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We demonstrate the fundamental links existing between two different descriptions of quantum electrodynamics
in inhomogeneous, lossy, and dispersive dielectric media which are based either on the Huttner-Barnett formalism
for polaritons [Huttner and Barnett, Phys. Rev. A 46, 4306 (1992)] or the Langevin noise approach using
fluctuating currents [Gruner and Welsch, Phys. Rev. A 53, 1818 (1996)]. In this work we demonstrate the practical
equivalence of the two descriptions by introducing the concept of the effective photon state associated with some
specific noise current distribution. We study the impact of these results on the calculation and interpretation of
quantum observables such as fluctuations, correlations, and Casimir forces.
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I. INTRODUCTION

The recent advances in quantum electrodynamics (QED)
at the nanoscale in a metallic environment [1,2], i.e., quantum
nanoplasmonics (QNP) [3,4], opened up many possibilities for
integrated quantum technologies. One of the central issues in
this field is the control over the coupling between fluorescent
quantum emitters and nanoantennas or compact plasmonic
devices [3,4]. Experimentally, many key results have been
obtained in the last decade thanks to the development of
methods like active probe near-field optical microscopy [5,6],
and to rapid progress in nanofabrication techniques and
particle synthesis [7–12].

From the theoretical point of view however, one of the
most challenging issues is still to propose a rigorous quantized
formalism for QNP including the intrinsic dispersion and
dissipation of metallic inhomogeneous systems. Over the
years two different strategies have been proposed to tackle
this difficult problem. The first general approach [13–19] is
based on the canonical quantization by Huttner and Barnett
of the Hamiltonian describing the coupling between light and
dielectric matter that includes a bath of oscillators to model
the dispersive and dissipative properties of the surrounding
medium. This approach, extending the seminal works of
Hopfield and Fano for polaritons [20–22], was established
rigorously only for the homogeneous medium case. However,
its generalization to structured nanosystems was lacking for
many years. Therefore, a second more powerful strategy, based
on a dipolar Langevin noise (DLN) formalism [23–25], was fa-
vored in which no canonical foundation was required. Instead,
fluctuating currents are phenomenologically added to deal with
the problem of dissipation and dispersion. This approach was
intensively used in the literature [26–35], e.g., for describing
optical Bloch equations in the weak or strong optical coupling
in QNP [36–44], Casimir interactions, quantum frictions and
thermal fluctuating forces [45–49], and more recently for
modeling quantum optical nonlinearities such as spontaneous
down conversion of photon pairs [50,51]. It is central to
observe that the DLN approach is a direct development of
the historical works by Rytov and others [52–55] which,
based on some considerations about the standard fluctuation

dissipation theorem for electric currents [56], was used for
justifying Casimir and thermal forces (for recent developments
of such phenomenological “fluctuational electrodynamics”
techniques in the context of nanotechnology see [57–62]). A
few years ago, it was proposed that the equivalence between
the Hamiltonian and DLN approaches should finally be
rigorous [63–69]. However, we recently showed [70–72] that a
full Hamiltonian description, generalizing the Huttner-Barnett
results [13–19] and valid for any inhomogeneous dielectric
systems, must not only include the material oscillator degrees
of freedom, i.e., like in the DLN method, but also add the
previously omitted quantized photonic degrees of freedom
associated with fluctuating optical waves coming from infinity
and scattered by the inhomogeneities of the medium [71].
Furthermore, the inclusion of both photonic and material
fluctuations on an equal footing appears necessary in order
to preserve the full unitarity of the quantum evolution and to
conserve time symmetry [55].

However, from a pragmatic perspective it is still crucial
to understand why the DLN approach works so well and to
justify its foundation on solid ground. Here, we will present
such a demonstration and show how to justify for all practical
purposes of QNP the application of DLN methods, i.e., by
removing the independent photonic degrees of freedom though
without breaking unitarity and time symmetry.

The layout of this work is as follows: In Sec. II we
give a summary of the main ingredients associated with the
generalized Huttner-Barnett approach and the DLN method
and stress the similarities and differences. In Sec. III we
give a demonstration of the equivalence between the two
approaches by defining an effective medium located at spatial
infinity. In particular we show that we must include in the
DLN an effective pure photon field which has all the classical
and quantum properties of a free photon state scattered by a
dielectric system. In Sec. IV we analyze some consequences
of our finding for the effective calculations and physical
interpretations of QNP observables such as local density of
states (LDOS), quantum fluctuations and correlations, and
Casimir and thermal forces. We conclude with a summary
and some perspectives in Sec. V.
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II. THE GENERAL HAMILTONIAN FOR THE
DESCRIPTION OF A LOSSY DIELECTRIC MEDIUM

A. Contribution of photonic and material degrees of freedom
to the electric field operator

We start with the canonical description given in
Refs. [70,71] in the Heisenberg picture. It is based on a
dual formalism involving an electric potential vector operator
F(x,t) such that ∇ · F = 0 (dual Coulomb gauge) and D =
E + P = ∇ × F, where D is the transverse displacement field,
E is the electric field, and P is the total dipole density of
the medium. P is the sum of the induced dipole density∫ t−t0

0 χ (x,τ )dτE(x,t − τ ), characterized by the initial time t0
and the linear dielectric susceptibility χ (x,τ ) (i.e., satisfy-
ing Kramers-Krönig relations), and P(0)(x,t) the fluctuating

dipole density given by
∫ +∞

0 dω

√
h̄ε′′

ω(x)
π

[f(0)
ω (x,t) + f†(0)

ω (x,t)],
with ε′′

ω := Im[εω] the imaginary part of the local dielectric
permittivity εω = ε′

ω(x) + iε′′
ω. In this description f(0)

ω and
f†(0)
ω are respectively lowering and rising bosonic vector field

operators associated with the fluctuating bath of material
oscillators, i.e., rigorously equivalent to those operators given
in the standard DLN approach. Moreover, in Refs [70–72] we
showed that these noise operators are related to the total field
operators at the initial time t0, i.e., f(0)

ω (x,t) = fω(x,t0)e−iω(t−t0).
This is essential since the choice of retarded causal Green
functions involves necessarily a boundary condition in the
remote past at t0 < t . Therefore as discussed in Ref. [71]
our formalism preserves time symmetry and allows other
equivalent descriptions involving “advanced” Green functions
and boundary conditions at a future time tf > t . The present
choice is of course dictated by physical considerations not part
of QED but connected to thermodynamics and cosmology. We
also point out that in the general case, i.e., when external
systems such as fluorescent molecules are coupled to the
fields we have to add to P a contribution P(mol.)(x,t) [72], here
unspecified. Within this dual formalism we can show that the
electromagnetic field operators satisfy Maxwell’s equations
and, since both D and the magnetic field B are transverse, it
is not necessary to make the distinction between transverse
quantized and longitudinal otherwise unquantized fields [70].

In this subsection we will review two approaches for
expressing the electromagnetic field in the Heisenberg picture.
First, in the most fundamental approach we obtain a formal
separation of the electric field as

E(x,t) = E(v)
in (x,t) + E(v)

ret.(x,t), (1)

where E(v)
in (x,t) is the incident field associated with pure

propagative photons in vacuum while the second term E(v)
ret.(x,t)

corresponds to the total scattered field induced by the distribu-
tion P(x,t), i.e., the total polarization of the system. This view
corresponds to a microscopic picture of the system. We have
explicitly in the time domain

E(v)
ret.(x,t) =

∫ t−t0

0
dτ

∫
d3x′�(v)

ret.(τ,x,x′) · P(x′,t − τ ),

(2)

which depends on the dyadic propagator �
(v)
ret.(τ,x,x′) in

vacuum (this time dependent propagator was defined in Refs.

[70,71]). We emphasize that while in classical physics a time
independent perspective (i.e., using the Fourier transform
formalism at a given pulsation ω) is often considered, in
the quantum formalism based on the Heisenberg picture it
is important to consider explicitly the time evolution of the
various field operators. This is central in order to preserve
the unitarity of the evolution and for expressing the canonical
commutation relations in a simple way [70,71]. Additionally,
the role of causality (i.e., the use of retarded instead of
advanced propagators) and of the boundary conditions at the
time t0 is explicit in the time domain. However, after this
formulation is given it is important to go back to the frequency
domain for most practical calculations.

More precisely, writing the Fourier expansion of the electric
field Ẽω(x) = ∫ +∞

−∞
dt
2π

E(x,t)e+iωt , i.e., with t0 → −∞ [in
Ref. [71] we used instead the forward Laplace’s transforms
which works for arbitrary t0], we have

Ẽω(x) = Ẽ(v)
in,ω(x) +

∫
d3x′ ω

2

c2
G(v)

ω (x,x′) · P̃ω(x′), (3)

where G(v)
ω (x,x′) is the stationary and retarded dyadic

Green function solution of ∇ × ∇ × G(v)
ω (x,x′) −

ω2

c2 G(v)
ω (x,x′) = Iδ(x − x′) and such that �

(v)
ret (τ,x,x′) =∫ +∞

−∞
dω
2π

e−iωτ ω2

c2 G(v)
ω (x,x′). The free-field Ẽ(v)

in,ω(x) is expanded
into plane waves of pulsations ωα such as

Ẽ(v)
in,ω(x) =

∑
α,j

[
E(v)

α,j (x)c(v)
α,j (t0)eiωαt0δ(ω − ωα)

+ E∗(v)
α,j (x)c†(v)

α,j (t0)e−iωαt0δ(ω + ωα)
]
, (4)

where c
(v)
α,j and c

†(v)
α,j are respectively the lowering and rising

vacuum photon operators satisfying usual commutation rela-
tions for bosons and associated with the plane-wave modes
E(v)

α,j (x) (i.e., labeled by the quantized wave vector kα and
the transverse polarization ε̂α,j , with j = 1,2 [70,71]) which
are forming a complete orthogonal basis (with

∫
d3xE(v)

α,j (x) ·
E(v)∗

α′,j ′ (x) = h̄ωα

2 δα,α′δj,j ′ , ωα = c|kα|) in agreement with Born–
von Karman periodic boundary conditions in a large rectangu-
lar box of volume VBK → +∞ [70,71].

A second perspective is obtained if we introduce the
dielectric medium of permittivity εω(x) as a background in
which all the other sources act. Instead of Eq. (1) we use

E(x,t) = E(eff.)
in (x,t) + E(eff.)

ret. (x,t), (5)

where E(eff.)
in corresponds to the effective electromagnetic “free

field” solution of Maxwell’s equations in the dielectric medium
and where E(eff.)

ret. is the scattered field induced by the effective
dipole distribution P(eff.) = P(0) + P(mol.) in the presence of the
dielectric. We have explicitly

E(x,t) = E(eff.)
in (x,t) + E(eff.)

ret. (x,t)

= E(eff.)
in (x,t) +

∫ t−t0

0
dτ

∫
d3x′�(eff.)

ret. (τ,x,x′)

·P(eff.)(x′,t − τ ). (6)

The retarded Green dyadic propagator in the presence of
the dielectric [71,72] �

(eff.)
ret (τ,x,x′) is related to the usual
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time-independent effective Green tensor G(eff.)
ω (x,x′) [i.e.,

�
(eff.)
ret (τ,x,x′) = ∫ +∞

−∞
dω
2π

e−iωτ ω2

c2 G(eff.)
ω (x,x′)] which is the so-

lution of

∇ × ∇ × G(eff.)
ω (x,x′) − ω2εω(x)

c2
G(eff.)

ω (x,x′) = Iδ(x − x′).

(7)

Writing once again the Fourier expansion of the electric field
we have Ẽω(x) = Ẽ(eff.)

in,ω (x) + Ẽ(eff.)
ret.,ω(x) with

Ẽ(eff.)
ret.,ω(x) =

∫
d3x′ ω

2

c2
G(eff.)

ω (x,x′) · P̃(eff.)
ω (x′), (8)

and G(eff.)
ω (x,x′) obeys the recursive Lippman-Schwinger rela-

tion:

G(eff.)
ω (x,x′) = G(v)

ω (x,x′) +
∫

d3u
ω2

c2
G(v)

ω (x,u)

·(εω(u) − 1)G(eff.)
ω (u,x′)

= G(v)
ω (x,x′) +

∫
d3u

ω2

c2
G(eff.)

ω (x,u)

·[εω(u) − 1]G(v)
ω (u,x′). (9)

Like for Eq. (4) the Fourier field Ẽ(eff.)
in,ω (x) is defined by

Ẽ(eff.)
in,ω (x) =

∑
α,j

[
E(eff.)

α,j (x)c(v)
α,j (t0)eiωαt0δ(ω − ωα)

+ E∗(eff.)
α,j (x)c†(v)

α,j (t0)e−iωαt0δ(ω + ωα)
]
, (10)

where E(eff.)
α,j (x) are the classical electric fields which are

solutions of the scattering problem of a plane wave E(v)
α,j (x)

with pulsation ωα by the inhomogeneous dielectric medium
[71,72]. For these fields we have again the recursive Lippman-
Schwinger relation [71,72]:

E(eff.)
α,j (x)

= E(v)
α,j (x) +

∫
d3u

ω2
α

c2
G(v)

ωα
(x,u) · [εωα

(u) − 1]E(eff.)
α,j (u)

= E(v)
α,j (x) +

∫
d3u

ω2
α

c2
G(eff.)

ωα
(x,u) · [εωα

(u) − 1]E(v)
α,j (u),

(11)

which results from the definition [71]

Ẽ(eff.)
in,ω (x)

= Ẽ(v)
in,ω(x) +

∫
d3u

ω2

c2
G(v)

ω (x,u) · [εω(u) − 1]Ẽ(eff.)
in,ω (u)

= Ẽ(v)
in,ω(x) +

∫
d3u

ω2

c2
G(eff.)

ω (x,u) · [εω(u) − 1]Ẽ(v)
in,ω(u).

(12)

Importantly, contrarily to what occurred for the modal func-
tions E(v)

α,j (x) the set of all the fields E(eff.)
α,j (x) does not constitute

in general an orthogonal basis of modes. Still, Ẽ(eff.)
in,ω (x) is

completely determined by the knowledge of the operators
c

(v)
α,j ,c

†(v)
α,j acting on genuine free space photon states.

FIG. 1. Sketch of the two main approaches considered in the
literature for modeling the coupling between quantum dipoles [here
μ(t)] and any complex dielectric inhomogeneous environment. (a)
shows the typical situation in the Huttner-Barnett formalism where
the free space photon electric field scattered by the environment
E(eff.)

in (x,t) adds to the field produced by the dipole μ(t) and the
dielectric fluctuating dipole distribution P(0)(x,t). (b) In the dipolar
Langevin noise approach (DLN) the photon field is missing since it
is absorbed by a residual bulk permittivity ε(bulk)

ω filling the complete
Born–von Karman quantization volume VBK.

The present effective description adapted to QNP [see
Fig. 1(a)] considers on an equal footing the contributions from
E(eff.)

in (x,t) and E(eff.)
ret. (x,t) and in Refs. [71,72] we emphasized

that both are necessary for preserving time symmetry and
unitarity. Moreover, the arbitrariness concerning the time t0
allows us to obtain other equivalent field separations, e.g., in
which a contribution from the anticausal permittivity ε∗

ω(x)
is included together with scattered waves depending on a
boundary condition in the remote future at time tf [71].

B. The Langevin noise method seen
from a Hamiltonian perspective

A particularly interesting and fundamental case concerns
the homogeneous bulk medium with position independent
permittivity εω(x). Using the Laplace transform method we
showed [71] that E(eff.)

in (x,t) is exponentially damped in the
future direction and is therefore vanishing at any point and
any finite time in the limit t0 → −∞. Actually, rigorously
speaking, in classical physics where c

(v)
α,j are c numbers and

not operators (or q numbers) we can still obtain a finite
value of the field E(eff.)

in (x,t) in the bulk medium if some of
the c

(v)
α,j (defined at the initial time t0 [70,71]) are infinitely

large. In QED this is not possible but the initial state |	(t0)〉
can still be chosen in order to obtain infinite amplitudes at
t0 and therefore finite values at time t � t0. Of course, the
same is possible in the anticausal representation using a finite
time boundary condition at tf and which involves a field
E(eff.)

out (x,t) exponentially growing in the future direction [in this
alternative description the retarded and causal field E(eff.)

ret. (x,t)
is replaced by an advanced and anticausal field E(eff.)

adv. (x,t)
[71]]. Like before, the contribution of E(eff.)

out (x,t) will not
vanish if we impose specific boundary conditions |	(tf )〉
at time tf . At a fundamental level the problem is therefore
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perfectly symmetric. However, imposing infinite amplitudes in
the past or in future to preserve time symmetry is not physically
satisfactory and this particular case occurs only because the
infinitely extended bulk medium (in space or time) is rather
unphysical. Therefore, in order to remove these unwanted
features of the model one can either suppose that the medium
is not homogeneous for all time (for example before t0 or after
tf ). We can alternatively consider that the system is spatially
very large compared to the relevant physical dimensions so
that all the photonic components coming from infinity into
the region of interest (where εω(x) � const.) are sufficiently
damped, i.e., E(eff.)

in (x,t) → 0, for all practical needs.
The introduction of such a homogeneous lossy medium

is intuitively associated with the DLN method. Indeed, in
this approach the aim is to remove from the beginning the
field E(eff.)

in (x,t). For this purpose Gruner and Welsch [23–25],
and most authors after them, considered that by immersing
any physical dipolar distribution P(eff.) = P(0) + P(mol.) and
its associated inhomogeneous dielectric system with local
permittivity εω(x) into a infinitely extended bulk medium
with causal permittivity ε(bulk)

ω they could ultimately give a
clean Hamiltonian foundation to the DLN approach. In this
strategy ε(bulk)

ω is supposed to be very close from vacuum,
i.e., ε(bulk)

ω → 1 + i0+ and thus should asymptotically lead
to the ideal Langevin noise approach without photon field
E(eff.)

in (x,t) → 0. In turn for the finite sources P(eff.)(x,t) located
in or near the inhomogeneities the Green tensor G(eff.)

ω (x,u) is
assumed to be very close to the Green tensor in absence of
the weakly dissipative bulk medium (i.e., with ε(bulk)

ω = 1).
Therefore, the main postulate of the DLN formalism [see
Fig. 1(b)] is to write for the total electric field

E(x,t) = E(eff.)
ret. (x,t)

=
∫ t−t0

0
dτ

∫
d3x′�(eff.)

ret. (τ,x,x′) · P(eff.)(x′,t − τ ),

(13)

where the local permittivity εω(x) is supposed identical
to the one considered in Eq. (6). The DLN formalism is
simpler since it omits pure photonic degrees of freedom.
Therefore it apparently gives a QED-like foundation to the
phenomenological model used a long time ago by Rytov and
Lifshitz for the description of Casimir and van der Waals
interactions in terms of fluctuating currents [52–54,56]. In
turn, we now obtain several nonequivalent representations of
the physical problem corresponding to the different alternative
choices for the Green functions (i.e., retarded, advanced, or
others). In other words, the DLN method explicitly breaks
time symmetry which is a price to pay for its effectiveness and
simplicity during calculations. Clearly, something should be
added to the DLN formalism in order to preserve unitarity and
time symmetry thus keeping the symmetric role of E(eff.)

in (x,t)
and E(eff.)

ret. (x,t) needed in any self-consistent Hamiltonian
approach of electrodynamics and QNP.

In order to clarify this issue we must discuss more carefully
the role of the bulk medium in the DLN analysis. We will
show through this discussion how to remove the ambiguities
and limitations of the presently accepted DLN formalism and
therefore demonstrate a practical equivalence between the full

Huttner-Barnett Hamiltonian description of Sec. II A and an
alternative approach generalizing the DLN method originally
developed in Refs. [23–25].

III. EFFECTIVE EQUIVALENCE BETWEEN THE
LANGEVIN NOISE APPROACH AND THE

HUTTNER-BARNETT HAMILTONIAN DESCRIPTION

In the previous section we introduced two different ap-
proaches for describing the quantized electromagnetic field in
an inhomogeneous dielectric medium including dispersion and
losses. In the first approach (see Sec. II A) we reviewed the
generalized Huttner-Barnett model based on a Hamiltonian
description [70–72]. In this approach both the photon field
and the surrounding dielectric material environment are
quantized and therefore the model includes canonical variables
associated with both photon and material oscillators. In the
second approach based on the work of Gruner, Welsch, and
co-workers [23–25] the photon field is not an independent
degree of freedom. This leads to a formal generalization of the
fluctuational electrodynamics proposed by Rytov and Lifshitz
[52–54,56]. In the present section we will show that while
the Huttner-Barnett approach is clearly the only one which
preserves unitarity and causality we can for all practical pur-
poses use instead the fluctuational electrodynamics formalism
if we are able to interpret properly the role of the free photon
field in the Huttner-Barnett description. For this purpose we
will define an effective represented in Fig. 2 in which all

FIG. 2. Sketch of the amended DLN formulation of the problem
shown in Fig. 1. The system is filled with a weakly dissipative bulk
medium with permittivity ε(1)

ω (x) extending to infinity (the volume
V1 → VBK) and absorbing any pure and scattered photon modes
E(eff.)

in (x,t). The physical system considered in Fig. 1(a) is located
near the center of the large empty region of volume V2 ⊂ V1. The
dipole distribution located in the region V1 − V2 (i.e., corresponding
to the far field of the physical system in V2) acts as a source of effective
photons E(eff.,′)

in (x,t) having all the properties of the pure photon field
E(eff.)

in (x,t) of Fig. 1(a).
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relevant objects and dielectric systems considered in Sec. II A
are surrounded by an absorbing dielectric medium located
at infinity. We will show that for all practical calculations
inside this volume the genuine free photon field vanishes.
Additionally we will prove that the surrounding medium of
permittivity ε1

ω generates a fluctuational dipolar field which
has all the properties of the free photon field considered
previously. This effective photon field will allow us to define
an equivalence between the Huttner-Barnett and fluctuational
electrodynamics formalisms.

A. A more rigorous definition of the effective
surrounding medium

As an important preliminary result we first consider a
dielectric medium such that the linear local susceptibility
[70] 2πχ̃ω(x) = εω(x) − 1 is split into two contributions
χ̃ (1+2)

ω (x) = χ̃ (1)
ω (x) + χ̃ (2)

ω (x). At that stage the explicit physi-
cal meaning of this separation is not needed and the results are
very general. In Ref. [71] we showed that Eq. (8) reads

Ẽω(x) = Ẽ(eff.,1+2)
in,ω (x) +

∫
d3x′ ω

2

c2
G(eff.,1+2)

ω (x,x′) · P̃(eff.)
ω (x′)

(14)

with the hierarchy

Ẽ(eff.,1+2)
in,ω (x) = Ẽ(eff.,1)

in,ω (x) +
∫

d3u
ω2

c2
G(eff.,1)

ω (x,u)

·2πχ̃ (2)
ω (u)Ẽ(eff.,1+2)

in,ω (u),

G(eff.,1+2)
ω (x,x′) = G(eff.,1)

ω (x,x′) +
∫

d3u
ω2

c2
G(eff.,1)

ω (x,u)

·2πχ̃ (2)
ω (u)G(eff.,1+2)

ω (u,x′) (15)

and

Ẽ(eff.,1)
in,ω (x) = Ẽ(v)

in,ω(x) +
∫

d3u
ω2

c2
G(v)

ω (x,u)

·2πχ̃ (1)
ω (u)Ẽ(eff.,1)

in,ω (u),

G(eff.,1)
ω (x,x′) = G(v)

ω (x,x′) +
∫

d3u
ω2

c2
G(v)

ω (x,u)

·2πχ̃ (1)
ω (u)G(eff.,1)

ω (u,x′). (16)

In defining Eq. (16), which is reminiscent of Eq. (1), we
introduced the medium of permittivity ε(1)

ω (x) = 2πχ̃ (1)
ω (x) + 1

as immersed in vacuum while in Eq. (15) we constructed an
effective medium 1 + 2 by adding a susceptibility 2πχ̃ (2)

ω (x)
immersed in background 1 of susceptibility 2πχ̃ (1)

ω (x).
For the present problem we now consider as background

medium 1 a quasihomogeneous susceptibility in a large
volume V1, i.e., such that 2πχ̃ (1)

ω (x) � 2πχ̃ (1)
ω is spatially in-

dependent of the position vector x ∈ V1, while 2πχ̃ (1)
ω (x) � 0

for points x outside V1. With such a choice the field
Ẽ(eff.,1)

in,ω (x) � 0 with an arbitrary large precision for any point
x ∈ V1 if V1 → +∞ is large enough. Physically speaking,
this is justified since the incident waves coming from infinity,
and characterized by the field Ẽ(v)

ω (x), are weakly reflected
by the medium (the typical reflection Fresnel coefficient at

the boundary 
1 surrounding V1 is R ∼
√
ε(1)
ω −1√

ε(1)
ω +1

→ 0 and

the transmission coefficient is T ∼ 2
√

ε
(1)
ω√

ε
(1)
ω +1

→ 1). However,

the transmitted waves are always exponentially damped in
the causal medium 1 due to losses and the resulting field
Ẽ(eff.,1)

in,ω (x) � 0 therefore cancels for points x ∈ V1 located
sufficiently far apart from the boundary 
1 = ∂V1 surrounding
V1. Here we will suppose that we work exclusively in this
regime and we will furthermore add the hypothesis that
ε(1)
ω → 1 + i0+ meaning that the volume V1 has to be very

large in order to get Ẽ(eff.,1)
in,ω (x) � 0.

In the next step, we insert in medium 1 a inhomogeneous
distribution of dielectric matter characterized by 2πχ̃ (2)

ω (x) and
we also consider external molecular dipoles with distribution
P(mol.)(x,t). All these systems are supposed to be far away
from the boundary 
1 and for definiteness we will consider
that all the points x and systems of interest are located in
the volume V2  V1. More specifically in order to define
medium 2 we introduce in volume V1 a large void of volume V2

containing all relevant molecular sources P(mol.)(x,t) and the
relevant localized dielectric objects of susceptibility 2πχ̃ (3)

ω (x).
Furthermore, in this model all the points x of physical interest
and the material systems including the distribution 2πχ̃ (3)

ω (x)
and the molecular dipoles P(mol.)(x,t) are far apart from the
boundary 
2 = ∂V2 surrounding V2 (see Fig. 2). In such
a problem medium 1 is located infinitely far away from
the physical systems and can be interpreted as an absorber
modeling the rest of the universe (this is reminiscent of
the absorber introduced by Wheeler and Feynman but the
strategy used by them was clearly different). We thus choose
as susceptibility 2πχ̃ (2)

ω (x),

2πχ̃ (2)
ω (x) = −2πχ̃ (1)

ω (x) + 2πχ̃ (3)
ω (x) if x ∈ V2, (17)

and 2πχ̃ (2)
ω (x) = 0 otherwise. If we consider χ̃ (1+2)

ω (x) we
conclude that the term with the minus sign in Eq. (17)
exactly compensates the susceptibility 2πχ̃ (1)

ω for x ∈ V2

and therefore at the end the resulting material system 1 + 2
located in V2 contains only molecular dipoles P(mol.)(x,t) and
an inhomogeneous dielectric medium with local permittivity
ε(3)
ω (x) = 2πχ̃ (3)

ω (x) + 1.
Going back to Eq. (14) for the total system 1 + 2 this

suggests to us to rewrite

Ẽω(x) = Ẽ(eff.,1+2,′)
in,ω (x)+

∫
V2

d3x′ ω
2

c2
G(eff.,1+2)

ω (x,x′) · P̃(eff.)
ω (x′)

(18)

with the new effective field

Ẽ(eff.,1+2,′)
in,ω (x)

= Ẽ(eff.,1+2)
in,ω (x) +

∫
V1−V2

d3x′ ω
2

c2
G(eff.,1+2)

ω (x,x′) · P̃(0)
ω (x′),

(19)

in which the integration is taken over the complementary
volume V1 − V2.

Moreover, from its definition in Eq. (19) Ẽ(eff.,1+2,′)
in,ω (x)

fulfills homogeneous Maxwell’s equations in a dielectric
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medium with permittivity ε(3)
ω (x) for any points x ∈ V2. This

suggests to interpret this field as an effective photon field.
Furthermore, from the two recursive relations in Eq. (15) we
can rewrite Eq. (19) as

Ẽ(eff.,1+2,′)
in,ω (x) = Ẽ(eff.,1,′)

in,ω (x) +
∫

d3u
ω2

c2
G(eff.,1+2)

ω (x,u)

· 2πχ̃ (2)
ω (u)Ẽ(eff.,1,′)

in,ω (u), (20)

with the new field variable

Ẽ(eff.,1,′)
in,ω (x)

= Ẽ(eff.,1)
in,ω (x) +

∫
V1−V2

d3x′ ω
2

c2
G(eff.,1)

ω (x,x′) · P̃(0)
ω (x′). (21)

Equation (20) is formally identical to Eq. (15) if we omit
the “prime” symbol. This corresponds to the difference of
definitions used for Ẽ(eff.,1,′)

in,ω (x) and Ẽ(eff.,1)
in,ω (x) respectively.

We emphasize that while Ẽ(eff.,1)
in,ω (x) is intrinsically connected

to the knowledge of the photon operator c
(v)
α,j and c

(v)†
α,j in

vacuum the alternative field Ẽ(eff.,1,′)
in,ω (x) additionally introduces

an independent contribution from the dipole density P̃(0)
ω in

the volume V1 − V2 so that these fields are not rigorously
equivalent.

We observe that for the system considered here the
condition Ẽ(eff.,1)

in,ω (x) � 0 x ∈ V1 implies [i.e., from Eq. (15)]
Ẽ(eff.,1+2)

in,ω (x) � 0 in the same volume V1. Therefore, the field
Ẽ(eff.,1+2,′)

in,ω (x) is with a very good approximation calculated as

Ẽ(eff.,1+2,′)
in,ω (x) �

∫
V1−V2

d3x′ ω
2

c2
G(eff.,1+2)

ω (x,x′) · P̃(0)
ω (x′),

(22)

and similarly

Ẽ(eff.,1,′)
in,ω (x) �

∫
V1−V2

d3x′ ω
2

c2
G(eff.,1)

ω (x,x′) · P̃(0)
ω (x′), (23)

which now depends only on the dipole density P̃(0)
ω in the

volume V1 − V2 and not anymore on the free photon operators.
All this discussion was done in order to remove the

field Ẽ(eff.,1+2)
in,ω (x) and to consider instead the effective field

Ẽ(eff.,1+2,′)
in,ω (x). Now if we go back to Eq. (15) for the Green

tensor in the full medium 1 + 2 we have

G(eff.,1+2)
ω (x,x′) = G(eff.,1)

ω (x,x′) +
∫

V2

d3u
ω2

c2
G(eff.,1+2)

ω (x,u)

· 2πχ̃ (3)
ω (u)G(eff.,1)

ω (u,x′) −
∫

V2

d3u
ω2

c2

× G(eff.,1+2)
ω (x,u) · 2πχ̃ (1)

ω (u)G(eff.,1)
ω (u,x′).

(24)

However, since χ̃ (1)
ω → 0+ the last term in Eq. (24) is negligible

compared to the two other terms. Therefore for x ∈ V2 we get

G(eff.,1+2)
ω (x,x′) � G(eff.,1)

ω (x,x′) +
∫

V2

d3u
ω2

c2
G(eff.,1+2)

ω (x,u)

·2πχ̃ (3)
ω (u)G(eff.,1)

ω (u,x′). (25)

This is exactly the integral definition of the Green tensor
G(eff.,3)

ω (x,x′) obtained in the presence of the dielectric medium
with permittivity χ̃ (3)

ω without the surrounding medium 1 with
susceptibility 2πχ̃ (1)

ω :

G(eff.,3)
ω (x,x′) = G(v)

ω (x,x′) +
∫

V2

d3u
ω2

c2
G(v)

ω (x,u)

·2πχ̃ (3)
ω (u)G(eff.,3)

ω (u,x′). (26)

Therefore, for x ∈ V2, we can rewrite Eq. (19) as

Ẽ(eff.,1+2,′)
in,ω (x) � Ẽ(eff.,1,′)

in,ω (x) +
∫

V2

d3u
ω2

c2
G(eff.,3)

ω (x,u)

· 2πχ̃ (3)
ω (u)Ẽ(eff.,1,′)

in,ω (u), (27)

and Eq. (18) as

Ẽω(x) � Ẽ(eff.,1+2,′)
in,ω (x) +

∫
V2

d3x′ ω
2

c2
G(eff.,3)

ω (x,x′) · P̃(eff.)
ω (x′).

(28)

The two last equations are very similar to the results we would
obtain for the description of the total field in presence of
the dielectric medium 3 alone, i.e., without the surrounding
medium 1. For this different problem we indeed have

Ẽ(eff.,3)
in,ω (x) = Ẽ(v)

in,ω(x) +
∫

V2

d3u
ω2

c2
G(eff.,3)

ω (x,u)

·2πχ̃ (3)
ω (u)Ẽ(eff.,3)

in,ω (u), (29)

and

Ẽω(x)

= Ẽ(eff.,3)
in,ω (x) +

∫
V2

d3x′ ω
2

c2
G(eff.,3)

ω (x,x′) · P̃(eff.)
ω (x′). (30)

Formally, the equivalence would be complete if we could
write Ẽ(eff.,1,′)

in,ω (x) = Ẽ(v)
in,ω(x). This is of course not rigorously

possible since Ẽ(eff.,1,′)
in,ω (x) is a solution of homogeneous

Maxwell’s equation in the bulk medium 1 while Ẽ(v)
in,ω(x) is

a solution of homogeneous Maxwell’s equations in vacuum.
Also, from the QED or QNP point of view the operators are
not acting on the same Hilbert spaces since one field acts on
the pure material oscillator states while the other acts on the
pure photon states. Still, since χ̃ (1)

ω → 0+ we must show that
these problems are not fundamental for a practical perspective.
In order to do that we have to consider more in detail the
dynamics and the commutation relations associated with the
electric-field operator Ẽ(eff.,1,′)

in,ω (x) to see that we can indeed
consider this field as describing a kind of effective photon
field.

B. Effective photon field

We remind that in Ref. [71] we studied the problem of the
homogeneous bulk medium in detail using the Laplace trans-
form method for solving Maxwell’s equations in the Heisen-
berg representation. We showed that in the limit where this
medium 1 with susceptibility 2πχ̃ (1)

ω is infinitely extended
(i.e., filling the full Born–von Karman volume VBK) and in
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the absence of molecular dipoles, i.e., P(mol.)(x,t) = 0, we can
split the retarded field

Ẽ(eff.,1)
ret.,ω (x) =

∫
VBK

d3x′ ω
2

c2
G(eff.,1)

ω (x,x′) · P̃(0)
ω (x′) (31)

into a purely transverse (i.e., solenoidal) field Ẽ(eff.,1)
ret.,⊥,ω(x) and

into a purely longitudinal (i.e., irrotational) field Ẽ(eff.,1)
ret.,||,ω(x)

such that for ω > 0

Ẽ(eff.,1)
ret.,⊥,ω(x) =

∑
α,j

ω2E(v)
α,j (x)

ω2
α − ω2ε

(1)
ω

√
2h̄ε

′′,(1)
ω

π

f
(0)
ω,α,j (t0)eiωαt0

√
h̄ωα

,

Ẽ(eff.,1)
ret.,||,ω(x) = −

∑
α

eikα ·x k̂α√
VBKε

(1)
ω

√
h̄ε

′′,(1)
ω

π
f

(0)
ω,α,||(t0)eiωαt0 ,

(32)

and for ω < 0 we have Ẽ(eff.,1)
ret.,ω (x) = Ẽ†(eff.,1)

ret.,−ω (x). In Eq. (32) we
introduced [71] the lowering operators f

(0)
ω,α,j (t) = ∫

VBK
d3x′√

2
h̄ωα

E∗,(v)
α,j (x) · f(0)

ω (x,t) and f
(0)
ω,α,||(t) = ∫

VBK
d3x′ e−ikα ·x√

VBK
k̂α ·

f(0)
ω (x,t) satisfying the commutation rules [f (0)

ω,α,j

(t),f †(0)
ω′,β,k(t)] = δα,βδj,kδ(ω − ω′) and [f (0)

ω,α,||(t),f
†(0)
ω′,β,||(t)] =

δα,βδj,kδ(ω − ω′) (the other commutators vanish).
What is important in Eq. (32) is the presence of polariton

resonances in the frequency domain canceling the denomina-
tors of the transverse and longitudinal fields. These resonances
occur for frequencies solutions of ω2

α − ω2ε(1)
ω = 0 (transverse

modes) and ε(1)
ω = 0 (longitudinal modes). Furthermore, since

the medium is causal and lossy the solutions  are generally
located in the lower part of the complex plane (i.e., with
′′ < 0). In Ref. [71] we showed that for a weakly dissipative
medium such as a Drude-Lorentz metal it makes sense to define
different effective photon annihilation and creation operators
labeled by such polaritons modes. For the present purpose we
consider the simple Drude-Lorentz permittivity

ε(1)
ω = 1 + ω2

P

ω2
0 − (ω + iγ )2

, (33)

where ωP , ω0, γ are real and positive constants. In the limit
γ → 0+ this leads to the Hopfield-Fano polariton model
[20,21] and we get a longitudinal mode without disper-
sion ||(ωα) = ωL − iγ (ωL =

√
ω2

P + ω2
0) and two dispersive

transverse polariton branches which in the lossless limit are

given by ⊥,±(ωα) =
√

{ω2
α+ω2

L±
√

[(ω2
α+ω2

L)2−4ω2
αω2

0]}√
2

. In Ref. [71]
we showed that the effective photon annihilation operators
associated with the transverse electric field are defined by

cα,j,±(t) = 1

Nα,±

∫
δα,m

dω
ω2

ω2
α − ω2ε

(1)
ω

√
h̄ε

′′(1)
ω

π
f

(0)
ω,α,j (t),

(34)

where δα,m is a frequency window centered on the polariton
pulsation Re[⊥,±(ωα)] and where Nα,± is a normalization

constant given by
√

[ h̄⊥,±(ωα)
2

d⊥,±(ωα)2

dω2
α

]. These operators
satisfy the standard bosonic commutation relations such as

[cα,j,β (t),c†α′,j ′,β ′ (t)] = δα′,αδj ′,j δβ ′,β (with β,β ′ = ±) ensur-
ing the interpretation in term of annihilation or creation
operators.

Now, in the system we consider we will impose ω0,ωP → 0
so that the lower polariton branch with horizontal asymptote at
limωα→+∞[⊥,−(ωα)] � ωL → 0 will not play any role for
frequency ω � ωL. In this regime the upper polariton branch
has a dispersion approaching the asymptote ⊥,+(ωα) �
ωα . Therefore, for a large spectral band of frequencies
ω � ωL corresponding to the physical dielectric excitations
[associated with the operators f

(0)
ω,α,j (t0), f †(0)

ω,α,j (t0)] we will
find a quasiresonant value ω � ωα where the integrand in
Eq. (34) will be very high. In this regime the bulk medium
is quasitransparent and the mode operators have a harmonic
evolution cα,j,±(t) � cα,j,±(t0)e−iωα (t−t0). Any realistic mate-
rial excitations associated with a pulse of finite width �ω

centered on a frequency ω � ωL will thus be described by this
dynamics associated with effective photons and the transverse
electric-field operator. Furthermore, the longitudinal field will
not play any role in the formalism since ||(ωα) � ωL → 0.

We can thus write with a very good approximation
E(eff.,1)

ret. (x,t) � E(eff.,1)
ret.,⊥ (x,t) with

E(eff.,1)
ret.,⊥ (x) �

∑
α,j

E(v)
α,j (x)cα,j,+(t0)e−iωα (t−t0) + hcc, (35)

and equivalently

Ẽ(eff.,1)
ret.,⊥,ω(x) �

∑
α,j

[
E(v)

α,j (x)cα,j,+(t0)eiωαt0δ(ω − ωα)

+ E∗(v)
α,j (x)cα,j,+(t0)e−iωαt0δ(ω + ωα)

]
. (36)

Equation (36) and thus Eq. (31) are clearly reminiscent of
Eq. (4) for the pure photon field in vacuum.

We now go back to Eq. (23) for Ẽ(eff.,1,′)
in,ω (x) and realize that

in the limit V1 → VBK and V2/V1 → 0 the integral in Eq. (23)
becomes equivalent to the one in Eq. (31). Therefore we get
Ẽ(eff.,1,′)

in,ω (x) = Ẽ(eff.,1)
ret.,ω (x) which from Eq. (36) allows us to write

Ẽ(eff.,1,′)
in,ω (x) �

∑
α,j

[
E(v)

α,j (x)cα,j,+(t0)eiωαt0δ(ω − ωα)

+ E∗(v)
α,j (x)cα,j,+(t0)e−iωαt0δ(ω + ωα)

]
. (37)

Finally, from this result and after comparing Eqs. (27) and
(29) we deduce that the retarded field Ẽ(eff.,1+2,′)

in,ω (x) is formally
equivalent to the scattered photon field Ẽ(eff.,3)

in,ω (x) but now with

effective photon operators cα,j,+(t0), c†α,j,+(t0) replacing the

free space photon operators c
(v)
α,j (t0), c†(v)

α,j (t0). The two fields
do not act on the same Hilbert space but by choosing the
initial state conveniently we can map any physical problem
from one model to the other. Therefore, we showed that the
description using fluctuating dipolar sources P̃(0)

ω (x′) located in
the surrounding medium (i.e., in the volume V1 − V2) are for
all practical needs equivalent to a model involving an effective
photon field. In that sense we can say that we generalized and
completed the standard DLN formalism by including dipolar
sources P̃(0)

ω (x) located far away from the region of interest (i.e.,
in the region V1 − V2) which formally speaking are equivalent
to the pure photon field that the usual DLN approach removed.
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In other words we showed that the situation sketched in Fig. 2
[which generalizes the one shown in Fig. 1(b)] is equivalent to
the situation represented in Fig. 1(a): This is the central finding
of this article.

IV. DISCUSSIONS AND APPLICATIONS

We shall now summarize the results obtained so far. We
started by modeling an effective medium 1 + 2 including
molecular dipoles and the dielectric medium of susceptibility
2πχ̃ (3)

ω (x) well localized in a large void of volume V2. This
void is surrounded by a medium 1 of quasihomogeneous
susceptibility 2πχ̃ (1)

ω → 0+ in a volume V1 − V2 where V1

is much larger than V2 and includes entirely V2. We showed
[see Eq. (18)] that the electric field acting at any point
x near the center of V2 can be separated into a retarded
contribution of the dipole distribution P̃(eff.)

ω (x′) in V2 and
into a retarded contribution Ẽ(eff.,1+2,′)

in,ω (x) associated with the
fluctuating dipole P̃(0)

ω (x′) contained in V1 − V2 [see Eq. (22)].
We showed that this last contribution, which for x ∈ V2

satisfies the homogeneous Maxwell equation in the presence
of the dielectric medium of permittivity ε(3)

ω (x), is formally
identical to the effective photon field Ẽ(eff.,3)

in,ω (x) solution of a
different physical problem [see Eqs. (29) and (30)] in which
the same dielectric medium of permittivity ε(3)

ω (x) and the same
molecular distribution P(mol.)(x,t) as considered previously
are not anymore surrounded by a large weakly absorbing
medium of susceptibility 2πχ̃ (1)

ω but instead by vacuum. In
this new problem free photon states are allowed to propagate
and to excite points x near the medium of permittivity
ε(3)
ω (x) and the field Ẽ(eff.,3)

in,ω (x) corresponds to this scattered
component.

What is key in this demonstration is that we can, i.e., with as
large an accuracy as needed, eliminate any free space photon
state and replace it by an equivalent radiated field originating
from dipolar sources P̃(0)

ω (x′) located very far away from the
region of interest. Therefore, we get here a formalism which
is able to generalize the standard DLN procedure by replacing
free space photons (scattered by the environment) by radiative
sources located in the far field. Now, in many calculations
it is much simpler to use this alternative description without
real free photon field but using instead this concept of effective
free photon generated by fluctuating sources. The reason is that
this effective photon field is from Eq. (22) calculated using the
Green tensor G(eff.,1+2)

ω (x,x′) and we can show that for practical
calculations (i.e., for points x, x′ very far from the boundaries

2, 
1) the results are equivalent to those obtained using the
standard DLN method neglecting the surrounding environment
of susceptibility 2πχ̃ (1)

ω . In order to appreciate this fact further
we will now consider a few examples of calculations involving
correlators and fluctuations for QNP.

A. The fundamental commutation relations for QNP

In their fundamental articles introducing the DLN approach
Gruner and Welsch [23–25] explicitly calculated the canonical
commutators involving the electric or magnetic field operators
defined at two spatial positions a and b and two different times
ta and tb. These quantities are central for calculating quantum
observable associated with field fluctuations and correlations

[32]. Here, we will consider specifically the case of the
commutator [Ĕ(+)(a,ta),Ĕ(−)(b,tb)] involving the positive and
negative frequency parts of the electric field operator, which
plays a central role in QED.

In order to be clear we should define precisely what we
mean here by positive and negative frequency parts. Following
Glauber [73] we define the positive and respectively negative
frequency part of any time-dependent operator F (t) as a
Hilbert transform,

F̆ (±)(t) = ±
∫ +∞

−∞

dτ

2πi

F (t − τ )

τ ∓ i0+ , (38)

which leads to the standard explicit forms

F̆ (+)(t) =
∫ +∞

0
dωF̃ωe−iωt ,

F̆ (−)(t) =
∫ 0

−∞
dωF̃ωe+iωt , (39)

ensuring F (t) = F̆ (+)(t) + F̆ (−)(t) [in particular if the operator
is Hermitian F (t) = F (t)† we have (F̆ (+)(t))† = F̆ (−)(t)].
We emphasize that the present definition of positive and
negative frequency operators do not exactly correspond to the
canonical separation into annihilation and creation operators.
In Refs. [71,72] we introduced the operator [74] L(±)

t =
1
2 [1 ± i∂t

c
√−∇2 ] which applied on the displacement field leads

to a clean separation of annihilation and destruction operators
contributions D(±)(x,t) = L(±)

t [D(x,t)]. The two definitions
are actually equivalent in vacuum and they lead in general
to similar results in the far field (see Appendixes C and D in
Ref. [72]).

Now, we consider the application of the definition
given in Eq. (39) to the electric-field operator E(x,t)
in Eq. (6) and more specifically to the case where
P(mol.)(x,t) = 0 so that P(eff.)(x,t) = P(0)(x,t). The commutator
[Ĕ(+)(a,ta),Ĕ(−)(b,tb)] is thus given by

[Ĕ(+)(a,ta),Ĕ(−)(b,tb)]

=
∫ +∞

0

∫ +∞

0
dω′dωe−iω′ta e+iωtb [Ẽω′ (a),Ẽ†

ω(b)]. (40)

Furthermore, since the pure photonic degrees of freedom
characterized by the operators c

(v)
α,j (t0), c†(v)

α,j (t0) commute with
the pure material oscillator degrees of freedom characterized
by f(0)

ω (x,t0), f†(0)
ω (x,t0) [70,71] we can express the electric-

field commutator of Eq. (40) as the sum of a contribution
[Ĕ(+)(eff.)

in (a,ta),Ĕ(−)(eff.)
in (b,tb)] for the photonic field and a

contribution [Ĕ(+)(eff.)
ret. (a,ta),Ĕ(−)(eff.)

ret. (b,tb)] for the material
field.

We consider first the pure photonic correlator
[Ĕ(+)(eff.)

in (a,ta),Ĕ(−)(eff.)
in (b,tb)], which from Eq. (10) reads[

Ĕ(+)(eff.)
in (a,ta),Ĕ(−)(eff.)

in (b,tb)
]

=
∑
α,j

E(eff.)
α,j (a) ⊗ E∗(eff.)

α,j (b)e−iωα (ta−tb). (41)
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In the limit case of the pure vacuum the only contribution is
[Ĕ(+)(v)

in (a,ta),Ĕ(−)(v)
in (b,b)], which from Eq. (4) reads[

Ĕ(+)(v)
in (a,ta),Ĕ(−)(v)

in (b,tb)
]

=
∑
α,j

E(v)
α,j (a) ⊗ E∗(v)

α,j (b)e−iωα (ta−tb). (42)

A direct calculation shown in Appendix D of [72] demonstrates
that this correlator is also expressed as[

Ĕ(+)(v)
in (a,ta),Ĕ(−)(v)

in (b,tb)
]

=
∫ +∞

0
dω

h̄ω

π

ω2

c2
Im

[
G(v)

ω (a,b)
]
e−iω(ta−tb)

= −ih̄�
(+)(v)
ret. (|ta − tb|,a,b), (43)

where �
(+)(v)
ret. (τ,a,b) = L(±)

τ [�(v)
ret.(τ,a,b)], i.e.,

�
(+)(v)
ret. (τ,a,b) = i

h̄

∑
α,j

E(v)
α,j (a) ⊗ E∗(v)

α,j (b)e−iωατ�(τ )

= i

∫ +∞

0
dω

h̄ω

π

ω2

c2
Im

[
G(v)

ω (a,b)
]
e−iωτ�(τ ).

(44)

The integral formula in Eq. (43) is particularly interesting
since as we will see below it is very similar to the expression
obtained for the material term [Ĕ(+)(eff.)

ret. (a,ta),Ĕ(−)(eff.)
ret. (b,tb)]

in the context of the DLN formalism.
More precisely, in order to calculate the commutator

[Ĕ(+)(eff.)
ret. (a,ta),Ĕ(−)(eff.)

ret. (b,tb)] we insert into Eq. (41) the
definition for Ẽ(eff.)

ret.ω (x) given by Eq. (8) and use the definition

P̃(0)
ω (x) =

√
h̄ε′′

ω(x)

π
f(0)
ω (x,t0)eiωt0θ (ω)

+
√

h̄ε′′−ω(x)

π
f†(0)
−ω (x,t0)eiωt0θ (−ω), (45)

which together with the canonical commutations for the
f(0)
ω , f†(0)

ω operators leads to[
Ĕ(+)(eff.)

ret. (a,ta),Ĕ(−)(eff.)
ret. (b,tb)

]
= h̄

π

∫ +∞

0
dω

ω2

c2
N(eff.)

ω (a,b)e−iω(ta−tb), (46)

with

N(eff.)
ω (a,b) =

∫
d3x

ω2

c2
ε′′
ω(x)G(eff.)

ω (a,x)

·G∗,(eff.)
ω (x,b). (47)

The integral term N(eff.)
ω (a,b) has been evaluated by authors of

the DLN formalism [23–25,35] by using some Green integral
identities together with the assumption that the permittivity
ε(bulk)
ω at spatial infinity corresponds to an absorbing media

(we remind that this is a key issue in DLN formalism). For
the present purpose this assumption is not justified, and we
will for generality relax this condition in order to allow the
configuration ε(bulk)

ω = 1. The details of the calculations based
on the dyadic-dyadic Green theorem are given in Appendix A

and we get after some manipulations

Im
[
G(eff.)

ω (a,b)
] −

∮

∞

dSF(eff.)
ω (x,a,b)

=
∫

V∞
d3x

ω2

c2
ε′′
ω(x)G(eff.)

ω (a,x) · G∗,(eff.)
ω (x,b), (48)

where V∞ is the total volume of the problem (rigorously
speaking it cannot be bigger than the Born–von Karman
quantization volume VBK → +∞) and where the surface
integral term over the surrounding boundary 
∞ = ∂V∞ is
given in Appendix A [see Eq. (A5)]. In the DLN approach the
surface term vanishes exponentially with the typical radius R

of the surrounding surface. However, here the system is more
general and in our Hamiltonian description we are interested in
problems where we have vacuum at spatial infinity. Therefore,
we should keep this surface term.

By keeping the surface contribution in Eq. (48) we can
rewrite Eq. (46) as[

Ĕ(+)(eff.)
ret. (a,ta),Ĕ(−)(eff.)

ret. (b,tb)
]

= h̄

π

∫ +∞

0
dω

ω2

c2
Im

[
G(eff.)

ω (a,b)
]
e−iω(ta−tb)

− h̄

π

∫ +∞

0
dω

ω2

c2

∮

∞

dSF(eff.)
ω (x,a,b)e−iω(ta−tb). (49)

In particular if like in the DLN approach the surface term
cancels we have[

Ĕ(+)(eff.)
ret. (a,ta),Ĕ(−)(eff.)

ret. (b,tb)
]

= h̄

π

∫ +∞

0
dω

ω2

c2
Im

[
G(eff.)

ω (a,b)
]
e−iω(ta−tb). (50)

We see that Eq. (50) is very similar to the pure photonic
result for vacuum as given by Eq. (43). Furthermore, Eq. (50)
associated with fluctuating currents apparently reduces to
Eq. (43), i.e., to the result obtained with the pure photon fluc-
tuations, when the local permittivity εω(x) reduces everywhere
to 1 + i0+. For this reason it is often claimed that the standard
DLN formalism without photon fields contains as the limit case
the vacuum QED regime. This is interesting and a bit paradox-
ical since different origins for fluctuations actually seems to
imply an identical result. The problem is that if the medium is
such that εω(x) → 1 + i0+ then the surface integral in Eq. (48)
does not cancel anymore. Indeed, since ε′′

ω(x) → 0+ we
have N(eff.)

ω (a,b) = Im[G(eff.)
ω (a,b)] − ∮


∞
dSF(eff.)

ω (x,a,b) = 0

which in turn implies [Ĕ(+)(eff.)
ret. (a,ta),Ĕ(−)(eff.)

ret. (b,tb)] = 0.
Therefore, this means that in the vacuum all contributions of

the dipole distribution P̃(0)
ω vanish and the commutator reduces

to Eq. (43) which includes only contributions of the free space
photon modes as it should be. In other words, the passage from
Eqs. (46) to (50) is forbidden in vacuum and there is apparently
a contradiction with the standard DLN deduction. However,
the problem is solved in the QED framework if we remember
[see Eq. (13)] that in the derivation of the usual DLN approach
the term [Ĕ(+)(eff.)

in (a,ta),Ĕ(−)(eff.)
in (b,tb)] in Eq. (41) cancels

since all free modes are infinitely damped by the presence
of the residual bulk permittivity [71] (see Sec. II B). Hence,
it is actually the total field commutator [Ĕ(+)(a,ta),Ĕ(−)(b,tb)]
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that should be written in Eq. (50) for the DLN approach:

[Ĕ(+)(a,ta),Ĕ(−)(b,tb)]

= h̄

π

∫ +∞

0
dω

ω2

c2
Im

[
G(eff.)

ω (a,b)
]
e−iω(ta−tb). (51)

This discussion shows that at least in the limit εω(x) →
1 + i0+ both formalisms lead to the same result if we accept
to reintroduce the term [Ĕ(+)(eff.)

in (a,ta),Ĕ(−)(eff.)
in (b,tb)] which

was canceled in the standard DLN approach. Mathematically
speaking, we have here two ways of taking the limit. Either
(i) we took first the limit εω(x) → 1 + i0+ and then afterward
we impose V → V∞ or (ii) we first fix εω(x) then use the geo-
metrical limit V → V∞ and finally impose εω(x) → 1 + i0+.
Choice (i) leads to an interpretation in terms of photon vacuum
[Ĕ(+)(v)

in (a,ta),Ĕ(−)(v)
in (b,tb)] while (ii) implies an interpretation

in terms of material fluctuations [see Eq. (51)] i.e., with the
idea that the reaction of the bulk medium cancels the field
Ĕ(+)(eff.)

in (x,t). Both limiting sequences are thus rigorously
equivalent in QED-QNP based on a Hamiltonian treatment.

However, the fundamental question is still to know if
Eq. (51) obtained within the standard DLN model is general
and can apply to the case considered in Fig. 1(b) where an in-
homogeneous system of local permittivity εω(x) is surrounded
by vacuum. If we return to the difference of structure between
the DLN and the usual Huttner-Barnett approach (compare
Secs. II A and II B) we have apparently some reasons to
doubt of the generality of Eq. (51). Indeed, following the
Hamiltonian description summarized in Sec. II A [70–72] the
QED formalism requires both photonic and material degrees
of freedom on an equal footing. Therefore, from QED one
expects that the total field commutator [Ĕ(+)(a,ta),Ĕ(−)(b,tb)]
necessarily includes both Eq. (41) for the photon scattered in
the environment and Eq. (46) for the dipole distribution P̃(0)

ω (x)
inside the medium.

Moreover, in agreement with the equivalence theorem
obtained in Sec. III, the pure photon field can always be
mimicked using a dipole distribution P̃(0)

ω (x) located in the
far field of the system of interest (i.e., beyond the surface

2). In this alternative description the field Ẽ(eff.,1+2)

in,ω (x) → 0
due to the presence of the surrounding absorbing medium
of permittivity ε(1)

ω (x). We introduce instead a different field
component Ẽ(eff.,1+2,′)

in,ω (x) [see Eq. (27)] which is formally
equivalent for all practical needs to the scattered photon field
Ẽ(eff.,3)

in,ω (x) → 0 [see Eq. (29)].
Therefore, we have now two equivalent ways to write

the commutator [Ĕ(+)(a,ta),Ĕ(−)(b,tb)]. In the first approach
considered previously we have

[Ĕ(+)(a,ta),Ĕ(−)(b,tb)]

=
∑
α,j

E(eff.,3)
α,j (a) ⊗ E∗(eff.,3)

α,j (b)e−iωα (ta−tb)

+ h̄

π

∫ +∞

0
dω

ω2

c2
N(eff.,3)

ω (a,b)e−iω(ta−tb), (52)

with

N(eff.,3)
ω (a,b) =

∫
V2

d3x
ω2

c2
ε′′,(3)
ω (x)G(eff.)

ω (a,x) · G∗,(eff.)
ω (x,b).

(53)

Here the label 3 is to remind that the considered medium is
located in the volume V2 which is here surrounded by vacuum
like in Fig. 1(a).

In the second approach using effective photons we write
instead

[Ĕ(+)(a,ta),Ĕ(−)(b,tb)]

= h̄

π

∫ +∞

0
dω

ω2

c2
N(eff.,3,′)

ω (a,b)e−iω(ta−tb)

+ h̄

π

∫ +∞

0
dω

ω2

c2
N(eff.,3)

ω (a,b)e−iω(ta−tb), (54)

with

N(eff.,3,′)
ω (a,b)

=
∫

V1−V2

d3x
ω2

c2
ε′′,(1)
ω (x)G(eff.)

ω (a,x) · G∗,(eff.)
ω (x,b), (55)

where the integral is done over the spatial region V1 − V2.
Here we do not have to introduce a term

∑
α,j E(eff.,1+2)

α,j (a) ⊗
E∗(eff.,1+2)

α,j (b)e−iωα (ta−tb) since for a,b ∈ V2 (i.e., far away from


2) we have E(eff.,1+2)
α,j ≈ 0. Additionally, in this second but

equivalent description we have (i.e., for the same points a,b ∈
V2 as previously) the identity

h̄

π

∫ +∞

0
dω

ω2

c2
N(eff.,3,′)

ω (a,b)e−iω(ta−tb)

:=
∑
α,j

E(eff.,3)
α,j (a) ⊗ E∗(eff.,3)

α,j (b)e−iωα (ta−tb), (56)

which means that the pure photon field commutator of Eq. (52)
is now completely described by a fluctuating current term over
the volume V1 − V2 in agreement with results given in Sec. III.

Now we do not have to calculate the various complicated
terms present in Eq. (52) (which includes both photon and
matter contributions) or equivalently in Eq. (54) (which splits
the material contribution into two parts). Indeed, what is
relevant is not N(eff.,3,′)

ω (a,b) or N(eff.,3)
ω (a,b) but their sum,

which reads

N(eff.,1+2)
ω (a,b) =

∫
V1

d3x
ω2

c2
ε′′,(1+2)
ω (x)G(eff.)

ω (a,x)

·G∗,(eff.)
ω (x,b). (57)

However, from Eq. (48) we see that Eq. (57) can be evaluated if
we can compute the surface integral

∮

∞

dSF(eff.,1+2)
ω (x,a,b),

where the surface 
∞ surrounds V1. As shown in Appendix A
this integral relies on the knowledge of the Green tensor
G(eff.,1+2)

ω (x,a) and G(eff.,1+2)
ω (x,b) for any points x on the

surface 
∞ and for a,b ∈ V2. This Green tensor must however
cancel since the absorbing media of permittivity ε(1)

ω (x) kills
any outward propagation at infinity (i.e., like in the standard
DLN approach). Therefore, we finally have from the properties
of the Green tensor

[Ĕ(+)(a,ta),Ĕ(−)(b,tb)]

= h̄

π

∫ +∞

0
dω

ω2

c2
Im

[
G(eff.,3)

ω (a,b)
]
e−iω(ta−tb), (58)
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which is equivalent to Eq. (51) for the points a,b ∈ V2

considered (and only for those points).
To conclude this calculation we showed that the new

DLN description including effective photons leads for points
a,b ∈ V2 far apart from the boundary 
2 to results similar to
those obtained previously within the standard DLN approach.
Since this DLN description is equivalent in practice to the
generalized Huttner-Barnett framework used in Sec. II A, and
which includes pure photons, we have here a complete QED
framework which will for all practical needs be identical to
the former DLN description, but will at once preserve time
symmetry and unitarity.

B. Some important consequences: Spontaneous emission,
fluctuations, and Casimir forces

The deductions obtained in the present work will have an
impact in many fields of QED and QNP involving fluctuational
radiations and sources and thus for practical calculations and
physical interpretations. This is the case for example when we
consider spontaneous emission by a dipolar quantum emitter
such as a two-level system located near a nanoantenna. We
showed in Ref. [72] using the Wigner-Weisskopf approach
and the generalized Huttner-Barnett formalism [70,71] how
the spontaneous emission rate � and the local density of
states (LDOS) ρLDOS(x0) change with the environment and
the position x0 of the dipole source. We have in agreement
with the literature [2]

� = π

3

ω0

h̄
|μ1,2|2ρLDOS(x0), (59)

and

ρLDOS(x0) = 6ω0

πc2
Im

[
n̂∗ · G(eff.)

ω (x0,x0,ω0 + i0+) · n̂
]

(60)

with μ1,2 = |μ1,2|n̂ the transition dipole amplitude and ω0 the
transition pulsation. This result was obtained using the full
Hamiltonian including both photonic and material oscillator
contributions. Still, what is remarkable is that it is rigorously
identical to the result obtained in classical or semiclassical
electrodynamics involving a self-interaction field but not zero-
point field (zpf) or vacuum fluctuations [2]. Indeed, Eq. (60)
depends on the Green tensor calculated at the position of the
source x0, a fact that is reminiscent of the self-interaction
and field associated with the oscillating dipole. This result is
naturally obtained in the standard DLN approach [28,39] and
therefore constitutes another illustration of the powerfulness of
the DLN methodology (see Refs. [36–44] for more on this topic
in connection with Bloch equations and the DLN formalism).

Moreover, in the present article we showed how to give a
clean foundation to the DLN approach by including dipolar
sources located far away from the dipole μ1,2 and its local
environment and acting effectively as the pure photon field
required in the generalized Huttner-Barnett formalism [70,71]
(see also [16]). It is not difficult to redo the calculation
of [72] with this method [i.e., without the “real” photon
field Ẽ(eff.,1+2)

in,ω (x) → 0 but instead by including the effective
photon field Ẽ(eff.,1+2,′)

in,ω (x) of dipolar origin] and then to
recover Eq. (60). This will thus be in complete agreement

with the DLN philosophy, which involves only the Green
tensor as a fundamental propagative field and the operator
f(0)
ω (x,t0), f†(0)

ω (x,t0) as potential sources of quantum noise.
The fundamental commutator Eq. (58) plays also a key

role for the calculation of fluctuations and correlations [32] at
different spatial positions and for evaluation of Casimir and
thermal forces [45–49]. Here, within the new DLN formalism
the calculations will become more transparent.

Consider as an illustration that the full quantum system
(i.e., including pure photonic and material degrees of freedom)
is in thermal equilibrium at the temperature T . We first
observe that since in the region V2 of Fig. 2 the pure photon
field Ẽ(eff.,1+2)

in,ω (x) → 0 is absorbed and irrelevant it is only
necessary to consider the role of material fluctuations on the
Planck formula. More precisely, in agreement with the DLN
formalism the Planck spectrum for the material fluctuating
dipoles P̃(0)

ω (x) leads by definition to [32]〈
f†(0)
ω (x,t) ⊗ f(0)

ω′ (x′,t)
〉
ther. = δ(ω − ω′)δ3(x − x′)I

eh̄ω/kBT − 1
(61)

(where the quantum average 〈[. . .]〉ther. is taken over the Planck
distribution) and thus from the canonical commutation [70]
relation to〈

f(0)
ω (x,t) ⊗ f†(0)

ω′ (x′,t)
〉
ther. = δ(ω − ω′)δ3(x − x′)I

1 − e−h̄ω/kBT
, (62)

where we used 1
eh̄ω/kB T −1 + 1 = 1

1−e−h̄ω/kB T with kB the Boltz-
mann constant. Now, from Eqs. (61) and (62) and by using
relations similar to Eq. (58) for the field correlator we get
immediately

〈Ĕ(−)(a,ta) ⊗ Ĕ(+)(b,tb)〉ther.

= h̄

π

∫ +∞

0
dω

ω2

c2

Im
[
G(eff.,3)

ω (a,b)
]

e
h̄ω

kB T − 1
e−iω(ta−tb), (63)

and

〈Ĕ(+)(a,ta) ⊗ Ĕ(−)(b,tb)〉ther.

= h̄

π

∫ +∞

0
dω

ω2

c2

Im
[
G(eff.,3)

ω (a,b)
]

1 − e−h̄ω/kBT
e−iω(ta−tb). (64)

This leads to the total field correlator 〈E(a,ta) ⊗ E(b,tb)〉ther.

sum of Eqs. (63) and (64):

〈E(a,ta) ⊗ E(b,tb)〉ther.

= h̄

π

∫ +∞

0
dω

ω2

c2
Im

[
G(eff.,3)

ω (a,b)
]
coth

(
h̄ω

2kBT

)
, (65)

where we used 2
eh̄ω/kB T −1 + 1 = 1

1−e−h̄ω/kB T + 1
eh̄ω/kB T −1 =

coth( h̄ω
2kBT

). This is a purely quantum formulation of the
fluctuation dissipation theorem agreeing with both the standard
DLN approach and the much older phenomenological noise
formulation proposed by Rytov and Lifshitz [2,52–55] (i.e.,
extensively used in the recent years in the field of “fluctuational
electrodynamics” for interpreting Casimir and thermal forces
at the nanoscale Refs. [2,57–62]). Importantly, this result
reduces to −ih̄�

(+)(v)
ret. (|ta − tb|,a,b) in the vacuum case and

has an usual interpretation as the retarded field propagator [75].
Now, in the new DLN formulation we can compute the

fluctuational force acting on a body and resulting from the
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thermal bath considered before. For this we use the standard
dipolar force formula derived in Refs. [2,70] and which reads

〈F(t)〉 =
∫

δV

d3x
∑

i

〈Pi(x,t)∇Ei(x,t)〉, (66)

with Pi(x,t) the ith component (i = 1,2,3) of the total dipole
density distribution in the body of volume δV  V2 and
Ei(x,t) is the total electric-field operator acting upon this
dipole distribution. We remind that this expression for the
force is rigorously valid only in the quasistatic limit when the
role of motion and magnetic field can be neglected [2,70]. In
the case of the thermal distribution considered previously we
get after some calculations summarized in Appendix B the
total thermal-Casimir static force acting upon the body:

〈F〉ther. =
∫

δV

d3x
h̄

π

∫ +∞

0
dω

ω2

c2
coth

(
h̄ω

2kBT

)
·Im{[

ε(3)
ω (x) − 1

]∇1Tr
[
G(eff.,3)

ω (x,x)
]}

=
∫

δV

d3x
h̄

π

∫ +∞

−∞
dω

ω2

c2

Im
{[

ε(3)
ω (x) − 1

]
1 − e−h̄ω/kBT

·∇1Tr
[
G(eff.,3)

ω (x,x)
]}

, (67)

where Tr[. . .] is the trace operator and ∇1 is a gradient operator
acting only on the left x variable in G(eff.,3)

ω (x,x).
Remarkably, this formula is rigorously identical to the

expression obtained in the ‘fluctuational electrodynamical’
framework [2,57–62]. Here it is obtained within the new
DLN formalism which includes effective photons and which
is equivalent (as we showed in Sec. III) to the generalized
Huttner-Barnett formalism developed in Refs. [70–72].

Moreover, this is crucial here concerning the debate about
the physical origin of the Casimir force [55]. Indeed, in the
generalized Huttner-Barnett formalism we have pure photonic
and dipolar fluctuations at work. Both are mandatory in this
Hamiltonian approach for interpreting the Casimir force and
at the same time in order to respect the complete unitarity and
time symmetry of the Hamiltonian dynamics. However, from
the equivalence theorem demonstrated in the present work we
now have the possibility to interpret the Casimir force only as
resulting of dipole fluctuations. But, in order to do that, we
not only have to include dipoles located in the material body
considered [here of volume δV in Eq. (67)] but also dipoles
located in the far field (i.e., in the region V1 − V2) and emitting
a field acting as effective photons. However, like for the LDOS
formula in Eq. (60) the results in Eq. (67) only depend on local
properties in the region of the body (i.e., δV ). Therefore, at the
end everything is identical to the result obtained within the old
DLN formalism without the pure photon field [see Fig. 1(b)]
and without effective photon field (compare with Fig. 2). As
we reminded before the DLN approach has an old history and
was already used by Lifshitz and Rytov in order to justify the
Casimir force formula [52–54] and later it was naturally used
in the quantized version of the DLN [45–49]. The standard
DLN approach apparently differs strongly in essence from
the so-called scattering approach [76–78] that considers the
radiation pressure exerted by scattered optical modes on the
material system. The scattering approach considers therefore
only pure photon modes, i.e., the role of zpf for light, and was

originally developed for lossless and consequently noncausal
dielectric systems. It is possible to extend the scattering
formalism by including some additional propagation channels
for the photons acting as attenuators [3,79–82], which leads
to a causal discussion of the Casimir force in agreement with
Kramers-Kronig formula [83–86]. Moreover, the scattering
formalism with the supplementary hidden optical modes
acting as attenuators is not so different from the Hamiltonian
Huttner-Barnett formalism [13–19,70–72] which attributes the
origin of loss and dispersion to the coupling of photons to a
bath of material harmonic oscillators. Therefore, ultimately all
theories are expected to give the same results, e.g., for Casimir
and thermal forces calculations. However, in the present
work we showed that the DLN approach should be properly
generalized by including dipolar sources in the far field acting
as effective photons. With such modeling of the effective
photon field we have demonstrated the equivalence with
the generalized Huttner-Barnett approach for inhomogeneous
media. Subsequently, we should also have equivalence with
the scattering approach if properly generalized (this is however
going beyond the present work). We finally mention that after
this work was completed we become aware of alternative
approaches based on the path-integral techniques in QED in
order to quantize properly the field in a dielectric medium
[87–89]. In particular the role of noise and Hamiltonian is
clearly emphasized in these works so that a direct comparison
with the approach advocated here is in principle possible.

V. SUMMARY AND PERSPECTIVES

To summarize, in this work we compared different theo-
retical approaches for analyzing QNP and QED in complex
inhomogeneous dielectric systems. We started (see Sec. II A)
with the generalized Huttner-Barnett Hamiltonian formulation
developed in Refs. [70–72] which extends to the inhomo-
geneous medium case the works done in Refs. [13–19] for
homogeneous dielectrics. We compared this approach with the
DLN method (see Sec. II B) developed by Gruner and Welsch
[23–25], and which extends the fluctuational electrodynamics
developed by Lifshitz, Rytov, and others [52–55,57–62]. In the
Huttner-Barnett formalism the quantized description requires
in general a pure photon field E(eff.)

in (x,t) corresponding to
vacuum photon modes scattered by the complex dielectric
environment. We should also include in this formalism a
retarded source electric field E(eff.)

ret. (x,t) emitted by the dipole
distribution P(eff.)(x′,t ′) sum of the molecular dipole distribu-
tion P(mol.)(x′,t ′) located in the environment and the dielectric
dipole distribution P(0)(x′,t ′) associated with the material
degrees of freedom in the dielectric system itself. In the DLN
approach the pure photon field is missing since it is absorbed by
a residual bulk permittivity killing all scattered photon modes
coming from infinity. Due to the strong differences between the
Huttner Barnett and the DLN methods it was not however clear
how to compare the calculations. Since the DLN approach is
widely used this is an important issue for QNP.

In Sec. III we showed how to construct an effective
medium which for all practical calculations demonstrates an
equivalence between the Huttner Barnett formalism and the
DLN approach. The idea is to surround the physical system
considered by a weakly dissipative dielectric medium located
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in the far field (see Fig. 2). There are two effects of this
surrounding medium. On the one side it absorbs all scattered
pure photon modes coming from infinity: E(eff.)

in (x,t) → 0,
which are therefore inoperative on the physical system con-
sidered. On the other side, the surrounding medium creates,
through its own dielectric dipole distribution P(0)(x′,t ′), an
effective photon field E(eff.,′)

in (x,t) having all the physical and
mathematical properties of a scattered photon field E(eff.)

in (x,t).
Within this alternative DLN formulation we have thus com-
plete equivalence between the DLN and Huttner-Barnett
formulations of QED and QNP. Remarkably, the old and new
DLN approaches give the same results since the surrounding
medium has no effect on local properties inside the physical
system considered. We illustrated this fundamental issue with
a few examples associated with quantum fluctuations such
as spontaneous emission, quantum correlations, and Casimir
forces at finite temperature. Using the DLN formalism leads to
a simple analysis determined by the complex Green tensor and
the local permittivity in the system considered and therefore to
transparent expressions that agree with the older fluctuational
electrodynamics of Rytov.

We think that the present analysis will motivate further
works concerning the links between the different methods
used in QED and QNP which play a fundamental role in
nanoplasmonics, nonlinear optics, and mechanical motions at
the nanoscale using Casimir and thermal forces.
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APPENDIX A: THE DYADIC-DYADIC GREEN THEOREM
AND SOME RELATIONS

Let Q(x) and P(x) be two spatially dependent dyads.
The dyadic-dyadic Green theorem states that in a volume V

surrounded by the surface 
 we have∫
V

d3x([∇ × ∇ × Q]T · P − QT · [∇ × ∇ × P])

=
∮




dS([∇ × Q]T · (n̂ × P) + QT · [n̂ × ∇ × P]), (A1)

where n̂ is the outwardly oriented unit vector normal to the
surface element dS of 
 and T is the transpose operator.

Consider first the choice Q(x) = G(eff.)
ω (x,a) and P(x) =

G(eff.)
ω (x,b) with a and b two positions inside the volume V .

With this choice we will obtain the reciprocity theorem. While
this result is well established, we will review it briefly here
since its deduction plays a central role in our demonstration.
From Eqs. (A1) and (7) we thus deduce

G(eff.)
ω (a,b) − GT ,(eff.)

ω (b,a)

=
∮




dS([∇ × Q]T · (n̂ × P) + QT · [n̂ × ∇ × P]). (A2)

Now we consider the limit where the surface 
 is spherical
with a radius R → +∞ and we suppose that at infinity the

permittivity approaches a finite value ε(bulk)
ω . In this regime,

the Green tensor at infinity decays with R as ∝ eiω

√
ε
(bulk)
ω R/c

R
and,

if the bulk medium is causal and therefore lossy, it involves an
exponential decay that reduces the surface integral in Eq. (4)
to zero. Therefore we obtain

G(eff.)
ω (a,b) = GT ,(eff.)

ω (b,a), (A3)

which is a statement of Lorentz’s reciprocity theorem. How-
ever, this result is actually much more robust and does not
require having an absorbing media at infinity. Indeed, if this
medium is lossless, i.e., if ε(bulk)

ω = 1 (which corresponds to
vacuum), we can use the Sommerfeld radiation condition
for any point x on the surface 
, i.e., ∇ × G(eff.)

ω (x,u) �
i

ω

√
ε

(bulk)
ω

c
R̂ × G(eff.)

ω (x,u), with u = a or b and R̂ = n̂ the unit
radial vector oriented outwardly to the surrounding sphere. The
Sommerfeld condition states that at spatial infinity the radiated
field (directed outwardly) has locally a plane-wave structure
propagating in a medium of permittivity ε(bulk)

ω . Insertion of
the Sommerfeld radiation condition in Eq. (A2) shows that the
two terms in the surface integral compensate each other and
therefore the reciprocity theorem Eq. (A3) is valid even if the
surrounding medium is actually vacuum.

For the present work we now consider a different choice
for Q(x) = G(eff.)

ω (x,a) and P(x) = G∗,(eff.)
ω (x,b). With such a

choice we obtain similarly as for Eq. (A2) the relation

G∗,(eff.)
ω (a,b) − GT ,(eff.)

ω (b,a)

+ 2i

∫
V

d3x
ω2

c2
ε′′
ω(x)GT ,(eff.)

ω (x,a)G∗,(eff.)
ω (x,b)

=
∮




dS([∇ × Q]T · (n̂ × P) + QT · [n̂ × ∇ × P]).

(A4)

Moreover, by using the reciprocity theorem and the Sommer-
feld radiation condition on a sphere 
∞ of radius R → +∞
we get Eq. (48) with∮


∞
dSF(eff.)

ω (x,a,b) = ω

c

√
ε

(bulk)
ω

∮

∞

dSGT ,(eff.)
ω (x,a)

·[R̂ × R̂ × G∗,(eff.)
ω (x,b)

]
. (A5)

However, contrarily to what occurs for the reciprocity theo-
rem the Sommerfeld radiation condition is not sufficient to
eliminate the surface integral. We emphasize that in the DLN
approach [23–25,35] the bulk medium is supposed lossy at
spatial infinity and therefore due to the asymptotic decay of

the Green tensor as ∝ eiω

√
ε
(bulk)
ω R/c

R
the surface term cancels.

APPENDIX B: CALCULATION OF CASIMIR FORCES
WITHIN THE LANGEVIN NOISE APPROACH

We start with the standard dipole expression [2] for the
force which was derived within a QED framework in Ref.
[70]: 〈F(t)〉 = ∫

δV
d3x

∑
i〈Pi(x,t)∇Ei(x,t)〉. Here we write
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〈F(t)〉 = 〈F(1)(t)〉 + 〈F(1)(t)〉, with

〈F(1)(t)〉 =
∫

δV

d3x
∑

i

〈P̆ (+)
i (x,t)∇Ĕ

(−)
i (x,t)〉ther.,

〈F(2)(t)〉 =
∫

δV

d3x
∑

i

〈P̆ (−)
i (x,t)∇Ĕ

(+)
i (x,t)〉ther.. (B1)

In order to calculate these terms we use the definitions

P̆(+)(x,t) =
∫ +∞

0
dω

[√
h̄ε′′

ω(x)

π
f(0)
ω (x,t)

+ (εω(x) − 1)
∫

d3x′ ω
2

c2
G(eff.)

ω (x,x′)

·
√

h̄ε′′
ω(x′)
π

f(0)
ω (x′,t)

]
, (B2)

Ĕ(+)(x,t) =
∫ +∞

0
dω

∫
d3x′ ω

2

c2
G(eff.)

ω (x,x′)

·
√

h̄ε′′
ω(x′)
π

f(0)
ω (x′,t), (B3)

and P̆(−)(x,t) = (P̆(+)(x,t))†, Ĕ(−)(x,t) = (Ĕ(+)(x,t))† Using
these definitions and Eq. (62) we write the first term as
〈F(1)(t)〉 = 〈F(11)(t)〉 + 〈F(12)(t)〉, with

〈F(11)(t)〉 =
∫

δV

d3x
h̄

π

∫ +∞

0
dω

ω2

c2
ε′′
ω(x)

·∇1Tr
[
G∗,(eff.)

ω (x,x)
]

1 − e
− h̄ω

kB T

, (B4)

and

〈F(12)(t)〉 =
∫

δV

d3x
h̄

π

∫ +∞

0
dω

ω2

c2

[εω(x) − 1]

1 − e−h̄ω/kBT

=
∑
ij

∫
d3x′ ω

2

c2
ε′′
ω(x′)G(eff.)

ω,ij (x,x′)∇xG
∗,(eff.)
ω,ij (x,x′)

=
∫

δV

d3x
h̄

π

∫ +∞

0
dω

ω2

c2

[εω(x) − 1]

1 − e−h̄ω/kBT

·∇1Tr
{
Im

[
G(eff.)

ω (x,x)
]}

. (B5)

In going from the second to the last line of Eq. (B5)
we used some properties of the partial derivative for
the Green tensor. First, from the reciprocity theorem,
we have G

(eff.)
ω,ij (a,b) = G

(eff.)
ω,ji (b,a) and, therefore, we have

∇aG
(eff.)
ω,ii (a,b) = ∇aG

(eff.)
ω,ii (b,a), which implies

∇1G
(eff.)
ω,ii (x,x) = ∇2G

(eff.)
ω,ii (x,x), (B6)

where ∇1 (respectively ∇2) acts on the left (respectively right)
x variable of the Green tensor.

Second, from Eq. (48) which is valid for a, b near the center
of region V2 we have

∇bIm
[
G

(eff.)
ω,ii (a,b)

]
=

∫
d3x

ω2

c2
ε′′
ω(x)G(eff.)

ω,ij (a,x) · ∇bG
∗,(eff.)
ω,ij (b,x), (B7)

which therefore leads to

∇2Im
[
G

(eff.)
ω,ii (x,b)

]
=

∫
d3x′ ω

2

c2
ε′′
ω(x′)G(eff.)

ω,ij (x,x′) · ∇xG
∗,(eff.)
ω,ij (x,x′). (B8)

Inserting Eq. (B8) together with the symmetry given by
Eq. (B6) in Eq. (B5) allows us to justify the last line of
this equation. Finally, regrouping 〈F(11)(t)〉 and 〈F(12)(t)〉 leads
directly to

〈F(1)(t)〉 =
∫

δV

d3x
h̄

π

∫ +∞

0
dω

ω2

c2

× Im

[
[εω(x) − 1]

1 − e−h̄ω/kBT
· ∇1Tr

[
G(eff.)

ω (x,x)
]]

. (B9)

We can do similar calculations for 〈F(2)(t)〉 and we get

〈F(1)(t)〉 =
∫

δV

d3x
h̄

π

∫ +∞

0
dω

ω2

c2
Im

[
[εω(x) − 1]

eh̄ω/kBT − 1

·∇1Tr[G(eff.)
ω (x,x)]

]
, (B10)

and, therefore, Eq. (67).
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