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Fluid photonic crystal from colloidal quantum dots
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We study optical forces acting upon semiconductor quantum dots and the force-driven motion of the dots in a
colloid. In the spectral range of exciton transitions in quantum dots, when the photon energy is close to the exciton
energy, the polarizability of the dots is drastically increased. It leads to a resonant increase of both the gradient
and the scattering contributions to the optical force, which enables the efficient manipulation with the dots. We
reveal that the optical grating of the colloid leads to the formation of a fluid photonic crystal with spatially
periodic circulating fluxes and density of the dots. Pronounced resonant dielectric response of semiconductor
quantum dots enables a separation of the quantum dots with different exciton frequencies.
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I. INTRODUCTION

Optical fields interacting with micro- and nanoparticles
induce sizable mechanical forces acting upon the particles,
which enables their trapping and precise manipulation [1,2].
Such noninvasive optomechanical approaches have been
demonstrated for dielectric [3–5], metallic [6–9], semicon-
ductor [10–12] particles, as well as biological cells [13–15].
Using photonic interference schemes, one can create the arrays
of optical traps and form the lattices of dielectric particles
[16] or biomolecules [17]. Among other achievements of
optomechanics are measurements of interaction forces be-
tween molecules [18] and optical forces with femtonewton
resolution [19].

Highly interesting objects for optical trapping and ma-
nipulation are colloidal nanocrystals (or quantum dots, QDs)
[10–12], since they are important for sensor and biological ap-
plications, particularly as superior fluorescent labels [20–23].
The optical force acting upon a QD is determined by the
dot polarizability [24], which has a resonant behavior at
the frequency of exciton transitions in the QD, when the
radiation excites electron-hole pairs (excitons) in the dot
[25,26]. Far from the exciton resonance, the polarizability is
given by the background dielectric contrast between the QD
material and the environment and commonly described by the
Clausius-Mossotti relation. Optical trapping of colloidal CdTe-
and CdSe-core QDs in such conditions has been demonstrated
in Refs. [10–12]. Close to the exciton resonance, the QD polar-
izability and, correspondingly, the optical force are drastically
enhanced. Currently, there is a lack of theoretical studies of this
effect as well as the optical-force-driven dynamics of quantum
dots in the colloid.

Here, we study the optical force acting upon a QD and
the force-driven fluxes of QDs in a colloid induced by optical
grating. We consider that the dielectric response of a QD is
caused by exciton transitions and has a resonant behavior.
The force can be split in two contributions: the gradient force
and the scattering-absorption force determined by the real
and imaginary parts of the susceptibility, respectively [24,27].
Close to the excitonic resonance, both contributions increase
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and are comparable to each other. In the presence of both
contributions, the total force is nonconservative and cannot
be described by a potential. Therefore, the optical grating of
a colloid leads to the formation of spatially periodic density
of the dots as well as the emergence of spatially periodic
circulating fluxes of the dots (Brownian vertexes [28]). The
emerging modulation of the QD density and fluxes results,
in turn, in the periodic modulation of the optical properties
of the colloid, such as the refractive index. As a result, the
system demonstrates the properties of a photonic crystal. By
considering the interplay of optical forces and the processes of
viscous friction and diffusion of dots, we study the occurrence
of such a fluid photonic crystal from colloidal dots. We
calculate the steady-state distributions of the dot density and
fluxes as well as the time scales of the photon crystal formation.

II. THEORY

A. Optical force acting upon a quantum dot

We consider a cell with a colloidal solution of semi-
conductor QDs excited by two coherent laser beams of the
s polarization and the same frequency ω, as shown in Fig. 1.
The laser fields interfere and produce an optical grating. The
total electric field of the radiation in the solution is given by
E(r,t) = Re[E(r)e−iωt ], where

E(r) = (E1e
iq1·r + E2e

iq2·r)ŷ , (1)

E1 and E2 are the (real) amplitudes of the laser electric
fields in the solution, which are determined by the amplitudes
of the incident fields, E10 and E20, respectively, and the
Fresnel transmission coefficient; q1 = q (sin θ,0, cos θ ) and
q2 = q (− sin θ,0, cos θ ) are the wave vectors, where q =
ωnω/c and θ is the angel of refraction, which is related to
the angle of incidence θ0 by Snell’s law sin θ0 = nω sin θ ;
nω is the refractive index of the solution; c is the speed of
light; and ŷ is the unit vector along the y axis. The intensity of
the radiation I for the geometry we consider depends on the x

axis only and is given by

I = cnω

8π
|E|2 = cnω

8π

[
E2

1 + E2
2 + 2E1E2 cos(2xq sin θ )

]
.

(2)
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FIG. 1. Optical grating in a colloidal solution of quantum dots
induced by two coherent laser beams leads to the emergence of a
position-dependent optical force acting upon quantum dots. Color
intensity illustrates the distribution of radiation intensity in the cell
with the colloid; h is the depth of the cell.

The radiation interacts with a QD and produces a force
acting upon the dot. For the case of small QDs compared to
the light wavelength (typical QD sizes are a few nm while
the light wavelength in a colloid is few hundred of nm), the
projections of the optical force acting upon the dot located at
the r point are given by [2,24]

Fj (ω) = 1

2

∑
j ′

Re

[
α Ej ′(r)

∂E∗
j ′(r)

∂rj

]
, (3)

where j and j ′ run over the Cartesian coordinates x, y, and
z; Ej (r) is the j projection of the electric field in the colloid
E(r) given by Eq. (1); and α is the QD polarizability. The
optical force is proportional to the QD polarizability and scales
quadratically with the electric field. This is because the force
originates from the interaction of the oscillating electric dipole
moment of the QD, induced in turn by the ac electric field
and determined by the dot polarizability, with the ac electric
field. In the regime of weak light-matter coupling, which we
consider, for the electric field in Eq. (3) it is sufficient to
use the unperturbed field of the laser beams (1). We note,
however, that the optical force requires more sophisticated
self-consistent calculations if the particle itself considerably
affects the electric field distribution as can happen, e.g., in the
case of strong light confinement [29–32].

The dielectric response of the QD caused by exciton
transitions within the dot has a resonant behavior and the
polarizability has the form [26]

α(ω,q) = πa3
BωLT

ω0 − ω − i
(
� + q3a3

BωLT /6
) , (4)

where ω0 is the resonance frequency corresponding to the
exciton transitions, aB is the Bohr radius of the exciton, ωLT

is the frequency corresponding to the longitudinal-transverse
splitting of exciton states in the host semiconductor of the
QD, which determines the strength of light-matter coupling in
semiconductors at interband optical transitions. The radiative
decay rate of excitons is described by the term q3a3

BωLT /6, the
parameter � stands for the nonradiative decay rate of excitons.
The background dielectric contrast of the QD material and the
liquid substance is neglected.

Straightforward calculations show that the optical force
has two contributions: F = F(gr) + F(sc). The first (gradient)

contribution F(gr) is determined by the real part of the QD
polarizability. Substitution of Eq. (1) for the electric field in
Eq. (3) yields

F (gr)
x = −q sin θ (Reα)E1E2 sin(2xq sin θ ). (5)

Taking into account Eq. (4) for the QD polarizability and
Eq. (2) for the intensity of radiation, we obtain

F (gr)
x = 2π2

cnω

a3
B ωLT (ω0 − ω)

(ω0 − ω)2 + (
� + q3a3

BωLT /6
)2

dI

dx
. (6)

This contribution to the optical force is directed along or
opposite to the light intensity gradient depending on the
detuning between the laser field frequency and the exciton
frequency.

The second contribution F(sc), commonly referred to as
the scattering and absorbing force, is determined by the
imaginary part of the QD polarizability and has nonzero
x and z projections. They can be obtained by the substitution
of Eqs. (1) and (4) in Eq. (3), which yields

F (sc)
x = q sin θ

2
(Imα)

[
E2

1 − E2
2

]
= q sin θ

2

πa3
B ωLT

(
� + q3a3

BωLT /6
)

(ω0 − ω)2 + (
� + q3a3

BωLT /6
)2

[
E2

1 − E2
2

]
,

(7)

F (sc)
z = q cos θ

2
(Imα)

[
E2

1 + E2
2 + 2E1E2 cos(2xq sin θ )

]
= 4π2q cos θ

cnω

a3
B ωLT

(
� + q3a3

BωLT /6
)

(ω0 − ω)2 + (
� + q3a3

BωLT /6
)2 I .

(8)

The scattering contribution to the total optical force reaches a
maximum at the frequency of the exciton resonance.

We consider in what follows that the amplitudes of the
incident laser beams are equal to each other, i.e., E1 = E2. In
this case, F (sc)

x vanishes and the scattering force points along
the line of the equal intensity of radiation. The total force can
be presented in the form

F = F0x sin(kx)x̂ + F0z[1 + cos(kx)]ẑ , (9)

where

F0x = −4π2

cnω

a3
B ωLT (ω0 − ω) q sin θ

(ω0 − ω)2 + (
� + q3a3

BωLT /6
)2 I0 ,

F0z = 4π2

cnω

a3
B ωLT

(
� + q3a3

BωLT /6
)
q cos θ

(ω0 − ω)2 + (
� + q3a3

BωLT /6
)2 I0 , (10)

k = 2q sin θ , and I0 = (cnω/4π )E2
1 . For the parameters

h̄ω0 = 2.35 eV, a3
BωLT = 0.25 × 10−6 cm3/s [26], h̄� =

30 μeV [34], and q3a3
BωLT /6 � � corresponding to CdSe

quantum dots, the optical force F0 can be estimated as 0.1 fN
for the radiation intensity I0 = 1 kW/cm2.

B. Circulating currents and separation of dots

In the presence of the scattering contribution, the total
optical force is nonconservative (does not conserve mechanical
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energy) and cannot be described as a gradient of the light-
induced potential. Mathematically, it follows from the fact
that ∇ × F �= 0 for the force F given by Eq. (9) and the
net work done by the optical force in moving a dot around
a closed loop is nonzero. Therefore, the optical grating of a
colloidal solutions leads not only to the formation of spatially
periodic density of the dots but also to the emergence of
spatially periodic circulating fluxes of the dots. The emergence
of a Brownian vortex of a similar nature in a single-beam
optical tweezer has been demonstrated in Ref. [28]. The
one-dimensional motion of dielectric particles in an viscous
medium in an optical waveguide was considered in Ref. [32].

The kinetics of quantum dots in the solution is governed
by the interplay of the optical forces and the forces of viscous
friction as well as the processes of dot diffusion. The local
concentration of the dots n(x,z,t) and the dot flux j(x,z,t) are
related by the continuity equation

∂n

∂t
+ ∇ · j = 0 . (11)

The dots flux consists of the drift and diffusion terms,

j = j(drift) + j(diff) . (12)

The drift term is proportional to the optical force driving the
dots and given by

j(drift) = μnF , (13)

where μ is the mobility of dots in the solution. The diffusion
term is determined by the spatial inhomogeneity of the dot
concentration and has the form

j(diff) = −D ∇ n , (14)

where D is the diffusion coefficient. In thermal equilibrium,
the mobility and the diffusion coefficient are connected with
each other by the Einstein relation D = μkBT , where kB

is the Boltzmann constant and T is the temperature. The
diffusion coefficient of quantum dots with radii 15–20 nm
in the glycerol-water solutions with the viscosity 45–55 cP
at room temperature was experimentally determined to be
0.5–0.7 μm2/s [33]. These experimental values were found
to be in a good agreement with the Stokes-Einstein relation for
the diffusion coefficient of spherical particles in a liquid with
a low Reynolds number.

To solve the equation set (11)–(14), we present the local
concentration of the dots as the sum n = n0 + δn, with n0

being the average concentration and δn being the correction.
Then, in the regime linear in the light intensity, Eqs. (11)–(14)
yield

∂ δn

∂t
− D	δn = −μn0 ∇ · F (15)

and

j = μn0 F − D ∇ δn . (16)

Equations (15) and (16) are to be solved with boundary
conditions. We consider the boundary conditions of zero fluxes
through the cell bottom and top, i.e.,

jz|z=±h/2 = 0 , (17)

where h is the cell depth.

For the particular form of the optical force given by Eq. (9),
the solution of the diffusion Eq. (15) can be presented in the
form

δn(x,z,t) = a(z,t) + b(z,t) cos(kx) . (18)

This decomposition leads to the equations

∂a

∂t
− D

d2a

dz2
= 0,

∂b

∂t
− D

(
d2b

dz2
− k2b

)
= −μn0F0xk ,

(19)

and the boundary conditions

da

dz

∣∣∣∣
z=±h/2

= n0F0z

kBT
,

db

dz

∣∣∣∣
z=±h/2

= n0F0z

kBT
, (20)

where we took into account the relation D = μkBT .
Equations (19) with the boundary conditions (20) and an

arbitrary initial distribution of quantum dots in the solution
can be solved by the Laplace transform method. We assume
that the solution was initially in thermal equilibrium and then,
at t = 0, the laser radiation is switched on. In this case, the
functions a(z,t) and b(z,t) at t � 0 are given

a(z,t) = n0F0z

kBT

[
z − 4

h

∞∑
n=0

(−1)n sin knz

k2
n

e−Dk2
nt

]
,

b(z,t) = −n0F0x

kBT k

[
1 − e−Dk2t

] + n0F0z

kBT k

[
sinh kz

cosh(kh/2)

− 4

h

∞∑
n=0

(−1)n sin knz

k2 + k2
n

e−D(k2+k2
n)t

]
, (21)

where kn = (π/h)(1 + 2n). The maps of the dot concentration
δn(x,z,t) and the dot fluxes j(x,z,t) can be readily found from
Eqs. (18) and (16), respectively.

The steady-state distributions of the dot concentration and
the dot fluxes induced by cw radiation can be obtained by
considering the limit of the functions a(z,t) and b(z,t) at
t → ∞. This yields

δn = n0F0z

kBT
z + n0

kBT

[
F0z

sinh(kz)

cosh(kh/2)
− F0x

]
cos kx

k
(22)

and

jx = μn0F0z

sinh(kz)

cosh(kh/2)
sin(kx) ,

jz = μn0F0z

[
1 − cosh(kz)

cosh(kh/2)

]
cos(kx) . (23)

The steady-state spatial modulation of dot concentration is pro-
duced by both Fx and Fz components of the optical force while
the steady-state fluxes are induced by the nonconservative
Fz component only.

III. RESULTS AND DISCUSSION

Figure 2 demonstrates the steady-state maps of the quantum
dot density n(x,z) and the dot circulating fluxes j(x,z) induced
by the optical grating of a colloidal solution. The density
distribution n(x,z) is encoded by color and the flux distribution
j(x,z) is shown by black arrows. Figures 2(a), 2(b) and 2(c)
correspond to a negative, zero, and a positive detuning ω0 − ω

033855-3



V. N. MANTSEVICH AND S. A. TARASENKO PHYSICAL REVIEW A 96, 033855 (2017)

(a)

(b)

(c)

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

FIG. 2. Steady-state distributions of the dot density (color map)
and the dot circulating fluxes (arrows) in a colloidal solution
induced by optical grating, as sketched in Fig. 1. Panels (a), (b),
and (c) correspond to the negative detuning ω0 − ω = −3�, zero
detuning ω0 = ω, and positive detuning ω0 − ω = 3�, respectively.
All the distributions are calculated after Eqs. (22) and (23) for the
parameters h̄ω0 = 2.35 eV, h̄� = 30 μeV [34], and a3

BωLT = 0.25 ×
10−6 cm3/s [26] corresponding to CdSe quantum dots, T = 300 K,
k = 0.5 × 105 cm−1, θ = 8◦, h = 1 μm, and I0 = 1 kW/cm2.

between the dot resonant frequency ω0 and the radiation
frequency ω. Typically, the resonant frequencies of the dots
in a solution have a dispersion due to, e.g., the dispersion of
the dot sizes. The optical grating leads to the formation of
a spatially periodic density of the dots in the longitudinal
direction x and inhomogeneous distribution of the dots in
the vertical direction z. The modulation δn/n0 is about 1%
for the radiation intensity 1 kW/cm2. At fixed temperature
and radiation intensity, the modulation of the QD density is
determined by the frequency detuning ω0 − ω, the radiative
and nonradiative decay rates of excitons, �, and q3a3

BωLT /6,
respectively. The nonradiative decay rate is typically much
larger than the radiative decay rate at room temperature.
Therefore, the higher degree of the QD density modulation
and the higher spectral sensitivity of the QDs are expected
for QDs with suppressed nonradiative channels of exciton
recombination.

Quantum dots with the exciton frequencies detuned from
the radiation frequency [Figs. 2(a) and 2(c)] are acted upon

(a)

(b)

(c)
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FIG. 3. Snapshots of the distributions of the dot density (color
map) and the dot fluxes (arrows) at the times (a) t = 0.002 s,
(b) t = 0.02 s, and (c) t = 0.1 s after the radiation is switched on.
The distribution are calculated for the parameters of Fig. 2(c) and the
diffusion coefficient D = 0.5 × 10−8 cm2/s.

by both the scattering component Fz and the gradient com-
ponent Fx of the optical force. The scattering component
is directed along the z axis but its magnitude depends on
the longitudinal coordinate x; see Eq. (10). It leads to the
formation of a vertical profile of the dot density and a spatially
periodic dot density in the longitudinal direction at the cell
top and bottom. More important, the scattering force gives
rise to persistent circulating fluxes of the dots shown by
black arrows. The circulating fluxes are more pronounced
in cells with the depth h comparable to and exceeding the
wavelength 2π/k since in shallower cells the vertical motion
of the dots in suppressed. The gradient component Fx leads
to the formation of a spatially periodic density of the dots in
the longitudinal direction. This effect is most clearly visible
at z = 0. The direction of the gradient force depends on the
sign of the detuning; therefore the density modulation at z = 0
is of opposite signs for the dots with positive [Fig. 2(a)] and
negative [Fig. 2(c)] detuning.

For quantum dots with the resonant frequency corre-
sponding to the radiation frequency [Fig. 2(b)], the gradient
component Fx vanishes and the kinetics is solely determined
by the scattering force Fz. The scattering force gives rise to
the inhomogeneous distribution of the dots as well as the
circulating fluxes of the dots.
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Figure 3 shows some stages of the steady-state distribution
formation after the laser radiation is switched on. As follows
from Eqs. (21), the time scale of the formation of longitudinal
periodic density of the dots is determined by the time τ =
1/(Dk2). For the wave vector k = 0.5 × 104 cm−2 and the dif-
fusion coefficient D = 0.5 × 10−8 cm2/s, this time τ ≈ 0.1 s.
Figures 3(a), 3(b), and 3(c) show the snapshots of the density
and flux distributions at t = 0.002, 0.02, and 0.1 s, respec-
tively. Just after the radiation is switched on, the dots are ho-
mogeneously distributed in the solution. At this stage, the dot
fluxes are completely determined by optical forces since there
are no contributions related to the dot density gradients. At
large times, the density gradients are formed, the fluxes become
closed, and the distributions approach the steady-state ones.

IV. SUMMARY

We have presented a theoretical study of optical forces
acting on semiconductor quantum dots in a colloid and

formation of a fluid photonic crystal from the dots by optical
grating. In such a system, the density of the dots and the fluxes
of the dots are periodically modulated in space, suggesting the
periodic modulation of the optical properties of the colloid.
By considering the interplay of the optical forces and the
processes of viscous friction and diffusion of dots, we have
calculated the steady-state distributions of the dot density and
fluxes as well as the time scales of the fluid photonic crystal
formation. The results can be employed for creating dynamic
photonic structures with tunable parameters and further study
of their optical properties. Other possible applications include
optically induced mixing of colloids and the separation of
quantum dots with different resonant frequencies.
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