω± = 1
4 [4i� − (γ − κ) ±

√
(γ + κ)2 − 16J 2]. (3)

For a strong optical tunneling rate, i.e., J > (γ + κ)/4, the
system exhibits the purely optical unbroken-PT -symmetry
regime, while the broken-PT -symmetry regime holds for
weak optical tunneling rate with J < (γ + κ)/4 [36,44]. The
transition between these two regimes, i.e., J = (γ + κ)/4
[36], corresponds to the exceptional points where the two
eigenfrequencies coalesce.

As the aim is to enhance entanglement, we add an additional
parametric amplifier (PA) in the loss cavity, as indicated in
Fig. 1. This squeezing element is described by the Hamiltonian

Hχ = iχ [eiθ (α†
2)2 − e−iθ (α2)2], (4)

where χ is the gain of the PA while θ is the phase of the pump
driving it. We have set θ = 0 in the whole work, while the gain
χ can be tuned.

In the next section, we study the stability of the steady-state
solutions in order to quantify distant entanglement.

III. STEADY STATES AND STABILITY ANALYSIS

For |〈α2〉| � 1, the operators in Eq. (2) can be expanded
as their mean values plus a small amount of fluctuations.
This yields the steady states of our system by linearizing
the field operators around their steady-state values O(t) =
Os + δO(t), where O ≡ (α1, α2, β). The stability analysis
of these steady-state solutions should be addressed since the
important feature of these solutions is their stability. Indeed,
any steady-state solution is dynamically meaningless unless it
is stable. We study this stability through linear stability analysis
[47]. Throughout the work, we use the following experi-
mentally achievable parameters [41–43]: ωm/2π = 23 MHz,
γ /2π = 1 MHz, g = 7.4 × 10−5γ , and γm = 1.63 × 10−3γ .
The parameters κ and J will be tuned according to [43]. From
the linearization, the dynamical fluctuation of the system can
be described by the compact equation

v̇(t) = Mv(t) + z(t), (5)

where v(t) is the vector of the fluctuations, v(t) =
[δβ(t),δβ†(t),δα1(t),δα†

1(t),δα2(t),δα†
2(t)]T , and its associated

noise vector is

z(t) = [√γmδβin(t),
√

γmδβin†(t),
√

κδαin
1 (t),

√
κδα

in†
1 (t),

−√
γ δαin

2 (t),
√

γ δα
in†
2 (t)
]T

. (6)

The matrix M stands for the Jacobian of the system and is
given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β 0 0 0 iG2 iG2

0 −∗
β 0 0 −iG2 −iG2

0 0 α1 0 −iJ 0

0 0 0 ∗
α1

0 iJ

iG2 iG2 −iJ 0 α2 2χeiθ

−iG2 −iG2 0 iJ 2χe−iθ ∗
α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

where G2 = g|α2,s | is the direct effective optomechanical
coupling strength, and we have defined β = iωm + γm

2 ,
α1 = i� + κ

2 , and α2 = i�̃ − γ

2 . The stability analysis of
the system can be done based on the eigenvalues of the
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(a) (b)

(c)(c)

FIG. 2. Basins of stability for the steady states. (a),(b) The evolution of stable (dark area) and unstable (light area) zones as the system gets
closer to the balanced gain and loss limit. (a) κ = 0.1γ ; (b) κ = 0.8γ . (c),(d) The evolution of stable (dark area) and unstable (light area) zones
as the tunneling coupling J increases. (c) J = 0.2γ ; (d) J = γ . These figures are obtained for χ = 0.

matrix M . In fact, a given steady-state solution is stable if
all eigenvalues of M have a negative real part. Otherwise,
the steady state will not converge towards a fixed point and
might exhibit a limit cycle or chaotic behavior [37]. These
cases are not considered in our analysis. The frequency shift
δ� = 2gRe(βs) induces the nonlinear detuning �̃ = � + δ�.

The linear stability of our system is mapped out through the
basins of stability shown in Fig. 2. These figures are obtained in
the absence of the PA (χ = 0). The steady states are stable for
the range of parameters located in the blue space, while the red
area corresponds to the parameters leading to unstable fixed
points. It follows that the unstable area widens as the system
moves towards the balanced gain and loss [compare Figs. 2(a)
and 2(b)]. We also remark that the stability of the system
is extended to large driving strength compared to the single
lossy cavity [compare black and other colors in Fig. 3(a)].
From Figs. 2(c) and 2(d), it appears that the stability of the
system improves as the tunneling coupling J increases. Still,
the stable steady states are shifted towards relatively large
driving strength. In light of this discussion on the stability
in active-passive COM, we conclude that (i) the steady-state
solutions are stable for the imbalanced gain and loss system
(weak κ), and (ii) stability can be improved by increasing the
tunneling rate J by pushing the system in the unbroken-PT -
symmetry regime. Another observed feature is the stability of
the fixed points related to the EP. Such points are located along
the green dashed lines in Figs. 2(a) and 2(b), for κ = 0.1γ (or

J = 0.275γ ) and κ = 0.8γ (or J = 0.45γ ), respectively. It
can be seen that the solutions along the EP lose their stability
as the system approaches the gain-loss balance. Indeed, we
have observed that at the exact gain-loss balance, the EP is
completely in the unstable zone (not represented). From this
analysis and in light of Figs. 2(a) and 2(b), it is shown that the
stable steady states in active-passive COM are mostly located
in the unbroken-PT -symmetry regime.

As the gain cavity is coupled to the mechanical resonator
through the loss cavity, one can define the resulting (distant)
coupling as G1 = g|α1,s |. This suggests the idea of investi-
gating distant entanglement between the gain cavity and the
mechanical resonator. Figures 3(a) and 3(b) show the couplings
G2 and G1 versus the driving pump αin, respectively. Full
lines are stable, while dashed lines are unstable, in accordance
with the stability shown in Fig. 2. For χ = 0, Figs. 3(a)
and 3(b) show the enhancement of the couplings G2 and G1

as well as the improvement of the system’s stability (gray
colors) compared to the conventional COM case [black color
in Fig. 3(a)]. As a result, the steady states are more stable in the
systems having gain and loss, and this paves a way to use such
systems to enhance the quantum effect as for entanglement
here. As the system moves from imbalanced gain and loss to
the balanced case, the magnitude of the couplings G1,2 slightly
increases while the stability is impaired [see Figs. 3(a) and
3(b)]. We have remarked that χ slightly enhances the couplings
G1,2 (not represented), and this effect will be highlighted
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FIG. 3. Evolution of steady states according to the stability shown in Fig. 2. (a),(b) Gi = g|αi,s |, i = 1,2, are the couplings strength. Solid
lines are stable, while dashed lines are unstable. (c),(d) Time evolution of steady states having stable and unstable dynamics, respectively, with
Ii = |α∗

i αi |, i = 1,2. The parameters are (c) αin = 102√γ , J = 0.8γ , and κ = 0.8γ , and (d) αin = 10−5√γ , J = 0.42γ , and κ = 0.8γ . For
all of these figures, χ = 0 and the index i = 1 is related to the lossy cavity whereas the index i = 2 stands for the gain cavity.

through the entanglement later on. It is shown that (i) sta-
bility is improved in the unbroken-PT -symmetry regime and
(ii) the couplings G1,2 are enhanced when approaching gain
and loss balance. Based on this discussion, we have determined
in which regime to study distant entanglement. But first, we
have performed the validity of the above stability analysis
through a numerical simulation of Eq. (2). Figure 3(c) corre-
sponds to the stable steady-state solution indicated by the green
dot in Fig. 2(b). Figure 3(d) shows the dynamical state of the
unstable fixed point localized in the vicinity of the green square
in Fig. 2(b). We can see that the solution is attracted to a fixed
point in Fig. 3(c), while it grows exponentially in Fig. 3(d).
This exponential growth is reminiscent of instabilities, and the
long-time study of such behavior yields a limit cycle or chaotic
dynamics. This numerical investigation ensures the veracity of
our stability analysis.

IV. ENTANGLEMENT GENERATION

To measure the CV entanglement between the gain
cavity and the mechanical modes, we use the standard
ensemble method, which consists of computing the
logarithmic negativity through the quantum fluctuations of
the system’s quadratures [7,8]. From the set of fluctuation
equations given in Eq. (5), we can define the vector of
quadratures u(t) = [δx(t),δp(t),δI1(t),δϕ1(t),δI2(t),δϕ2(t)]T

and the vectors of noises n(t) = [δI in
x (t),δI in

p (t),
δI in

1 (t),δϕin
1 (t),δI in

2 (t),δϕin
2 (t)]T . Thus, the system’s

quadratures can be written in the compact form

u̇(t) = Au(t) + n(t), (8)

with the correlation matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− γm

2 ωm 0 0 0 0

−ωm − γm

2 0 0 2G2 0

0 0 κ
2 −� 0 J

0 0 � κ
2 −J 0

0 0 0 J
(
2χ cos θ − γ

2

)
(2χ sin θ − �̃)

2G2 0 −J 0 (2χ sin θ + �) −(2χ cos θ + γ

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)
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The above quadrature operators are defined as δX = (δO† +
δO)/

√
2 and δY = i(δO† − δO)/

√
2, with X ≡ (x,Ii=1,2)

and Y ≡ (p,ϕi=1,2). Similarly, the noise quadratures are
given by δXin = (δOin† + δOin)/

√
2 and δY in = i(δOin† −

δOin)/
√

2, with Xin ≡ (I in
x ,I in

i=1,2) and Y in ≡ (I in
p ,ϕin

i=1,2).
The noise operators βin,αin

1 , and αin
2 have zero mean and

are characterized by the following autocorrelation functions
[9,22]:

〈δsin(t)δsin†(t ′)〉 = (nσ + 1)δ(t − t ′),

〈δsin†(t)δsin(t ′)〉 = nσ δ(t − t ′), (10)

with δsin ≡ (βin,αin
1 ,αin

2 ) and nσ ≡ (nth,na), where nth =
[exp ( h̄ωm

kBT
) − 1]

−1
and na = 〈αin†

1,2α
in
1,2〉.

When the system is stable, one gets the following equation
for the steady-state covariance matrix (CM) [7,8]:

AV + V AT = −D. (11)

Here, the CM is a 6 × 6 matrix and the elements of the diffusion
matrix D are defined by

δ(t − t ′)Di,j = 1
2 〈ni(t)n

†
j (t ′) + n

†
j (t)ni(t

′)〉. (12)

Using Eq. (10), one obtains

D = diag

[
γm

2
(2nth + 1),

γm

2
(2nth + 1),

κ

2
(2na + 1),

× κ

2
(2na + 1),

γ

2
(2na + 1),

γ

2
(2na + 1)

]
. (13)

In order to evaluate the entanglement between two subsystems
(bipartite entanglement), the CM should be rewritten as [8]

V =

⎛
⎜⎝

Vβ Vβ,α1 Vβ,α2

V T
β,α1

Vα1 Vα2,α1

V T
β,α2

Vα2,α1 Vα2

⎞
⎟⎠, (14)

where each block represents a 2 × 2 matrix. The blocks on the
diagonal indicate the variance within each subsystem, while
the off-diagonal blocks indicate the covariance across different
subsystems, i.e., the correlations between two components that
describe their entanglement property. To compute the pairwise
entanglement, we reduce the covariance matrix V to a 4 × 4
submatrix VS ,

VS =
(

Vk≡(β,α1,α2) Vk,�

V T
k,� V�≡(β,α1,α2)

)
, (15)

depending on which subsystems we are interested in.
The logarithmic negativity is then defined as [8]

EN = max[0,− ln 2η], (16)

where

η =

√√√√∑−
√∑2 −4 det VS

2
(17)

is the lowest symplectic eigenvalue of the partial transpose of
the submatrix VS with∑

= det Vk + det V� − 2 det Vk,�. (18)

One can now characterize the entanglement through
Eq. (16). Figure 4(a) shows EN versus the driving αin in the
single lossy cavity. One remarks that the mechanical resonator
mode β and the optical cavity mode α2 are entangled (EN > 0).
We note that this entanglement is weak and is limited by
stability conditions that put constraints on the magnitude of
the couplings G1,2 [see black curve in Fig. 3(a)]. This result
agrees well with what is predicted in single lossy cavity
optomechanics [31–33]. In order to enhance entanglement,
we consider the gain and loss COM system since it improves
the couplings [see gray curves in Figs. 3(a) and 3(b)]. As
our interest is on distant entanglement, we expect it to be
enhanced in light of Fig. 3(b). Figure 4(b) shows entanglement
between the gain cavity and the mechanical modes versus αin.
We remark the improvement of the entanglement compared
to what is generated in the conventional COM [see Fig. 4(a)].
This enhancement happens in the unbroken-PT -symmetry
regime. Indeed, the EP corresponds to J = 0.275γ and
there is no entanglement there (not represented). Indeed, the
entanglement starts at J = 0.34γ , which is beyond the EP [see
the black curve in Fig. 4(b)]. One also remarks that moving
from the broken- to the unbroken-PT -symmetry regimes,
the entanglement is enhanced even for weak driving strength
[compare black curves to the others curves in Fig. 4(b)].

Similar distant entanglement has been investigated in
[45,46] by coupling two lossy cavities, both supporting a me-
chanical resonator. Because of the absence of PT symmetry,
the generated entanglement was relatively weak compared
to what is obtained here. Indeed, adiabatic approximation
was used in Ref. [45] and both cavities were driven by
blue-detuned lasers. The resulting amount of entanglement
was weak compared to what is generated in Ref. [46].
However, by driving the cavities by blue- and red-detuned
lasers, respectively, it is shown that the amount of generated
entanglement increases [46]. In this work, we point out that
PT symmetry has boosted the generation of entanglement in
our system.

The effect of the PA on the entanglement is shown in
Fig. 4(c). As the gain χ of the PA increases, the entanglement
enhances, but mostly for relatively weak driving strength
αin. With the help of the stability studied in Sec. III, the
entanglement can be further enhanced, as shown in Fig. 4(d).

It is also important to address the effect of noise on the
studied entanglement. Such concern addresses the robustness
of this kind of entanglement against decoherence. This is
investigated in Fig. 5, where entanglement is plotted versus
thermal noise for na = 10−3. One remarks that the optical
mode inside the gain cavity and the mechanical mode are still
entangled for thermal noise up to nth = 300. However, the
weakness of the entanglement against thermal noise can be
pointed out in the presence of the PA (compare gray and black
curves in Fig. 5). It is shown that the entanglement is enhanced
in gain and loss COM compared to the conventional case.
Furthermore, this entanglement is improved in the presence of
the PA, as already stated in Refs. [14] and [15]. The robustness
of this entanglement against decoherence is highlighted.

It is noteworthy that the combined effects of PA and the gain
cavity lead to instabilities. In order to avoid these instabilities
and to investigate the effect of χ , we considered the far
imbalanced cavities case by choosing a small value of κ [see
Figs. 4(c), 4(d) and 5].
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FIG. 4. (a) Logarithmic negativity EN vs αin in the conventional COM. (b),(c) The entanglement EN vs αin between the gain cavity and
the mechanical modes. (b) χ = 0, κ = 0.1γ , and different values of J . (c) EN vs αin, for κ = 10−5γ , J = γ , and different values of χ . (d) EN

vs J for αin = 3 × 103√γ , κ = 10−5γ , and different values of χ . These curves are plotted in the absence of noises (nth = na = 0).

In order to show enhancement of entanglement in the
PT -symmetry system compared to what is generated in a
lossy coupled COM, we address a comparative study with
lossy coupled COM [45,46]. By choosing a negative value of
κ (κ < 0), our coupled COM presented in Fig. 1 becomes
a lossy coupled COM [38,45,46]. The amount of distant
entanglement is captured by the logarithmic negativity as
described before. We first compare the couplings resulting in
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FIG. 5. Logarithmic negativity EN vs thermal noise nth, for αin =
3 × 103√γ , κ = 10−5γ , J = 0.8γ , and different values of χ .

both configurations and then conclude regarding the induced
entanglement. Figures 6(a) and 6(b) compare the effective
coupling G1 for |κ| = 0.1γ and |κ| = 0.8γ , respectively. The
full lines are stable, while the dashed ones are unstable. In
both cases, the coupling strength is improved in the gain and
loss COM and this is an indication that entanglement will
be enhanced accordingly as well. Remarkably, the couplings
get closer as |κ| decreases. Indeed, the couplings are closer
for |κ| = 0.1γ [Fig. 6(a)] than for |κ| = 0.8γ [Fig. 6(b)].
Furthermore, we have checked that for a weak value of κ (|κ| ≈
5 × 10−2γ ), there is no difference (at least on the coupling
strength) between the PT -symmetry COM case and the lossy
coupled cavities case. Figures 6(c) and 6(d) show distant
entanglement generated in both configurations for |κ| = 0.1γ

with J = γ and J = 0.8γ , respectively. The entanglement
captured in Fig. 6(c) corresponds to the coupling shown in
Fig. 6(a). As expected, the generated entanglement in the
PT -symmetry configuration is slightly enhanced compared to
what is obtained in the lossy coupled COM case [see Fig. 6(c)].
Let us keep in mind that weak coupling rate J can be related
to a large distance between cavities, while strong coupling
rate J means a tiny separation between them. In this sense,
one deduces from Fig. 4(d) that as the separation between the
cavities increases, the distant entanglement decreases. As J =
0.8γ in Fig. 6(d), we deduce that the PT -symmetry COM is
the best configuration to enhance distant entanglement. Indeed,
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FIG. 6. (a),(b) The effective optomechanical coupling G1 vs the driving αin for J = γ , with (a) κ = 0.1γ and (b) κ = 0.8γ . (c),(d) The
distant entanglement vs the driving αin for κ = 0.1γ with (c) J = γ and (d) J = 0.8γ . Black lines are for the gain and loss coupled cavities,
while the blue lines are for the loss and loss coupled cavities. Full lines are stable and the dashed lines are unstable.

by decreasing the coupling rate J (increasing the separation),
one gets a net enhancement of distant entanglement in the
PT -symmetry case compared to what is generated in the lossy
coupled COM [Fig. 6(d)]. Thus,PT -symmetry COM is a good
candidate to enhance distant entanglement.

V. CONCLUSION

We have studied a system of coupled active and passive
resonators with the focus on steady-state stability analysis and
the possible generation of distant CV entanglement. We have
shown through linear stability analysis that the steady-state
solutions are generally unstable in the broken-PT -symmetry
regime and are more stable in the unbroken-PT -symmetry
phase. The general statement follows that the system is
more stable (unstable) for large (small) tunneling coupling
rate J . Conversely, the system is stable (unstable) for small
(large) gain-loss parameter. We found that the stable solutions
correspond to relatively large driving strength, compared
to the single loss cavity case. Consequently, this increases

the optomechanical coupling between the mechanical mode
and the optical field inside the gain cavity. It results in
an enhancement of steady-state CV entanglement between
these modes. It also appears from a comparative study with
lossy coupled COM that for weak values of κ , there is no
difference between the two cases regarding the coupling and
the entanglement; and for large κ , there is a net enhancement of
both coupling and entanglement in the gain-loss case compared
to what is obtained in the loss-loss cavities case. For more
entanglement generation, this work suggests exploitation of
the presence of a squeezing element inside the active-passive
COM. Such nonclassical states can represent an ideal play-
ground for investigating and comparing decoherence theories
and modifications of quantum theory at the macroscopic level.
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