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Photon-pair generation in a lossy microring resonator. II. Entanglement in the output mixed
Gaussian squeezed state
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In this work we examine the entanglement of the output signal-idler squeezed vacuum state in the Heisenberg
picture as a function of the coupling and internal propagation loss parameters of a microring resonator. Using the
log negativity as a measure of entanglement for a mixed Gaussian state, we examine the competitive effects of
the transfer matrix that encodes the classical phenomenological loss, as well as the matrix that that incorporates
the coupling and internal propagation losses due to the quantum Langevin noise fields required to preserve the
unitarity of the composite system (signal-idler) and environment (noise) structure.
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I. INTRODUCTION

In the first paper of this two-part investigation [1] (desig-
nated AH-I) we developed the theory for entangled photon-pair
generation in a microring resonator (mrr) using a recent
input-output formalism based on the work of Raymer and
McKinstrie [2] and Alsing et al. [3] that incorporates the
circulation factors that account for the multiple round-trips
of the fields within the cavity. In AH-I we considered
biphoton-pair generation within the mrr via both spontaneous
parametric down-conversion (SPDC) and spontaneous four-
wave mixing (SFWM) processes and computed the generated
two-photon signal-idler intracavity and output state from
a single bus (all-through) mrr. In addition, we also com-
puted the two-photon generation, coincidence-to-accidental,
and heralding efficiency rates and compared our results to
related derivations of the Schrödinger-picture biphoton state
[4–6] obtained using the standard Langevin input-output
formalism.

In this work, we examine entanglement of the output
signal-idler squeezed vacuum state from the mrr in the
Heisenberg picture as a function of its coupling and internal
propagation loss parameters. The squeezed output fields
arising from either SPDC or SFWM generated within the
mrr contain two types of terms: (i) a transfer matrix that
encodes the classical phenomenological loss and (ii) a matrix
that incorporates the coupling and internal propagation loss
due to the quantum Langevin noise fields that are required to
preserve the unitarity of the composite system (signal-idler)
and environment (noise) structure. Using the log negativity
as a measure of entanglement for a lossy Gaussian state, we
examine the competitive effects of both of these terms as a
function of the mrr loss parameters. Authors such as Agarwal
and Chaturvedi [7,8] have investigated the entanglement of
two-mode mixed Gaussian states using the log negativity,
while authors such as Vernon and Sipe [6,9] have investigated
loss in a mrr. However, the work presented here represents
an investigation of the entanglement of the squeezed output
of a lossy mrr as a function of the parameters of this passive
feedback device.

This paper is organized as follows. In Sec. II we briefly
review the main results of AH-I for the output operators for a
lossy single-bus mrr given the input driving fields. In Sec. III

we examine the form of the output squeezed vacuum state
from a Heisenberg operator perspective. This allows us to
form the operator that generates the output squeezed state, as
well as the unitary operator that evolves the external input
operators to the output operators, in the presence of loss. We
further examine the entanglement of the output squeezed state
employing the log negativity and explore its dependence on
the mrr coupling and internal propagation loss. In Sec. IV
we summarize our results and indicate avenues for future
research.

II. A BRIEF REVIEW OF AH-I: SPDC AND SFWM
PROCESSES INSIDE A (SINGLE-BUS)

MICRORING RESONATOR

A. Preliminaries

Consider a single-bus mrr of length L = 2πR, as illustrated
in Fig. 1. Here, a is the intracavity field which is coupled to
a waveguide bus with input field ain and output field aout. The
parameters ρa, τa are the beam-splitter-like self-coupling and
cross-coupling strengths, respectively, of the bus to the mrr
such that |ρa|2 + |τa|2 = 1. z = 0+ is the point just inside the
mrr which cross couples to the input field ain, and z = L− is
the point after one round-trip in the mrr that cross couples to
the output field aout.

In the work of Raymer and McKinstrie [2] an internal cavity
field a satisfies a traveling-wave Maxwell ordinary differential
equation in the absence of internal propagation loss given by

(∂t + va ∂z) a(z,t) = αpolz P (z,t), (1)

where a(z,t) is the ring-resonator cavity field (in the time
domain), va is the group velocity, P (z,t) is the polarization,
and αpolz is a coupling constant. The carrier wave frequency
has been factored out so that all frequencies are relative
to the optical carrier frequency. The input coupling and
periodicity of the cavity are captured by the boundary
conditions

a(0+,t) = ρa a(L−,t) + τa ain(t), (2a)

aout(t) = τa a(L−,t) − ρa ain(t), (2b)

2469-9926/2017/96(3)/033848(11) 033848-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.033848


PAUL M. ALSING AND EDWIN E. HACH, III PHYSICAL REVIEW A 96, 033848 (2017)

z L−=

ina outa

a

*
aτ−aτ

aρ

*
aρ

0z +=

R

FIG. 1. A single-bus (all-through) microring resonator (mrr) of
length L = 2πR with intracavity field a, coupled to a waveguide bus
with input field ain and output field aout. ρa and τa are the beam-
splitter-like self-coupling and cross-coupling strengths, respectively,
of the bus to the mrr such that |ρa|2 + |τa |2 = 1. z = 0+ is the point
just inside the mrr which cross couples to the input field ain, and
z = L− is the point after one round-trip in the mrr that cross couples
to the output field aout.

where we have taken the beam-splitter-like self-coupling ρa

(buss-bus, mrr-mrr) and cross coupling τa (bus-mrr) to be real
for simplicity and the minus sign in Eq. (2b) accounts for the
π change in phase arising from the “reflection” of the input
field off the higher index of the refraction mrr to the output
(bus) field. The input and output fields satisfy the free-field
commutators

[ain(t),a†
in(t ′)] = δ(t − t ′) = [aout(t),a

†
out(t

′)]. (3)

In the absence of loss, the above equations in the Fourier
domain yield the unimodular transfer function Gout,in(ω)
defined by [2]

aout(ω) ≡ Gout,in(ω) ain(ω),
(4)

Gout,in(ω) = eiωTa

[
1 − ρa e−iωTa

1 − ρa eiωTa

]
, |Gout,in(ω)| = 1.

With the inclusion of internal propagation loss, Alsing et al.
[3] obtained the form

aout(ω) = Gout,in(ω) ain + Hout,in(ω) fa(ω), (5a)

Gout,in(ω) =
(

ρa − αa eiθa

1 − ρ∗
a αa eiθa

)
,

(5b)

|Hout,in(ω)| =
√

1 − |Gout,in(ω)|2,
which defines the quantum noise operator fa(ω) from the
requirement of the preservation of the free-field output

commutator. Here, Gout,in(ω) has the same form as the
semiclassical case (see e.g. Yariv [10] and Rabus [11]) that
one obtains with the inclusion of a phenomenological loss
factor 0 � αa � 1 (see also [12]).

B. Biphoton generation within the mrr

For biphoton generation arising from either a χ (2) process
of SPDC or a χ (3) process of SFWM, AH-I considers a signal
mode a and an idler mode b circulating within the mrr. In
the nondepleted pump approximation the authors consider the
Hamiltonian

HNL =
∫ ∞

−∞

dω

2π
g(ω)[αp(z,ω) a†(z,ω) b†(z,ω)

+α∗
p(z,ω) a(z,ω) b(z,ω)], (6a)

g(ω) = gspcd(ω) = 3 (h̄ ωc)3/2 χ (2)

4ε0 n̄4 Vring
, (6b)

g(ω) = gsfwm(ω) = 3(h̄ ωc)2 χ (3)

4ε0 n̄4 Vring
, (6c)

where αp is the complex c-number (constant) amplitude for
the pump. Thus, for each of the nonlinear processes the signal
and idler modes satisfy the equation of motion in the frequency
domain

(−i ω + va ∂z) a(z,ω) = −i g αp(z,ω) b†(z,ω) − γ ′
a

2
a(z,ω)

+αpolz fa(z,ω), (7a)

(−i ω + vb ∂z) b†(z,ω) = i g α∗
p(z,ω) a(z,ω) − γ ′

b

2
b†(z,ω)

+αpolz fb(z,ω). (7b)

Here, γ ′
k is the internal propagation loss for mode k ∈ {a,b},

and fk are corresponding Langevin noise operators added to
preserve the canonical form of the output commutators. Each
mode k satisfies its own pair of mrr input-output boundary
conditions of the form of Eqs. (2a) and (2b). By using these
boundary conditions to eliminate the internal signal and idler
cavity modes and by defining

�ain(ω) =
(

ain(ω)
b
†
in(ω)

)
, �aout(ω) =

(
aout(ω)
b
†
out(ω)

)
,

�f (ω) =
(

fa(ω)
f

†
b (ω)

)
, (8)

AH-I obtained the following expression for the output fields
in terms of the input fields and quantum noise operators:

�aout(ω) = G(ω) �ain(ω) + H (ω) �f (ω). (9)

The expressions for the matrices G(ω) and H (ω) are given by

G(ω) =
(

Gaa(ω) Gab(ω)
Gba(ω) Gbb(ω)

)
(10a)

≡ 1

D

(
(eiξaL − ρa) (1 − ρb eiξbL) + ra rb ρa −i ra τa τb eiξbL

i rb τb τa eiξaL (eiξbL − ρb) (1 − ρa eiξaL) + ra rb ρb

)
, (10b)
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with

D = (1 − ρa eiξaL) (1 − ρb eiξbL) − ra rb, ra = gαP Ta, rb = gα∗
P Tb, (11a)

αk = e−γ ′
k/2 Tk , θk = ω Tk for k ∈ {a,b}, (11b)

and

H (ω) =
(

Haa(ω) Hab(ω)
Hba(ω) Hbb(ω)

)
= 1

D

(
τa (1 − ρbe

iξbL) −i ra τa

i rb τb τb (1 − ρae
iξaL)

)
. (12)

In the above, we have defined eiξkL ≡ αk eiθk with αk = e−γ ′
k Tk/2, θk = ω Tk , ra = g αp Ta , and rb = g α∗

p Tb, where Tk = L/vk

is the cavity round-trip time for mode k ∈ {a,b}. To lowest order in the coupling |gαp|, we have 1/D ≈ Sa Sb, where Sk =
1

1−ρk eiξkL = ∑∞
n=0 (ρk eiξkL)

n ≡ ∑∞
n=0 (ρk αk ei θk )

n
for k ∈ {a,b} are the geometric series factors resulting from the round-trip

circulations of the internal fields k ∈ {a,b} inside the ring resonator. Note that terms such as (1 − ρa eiξaL) Sk are of the single-mode
Yariv form Gout,in(ω) of Eq. (5b), so that the diagonal terms Gk,k in Eq. (10) represent their interacting, multimode generalization.
For a typical ring resonator of radius R = 20 μm and a pump laser power of 1 mW (χ (2) ∼ 2 × 10−12 m/V, αp ∼ 103 V/m) and
round-trip times of Tk ∼ 1 ps, we have rp ∼ 10−5 [13].

C. Commutators of the noise operators

The commutation relations between the noise operators are fundamentally determined by the canonical commutators of the
free input and output fields. Given that the input fields satisfy [ain(ω),a†

in(ω′)] = [bin(ω),b†in(ω′)] = δ(ω − ω′) and that they each
commute with the noise operators fa(ω), fb(ω) (via causality), one must also have that [aout(ω),a†

out(ω
′)] = [bout(ω),b†out(ω

′)] =
δ(ω − ω′). Thus, the requirement of independence and unitarity of the output field modes determines the set of linear equations

[aout(ω),a†
out(ω

′)] = δ(ω − ω′) ⇒ |Haa|2 Caa − |Hab|2 Cbb + 2Re(Haa H ∗
ab Dab) = 1 − (|Gaa|2 − |Gab|2), (13a)

[bout(ω),b†out(ω
′)] = δ(ω − ω′) ⇒ −|Hba|2 Caa + |Hbb|2 Cbb + 2Re(Hba H ∗

bb Dab) = 1 − (|Gbb|2 − |Gba|2), (13b)

[aout(ω),bout(ω
′)] = 0 ⇒ Haa H ∗

ba Caa − Hab H ∗
bb Cbb + Haa H ∗

bb Dab + Hab H ∗
ba D∗

ab = Gab G∗
bb − Gaa G∗

ba, (13c)

[aout(ω),b†out(ω
′)] = 0 ⇒ det(H ) Cab = 0 (13d)

for the four constants Caa , Cbb, Cab, Dab defined by the
commutation relations

[fa(ω),f †
a (ω′)] = Caa δ(ω − ω′),

(14a)
[fb(ω),f †

b (ω′)] = Cbb δ(ω − ω′),

[fa(ω),f †
b (ω′)] = Cab δ(ω − ω′),

(14b)
[fa(ω),fb(ω′)] = Dab δ(ω − ω′).

Since det(H ) �= 0, Eq. (13d) reveals that Cab = 0. The first
three equations are four equations in the four (real) unknowns
Caa , Cbb, Re(Dab), Im(Dab), which therefore have a unique
solution given by [1]

Ckk(ω) = 1 − α2
k − |rk|2 = 1 − e−γ ′

kTk − |gαp Tk|2

−→
highQ

γ ′
k Tk − |gαp Tk|2, k ∈ {a,b}, (15a)

Dab = i (r∗
b − ra) = i g αp (Tb − Ta), (15b)

where for Caa(ω) and Cbb(ω) we have also indicated their
values in the high-cavity-Q limit. Note the high-cavity-Q limit
is defined through the physical conditions (see [2], Sec. III):
(i) the cross coupling τa is very small so that the cavity storage
time is long, (ii) the cavity round-trip time Ta is small compared

to the duration of the input-field pulse, i.e., ω Ta  1, and
(iii) the input field is a narrow band and thus well contained
within a single free spectral range of the mrr. Therefore, with
the inclusion of internal propagation loss, the high-cavity-Q
limit is defined by the limits

ρa ≡ e−γaTa/2 ≈ 1 − γaTa/2, τa =
√

1 − ρ2
a ≈

√
γaTa,

αa = e−γ ′
aTa/2 ≈ 1 − γ ′

aTa/2, ei ω Ta ≈ 1 + i ω Ta. (16)

III. THE SQUEEZED VACUUM STATE ANNIHILATED BY
aout(ω) AND bout(ω) AND THE UNITARY EVOLUTION

OPERATOR

A. Squeezed vacuum state

In this section we consider the form of the squeezed vacuum
state |0〉out annihilated by the output operators aout(ω) and
bout(ω) from a Heisenberg operator perspective. An expression
for |0〉out is needed, for example, when one computes output
correlation functions using the input operators (employed, say,
in formulating input states) expressed in terms of the output
and noise operators via the inversion of Eq. (9) in the form
ain(ω) = G−1(ω) [�aout(ω) − H (ω) �f (ω)].

The “input” vacuum |0〉in ≡ |0〉a |0〉b |vac〉env for the signal
and idler modes a, b and the noise (environment) modes
f̃a, f̃b at the entrance port to the mrr is the usual vacuum
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annihilated by the input operators, namely, ain |0〉a =
bin|0〉b = f̃a |vac〉env = f̃b |vac〉env = 0. After the process of
pair production within the mrr, the Heisenberg operators at the
input port of the mrr are unitarily transformed from ain → aout

at the output port, as given by Eq. (9). Equivalently, one can
consider the vacuum state as being transformed from |0〉in →
|0〉out, where the “out” vacuum is defined as that state annihi-
lated by the output operators, i.e., aout |0〉out = bout|0〉out = 0.
In the absence of loss and noise, the unitary operator that
affects this transformation is the two-mode squeezing operator
[8,14,15] Uout,in = S(ξ ) = exp[ 1

2 (ξ α
†
in b

†
in − ξ ∗ ain bin)], such

that the two-mode squeezed vacuum is given by |0〉out =
S(ξ )|0〉in = cosh−1 r

∑∞
n=0 tanhn r |0〉a |0〉b, where ξ = r eiφ

is the complex squeezing parameter of magnitude r . Here, we
wish to find the appropriate squeezed vacuum state |0〉out and
unitary transformation U when we allow for loss and retain
the noise operators f̃a, f̃b in aout and bout as in Eq. (9).

From Eq. (9) we wish to solve the operator equations
(dropping the argument ω in this section)

aout|0〉out = [Gaa ain+Gab b†in+H̃aa f̃a+H̃ab f̃
†
b ]|0〉out = 0,

(17a)

bout|0〉out = [G∗
ba a†

in+G∗
bb bin+H̃ ∗

ba f̃ †
a +H̃ ∗

bb f̃b]|0〉out = 0,

(17b)

where we have rescaled H and f such that Hf = H̃ f̃ where
H̃ij = Hij

√
Cjj and f̃j = fj/

√
Cjj so that [f̃i ,f̃

†
i ] = 1. In

addition, we consider the physically relevant case where
Ta = Tb = T , so that by Eq. (15b) we have Dab = 0, so that
[f̃i ,f̃

†
j ] = δij , implying now that the in and noise operators ain,

bin, f̃a , and f̃b all mutually commute with each other. (Note
that Cjj still contains power-dependent contributions.)

To solve Eqs. (17a) and (17b) we seek a solution of the
form

S = exp[Aa†
in b†in + B f̃ †

a f̃
†
b + A

′
a†

in f̃
†
b + B

′
f̃ †

a b†in]|0〉in

≡ exp[O†]|0〉in. (18)

We note that for any annihilation operator a such that [a,a†] =
1 and a |0〉in = 0 and for any operator function f (a,a†) one
has af (a,a†) |0〉in = [a,f (a,a†)]|0〉in = ∂a† f (a,a†)|0〉in. For
the form of S given in Eq. (18) this implies ain S |0〉in =
(∂

a
†
in
O†) S |0〉in, leading to the operator equations[

Gaa

(
∂
a
†
in
O†)+Gab b†in+H̃aa (∂

f̃
†
a
O†) + H̃ab f̃

†
b

]
S|0〉in = 0,

(19a)[
G∗

ba a†
in+G∗

bb

(
∂
b
†
in
O†)+H̃ ∗

ba f̃ †
a + H̃ ∗

bb (∂
f̃
†
b
O†)

]
S|0〉in = 0.

(19b)

Using the explicit expression for O† in Eq. (18) and equating
the resulting coefficients of the operators a

†
in, b

†
in, f

†
a , and f

†
b

to zero lead to a set of four linear equations:

Gaa A + H̃aa B
′ = −Gab, (20a)

G∗
bb A + H̃ ∗

bb A
′ = −G∗

ba, (20b)

Gaa A
′ + H̃aa B = −H̃ab, (20c)

G∗
bb B

′ + H̃ ∗
bb B = −H̃ ∗

ba. (20d)

The determinant of the above four linear equations for the
four unknown coefficients A,B,A′,B ′ is zero, indicating that
there are only three independent equations. Using Eq. (13c) for
the condition [aout,bout] = 0, written in the form −Gab G∗

bb +
H̃aa H̃ ∗

ba = −Gaa G∗
ba + H̃ab H̃ ∗

bb, we observe that upon solv-
ing for A′ in Eq. (20c) and B ′ in Eq. (20d) in terms of B and
substituting into Eqs. (20a) and (20b), A can be written in two
equivalent forms,

A = −Gab G∗
bb + H̃aa H̃ ∗

ba

Gaa G∗
bb

+ H̃aa H̃ ∗
bb

Gaa G∗
bb

B,

(21)

= −Gaa G∗
ba + H̃ab H̃ ∗

bb

Gaa G∗
bb

+ H̃aa H̃ ∗
bb

Gaa G∗
bb

B.

Since the coefficient multiplying B is identical in both terms
in Eq. (21), this implies B is an undetermined free parameter.
Here, we take B = 0 as the simplest choice, so that the
coefficients in the operator S = eO

†
in Eq. (18) are given by

A = −Gab

Gaa

+ H̃aa H̃ ∗
ba

Gaa G∗
bb

= −G∗
ba

G∗
bb

+ H̃ab H̃ ∗
bb

Gaa G∗
bb

,

A′ = − H̃ab

Gaa

, B ′ = − H̃ ∗
ba

G∗
bb

, (22)

containing a signal-idler pair production A, an idler loss term
A′, and a signal loss term B ′. In general, a nonzero B term
would contribute to corrections to the bare vacuum |0〉in.

B. Unitary evolution operator

To construct an evolution operator U such that �aout =
U �ain U † as per Eq. (9), we note that the two-mode squeezing
operator UÃ = exp[Ã a

†
in b

†
in − Ã∗ ain bin] transforms UÃ ain

U
†
Ã

= cosh |Ã| ain − eiθÃ sinh |Ã| b†in and UÃ b
†
in U

†
Ã

= cosh

|Ã| b†in − e−iθÃ sinh |Ã| ain, where Ã = |Ã| ei θÃ . Let us also
similarly define UÃ′ = exp[Ã′ a†

in f̃
†
b − Ã

′∗ ain f̃b] and UB̃ ′ =
exp[B̃ ′ f̃ †

a b
†
in − B̃

′∗ f̃b bin], with Ã′ = |Ã′| ei θÃ′ and B̃ ′ =
|B̃ ′| ei θB̃′ , and, lastly, Uθ = exp[−i θGaa

a
†
in ain + i θGbb

b
†
in bin],

where Gaa = |Gaa| ei θGaa and Gbb = |Gbb| ei θGbb . Then the
operator

U = UB̃ ′ UÃ′ UÃ Uθ (23)

implements the transformation[
aout

b
†
out

]
= U

[
ain

b
†
in

]
U †

=
[
Gaa ain + Gab b

†
in + H̃aaf̃a + H̃ab f̃

†
b

Gba ain + Gbb b
†
in + H̃baf̃a + H̃bb f̃

†
b

]
, (24)

with the assignments (after some straightforward algebra)

Gaa = cosh |Ã| cosh |Ã′|ei θGaa ,

Gba = − sinh |Ã| cosh |Ã′| ei (θÃ+θGbb
),

Gab = − sinh |Ã| cosh |B̃ ′| ei (θÃ+θGaa ),

Gbb = cosh |Ã| cosh |B̃ ′| ei θGbb ,

H̃aa = sinh |Ã| sinh |B̃ ′| ei (θA−θB̃′ +θGaa ),

H̃ba = − cosh |Ã| sinh |B̃ ′| ei (−θB̃′+θGbb
),

033848-4



PHOTON-PAIR . . . . II. ENTANGLEMENT IN . . . PHYSICAL REVIEW A 96, 033848 (2017)

H̃ab = cosh |Ã| sinh |Ã′| ei (θÃ′ +θGaa ),

H̃bb = sinh |Ã| sinh |Ã′| ei (−θÃ+θÃ′ +θGbb
). (25)

These assignments identically satisfy the output commutator
relations in Eqs. (13a)–(13c) for arbitrary Ã, Ã′, B̃ ′. Substitut-
ing Eq. (25) into Eq. (22) yields the identifications

|A| = |Gab| |Gbb| − |H̃aa| |H̃ba|
|Gaa| |Gbb| = tanh |Ã|

cosh |Ã′| cosh |B̃ ′| ,

|A′| = |H̃ab|
|Gaa| = tanh |Ã′|, (26)

|B ′| = |H̃ba|
|Gbb| = tanh |B̃ ′|,

where the phases ei θX̃ for X̃ ∈ {Ã,Ã′,B̃ ′} have identically
canceled on both sides of the equalities in the three formulas
in Eq. (22) if we take θÃ = θA, θÃ′ = θA′ , and θB̃ ′ = θB ′ .

Note that in the weak field limit |g αp T |  1 we
have |A|,|A′|,|B ′| ∼ O(|g αp T |) since each contains an off-
diagonal element of either the G or H̃ matrices. Assuming
the same holds true for X̃ ∈ {Ã, Ã′, B̃ ′} justifies the use of the
first-order approximations tanh |X̃| ≈ |X̃| and cosh |X̃| ≈ 1.
Under these conditions the three equations in Eq. (26) simply
reduce to |Ã| ≈ |A|, |Ã′| ≈ |A′|, and |B̃ ′| ≈ |B ′|, which are
effectively what has been utilized in the previous sections to
produce the two-photon state (see also [1]). Last, note that
without the transformation Uθ in Eq. (23) the quantities Gaa

and Gbb would have been assigned real values in Eq. (25)
under the remaining transformations alone. Thus, Uθ was
introduced to take into account the complexity of Gaa and
Gbb by introducing the phases ei θGaa and ei θGbb in Eq. (25).

C. Entanglement in the two-photon mixed output state

In this section we compute the entanglement between the
generated signal and idler modes of the output mixed Gaussian
two-photon state in the presence of loss. For the entanglement
measure we compute the log negativity [16,17] (see also
[18] and pp. 66–67 of [8] for succinct reviews). The log
negativity EN (ρ) for a mixed Gaussian state ρ is given by
EN (ρ) = max[0, − ln(2ν̃<)], where ν̃< is the smaller of two
symplectic eigenvalues ν̃± of the real, positive, symmetric
covariance matrix σij ,

σij = 1
2 〈Xi Xj + Xj Xi〉 − 〈Xi〉 〈Xj 〉, (27)

which defines the Gaussian mixed state. In the above, Xi =
(xa,ya,xb,yb) is the row vector of quadrature variables, where
xa = (a + a†)/

√
2, ya = (a − a†)/(

√
2 i), xb = (b + b†)/

√
2,

yb = (b − b†)/(
√

2 i), such that the Wigner function for the
normalized Gaussian state is given by W (X) = exp[−(X −
〈X〉) σ−1 (X − 〈X〉)T ]/[(2 π )n

√
det(σ )] [8]. Entanglement is

present in the state when ν̃< < 1
2 , yielding EN (ρ) > 0.

The log negativity capitalizes upon the symplectic structure
of the Gaussian correlation matrix. For Gaussian states, linear
optical operations simply transform the covariance matrix σ

while retaining the Gaussian structure of the transformed state.
Under linear optical transformations it becomes relatively
straightforward to compute bounds on the discrimination of
different transformed Gaussian states [18]. This advantage of

quantifying Gaussian states has currently found great utility
in analyzing the security of quantum key distribution systems
based on quantum illumination [19] and for the development
schemes to detect the residual correlations [20] between the
interrogating signal and (memory) held idler of the two-mode
squeezed state used to determine the presence or absence
of a remote target. With respect to the work investigated
here, a mrr is essentially a linear optical beam splitter with
passive feedback, whose transformation properties preserve
the Gaussian nature of the two-mode squeezed state in the
presence of loss.

In Eq. (27) we take expectation values of in op-
erators with respect to the out state |0〉out. Thus,
Trsys,env[|0〉out〈0|G(�ain,�a†

in)]=out〈0|G(�ain,�a†
in) |0〉out= in〈0| U †

G(�ain,�a†
in) U |0〉in = in〈0|G(�aout,�a†

out) |0〉in, where G(�ain,�a†
in) is

some function of the input operators [21] and the trace is take
over both the system (sys) a,b and environment (env) f̃a, f̃b

subsystems. Thus, defining xa → (aout + a
†
out)/

√
2, etc., we

find using

aout = Gaa ain + Gab b†in + H̃aa f̃a + H̃ab f̃
†
b , (28a)

b
†
out = Gba ain + Gbb b†in + H̃ba f̃a + H̃bb f̃

†
b (28b)

that the covariance matrix has the form

σ =

⎛
⎜⎝

A 0 B C
0 A −C B
B C A′ 0

−C B 0 A′

⎞
⎟⎠ ≡ σG + σH , (29)

where

A = σxa xa
= 1

2 [(|Gaa|2 + |Gab|2) + (|H̃aa|2 + |H̃ab|2)]

≡ AG + AH , (30a)

A′ = σxb xb
= 1

2 [(|Gbb|2 + |Gba|2) + (|H̃bb|2 + |H̃ba|2)]

≡ A′
G + A′

H , (30b)

B = σxa xb
= Re(Gaa G∗

ba + H̃aa H̃ ∗
ba) ≡ BG + BH ,

(30c)

C = σxa yb
= Im(Gaa G∗

ba + H̃aa H̃ ∗
ba) ≡ CG + CH ,

(30d)

where Eq. (13c) has been used to simplify Eqs. (30c) and (30d).
The matrix σ in Eq. (29) of the state ρout = Trenv[|0〉out〈0|] has
the form of a mixed thermal two-mode squeezed state, whose
symplectic eigenvalues for the covariance matrix associated
with its “partial transpose” are given by (see p. 67 in [8])

ν̃± = 1
2 [(A + A′) ±

√
(A − A′)2 + 4 (B2 + C2)]. (31)

The log negativity of the squeezed vacuum state ρout in the
presence of loss is then given by

E
(out)
N = max[0, − ln(2 ν̃<)], ν̃< = min(ν̃+,ν̃−)

⇒ E
(out)
N > 0 for ν̃< < 1

2 , (32)

where entanglement E
(out)
N > 0 occurs when ν̃< < 1

2 . The
influence of loss on the entanglement of the state can be
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FIG. 2. Symplectic eigenvalues (top) ν̃− and (bottom) ν̃+ for (left) phase accumulation angles on mrr resonance θ = 0, (middle) slightly
off mrr resonance θ = π/2, and (right) midway between mrr resonances θ = π for the case of signal-idler photon loss.

easily identified in Eqs. (30a)–(30d) as the terms Hij (ω) which
accompany each corresponding classical-like loss (for α < 1)
term Gij (ω) for i,j ∈ {a,b}.

Let us examine the symplectic eigenvalues for the case
of equal self-coupling ρa = ρb = ρ and equal propagation
loss αa = αb = α for the signal and idler modes a and b,
respectively. Since we have considered Ta = Tb = T , we also
have θa = θb = θ = ω T . For simplicity, we take the pump αp

to be real, so that ra = rb = gαp T ≡ r . Since, in general,
r = g αp T  1, we expand the symplectic eigenvalues to

O(r2) to obtain

ν̃± ≈ 1
2 ± r (1 − ρ2) |S(ρ,θ,α)|2

+ 1
2 r2 (1 − ρ2) |S(ρ,θ,α)|4 (3 − α2 ρ2 − 2 α ρ cos θ ),

(33)

where |S(ρ,θ,α)|2 = 1/|1 − ρ α eiθ |2 = (1 + ρ2 α2 − 2 ρ α

cos θ )−1 is the square modulus of the round-trip circulation
factor. In Fig. 2 we plot the full expressions for ν̃± for
which Eq. (33) is numerically a very good approximation for

FIG. 3. Contour plots of (left) symplectic eigenvalues ν̃< = ν̃− ∈ {0.490,0.4925,0.495,0.4975,0.499} (surfaces from left
to right in the cube, corresponding to log negativity E

(out)
N ∈ {0.020,0.015,0.010,0.005,0.002}) and (right) log negativity

E
(out)
N ∈ {0.01,0.025,0.05,0.075,0.10,0.20} (outer to inner surfaces in the cube, corresponding to symplectic eigenvalues ν̃− ∈

{0.495,0.488,0.476,0.464,0.452,0.409}) for the case of signal-idler photon loss.
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FIG. 4. E
(out)
N for (left) θ = 0, (middle) θ = π/2, and (right) θ = π for the case of signal-idler photon loss, where θ = ω T .

r < 0.01. In general, the mrr has resonances at θ = ω T =
2 m π , and θ = (2 m + 1) π represents off-resonance points
located midway between cavity resonances (in the middle
of the cavity free spectral range). (Note that experimental
values of r for typical pump values of 1 mW are on the
order of r ∼ 10−5 [13,22], but in order to illustrate the effects
of entanglement we will use a value of r = 0.01 in the
plots.) Thus, we see that ν̃+ > 1

2 and that a small amount
of entanglement occurs whenever ν̃< = ν̃− < 1

2 . In Fig. 3 we
plot the contour values of ν̃− and the corresponding values of
the log negativity E

(out)
N (ν̃−) as a function of 0 � ρ, α � 1,

and −π � θ � π for r = 0.01. The more the symplectic
eigenvalue ν̃− is less than 1/2, the larger the log negativity
E

(out)
N (ν̃−) = − ln(2 ν̃−) is, and hence, the larger the entangle-

ment between the generated signal and idler occupation modes
is (for fixed frequencies that add up to the pump frequency for
SPDC or twice the pump frequency for SFWM). In the left

panel of Fig. 3 we plot the prominent contour values of
ν̃− near 1/2 since the loss has degraded the entanglement
[small values of E

(out)
N (ν̃−)]. However, in the right panel of

Fig. 3 slightly larger values of the log negativity do exist
in the presence of loss, but these contour surfaces (from
outward to inward) become smaller as the value of E

(out)
N (ν̃−)

increases. In Fig. 4 we plot the log negativity E
(out)
N (ν̃−) for

fixed values of θ = ω T = (0,π/2,π ). We see that that the
entanglement is largest for θ = 0, which corresponds to the
resonance condition for the mrr, and drops off precipitously
for nonzero θ . Note that θ = π corresponds to the midpoint
in the free spectral range of the mrr between resonances (at
integer multiples of 2π ).

From Figs. 2, 3, and 4 and from Eq. (33) we see that as we
approach the case of no internal propagation loss in the mrr
α → 1, we have the following limits as we also approach the
high-Q limit ρ → 1:

ν̃± = 1

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1−ρ±r ρ

1−ρ∓r

)2

f̃θ=π/2(ρ,r)(
1+ρ∓r ρ

1+ρ±r

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→ 1

2
± r

⎧⎪⎪⎨
⎪⎪⎩

1+ρ

1−ρ
+ 1

2 r
(1−ρ) (3+ρ)

(1−ρ)2 for θ = 0

1−ρ2

1+ρ2 + 1
2 r

(1−ρ2) (3−ρ2)
(1+ρ2)2 for θ = π/2

1−ρ

1+ρ
+ 1

2 r
(1+ρ) (3−ρ)

(1+ρ)2 for θ = π

⎫⎪⎪⎬
⎪⎪⎭, (34)

where f̃θ=π/2(ρ,r) is an involved function of ρ and r that
does not reduce to a simple form for θ = π/2. From Eq. (34)
we can infer that as r = gαp T increases (e.g., pump power
or cavity round-trip time), ν̃− is driven to be less than one
half, thus increasing entanglement, while ν̃+ is driven to be
greater than one half. But there is a limit as to how much
we can increase, say, the pump power before other parasitic
effects are introduced. However, by inspection of Eq. (34)
we can further enhance entanglement on resonance θ = 0, so
that to O(r2) we have ν̃− ∼ 1

2 − 2 r/(1 − ρ) + 4 r2/(1 − ρ)2

as we approach the high-Q limit, thus further decreasing
ν̃− below one half [for fixed r < 2/3, where the O(r) term
equals the O(r2) in this approximation]. In Fig. 5 we plot
the full expression ν̃

(θ=0,α)
− (ρ,r) as a function of ρ for

r = (0.1,0.01,0.001) for the ideal lossless case α =
1.0 (top left panel), showing ν̃−(ρ∗) = 0 at ρ∗ =
(0.909091,0.990098,0.998998), respectively. At such values
of ρ∗ the squeezing is formally infinite, but this idealized case
of no internal propagation loss α = 1 is used to illustrate the

effect of a high cavity Q on the entanglement. [Note that
for the other values of θ = (π/2,π ) in Eq. (34), ν̃− → 1

2 as
ρ → 1.] Of course, the smaller the value of r is, the closer ρ∗
is to 1.

In Fig. 5 we also show the case of more realistic propagation
loss: 1% loss (α = 0.99; top right panel) and 5% loss (α =
0.95; bottom left panel). These plots indicate that although
ν̃−(ρ) cannot be reduced identically to zero when realistic
loss is present, it can still be substantially reduced below the
value of one half on resonance θ = 0. The bottom right plot
in Fig. 5 collects the graphs of ν̃

(θ=0)
− (ρ) for fixed r = 0.01

for α = (1.0,0.99,0.95), showing the effects of operationally
realistic propagation loss (1%, 5%) over that of the idealized
lossless case (α = 1). In Fig. 6 we plot the log negativity
EN (ρ,α) for on mrr resonance θ = 0 as a function of 0 � ρ �
1.0 and 0.95 � α � 1.0 for r = (0.1,0.01,0.001) (compare
with Fig. 5). Again, this plot indicates that at realistic values
of internal propagation loss (α < 1), a high cavity Q (ρ nearer
to unity) enhances entanglement.
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FIG. 5. The top left, top right, and bottom left plots show, respectively, ν̃
(θ=0)
− (ρ,r) for α = (1.0,0.99,0.95) with r = 0.1 (gray solid line),

r = 0.01 (black solid line), and r = 0.001 (gray dashed line). The bottom right plot shows ν̃
(θ=0,r=0.01)
− (ρ) with α = 1.0 (gray solid line),

α = 0.99 (black solid line), α = 0.95 (gray dashed line) .

D. The effect of only the G terms on the log negativity

It is instructive to compare the above symplectic eigenval-
ues and log-negativity plots which include signal-idler photon
loss with the corresponding plots using only the G terms
AG,A′

G,BG,CG in Eqs. (30a)–(30d) in the symplectic eigen-
values [Eq. (31)], which we will label as ν̃

(G)
± . Note that for

the (ideal) lossless case α = 1, the H terms AH ,A′
H ,BH ,CH

in the symplectic eigenvalues are identically zero. For the case
of loss α < 1, these H terms are responsible for driving the
full symplectic eigenvalues (using both G and H terms) in
Eq. (31) towards the value of 1

2 , where the log negativity has

the value zero. By considering the symplectic eigenvalues ν̃
(G)
±

composed of only the classical-like loss (for α < 1) G terms,
we can infer their influence for arbitrary values of α. To give
this a name we will refer to it as “no quantum noise signal-idler
photon loss.”

FIG. 6. E
(θ=0)
N (ρ,α) = − ln[2 ν̃

(θ=0)
− (ρ,α)] for r = 0.1 (top sur-

face), r = 0.01 (middle surface), and r = 0.001 (bottom surface).

Using only the G terms in Eq. (31) yields

ν̃
(G)
± ≈ 1

2 |S(ρ,θ,α)|2 f0(ρ,θ,α)

± r α (1 − ρ2) |S(ρ,θ,α)|4 f1(ρ,θ,α)

+ 1
2 r2 α (1 − ρ2) |S(ρ,θ,α)|4 f1(ρ,θ,α), (35)

which should be compared with Eq. (33). As in Eq. (33),
|S(ρ,θ,α)|2 = |1 − ρ α eiθ |−2 = (1 + ρ2 α2 − 2 ρ α cos θ )−1

is the square modulus of the round-trip circulation factor. Here,
f0(ρ,θ,α) = |α ei θ − ρ|2 = α2 + ρ2 − 2 ρ α cos θ , and
f1(ρ,θ,α) and f2(ρ,θ,α) are other polynomials of ρ,α and
trigonometric functions of θ . In Fig. 7 we plot the full
expressions for ν̃

(G)
± for which Eq. (35) is numerically a

very good approximation for r < 0.01. As opposed to the
full symplectic eigenvalues ν̃± in Eq. (33), we see that both
ν̃

(G)
± < 1

2 over the entire range of parameters, indicating that a
degree of entanglement is always present via the log-negativity
equation (32), as indicated in Figs. 8 and 9. Using the full
expression for the G-term symplectic eigenvalues, we have
ν̃

(G)
± → 0 in the limit ρ,α → 0, which is why the contour

surfaces of high log negativity in Fig. 9 converge to the lower
left edge of the cube. This is also evident in Fig. 8, where the
log negativity peaks for ρ,α → 0, where, correspondingly,
in Fig. 7 the symplectic eigenvalues ν̃

(G)
± are zero. The point

is that the symplectic eigenvalues ν̃
(G)
± using only G terms

favor large entanglement for parameter values ρ,α → 0,
while the physical case of signal-idler photon loss (including
both G and H terms in the symplectic eigenvalues) ν̃± favors
the parameter regime of low internal propagation loss and
high cavity Q, ρ,α → 1. The G terms in the full symplectic
eigenvalues drive ν̃± towards values less than one half, even
towards zero, while the H terms drive ν̃± towards values
near one half. Depending on the value of the dimensionless
pump parameter r = g αp T and the mrr parameters ρ,θ,α,
a balance can be reached between the competing G and H

terms such that a degree of entanglement is preserved by the
mrr, even in the case of signal-idler photon loss.
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FIG. 7. (top) ν̃
(G)
− and (bottom) ν̃

(G)
+ (compare with Fig. 2) for (left) on mrr resonance θ = 0, (middle) slightly off mrr resonance θ = π/2,

and (right) midway between mrr resonances θ = π for the case of no quantum noise signal-idler photon loss [i.e., EN computed without the
H terms in Eq. (9)].

IV. SUMMARY AND DISCUSSION

In this work we have investigated the entanglement of the
output signal-idler squeezed vacuum state in the Heisenberg
picture as a function of the coupling and internal propagation
loss parameters of a microring resonator. We constructed
the operator expression that produces the output squeezed
vacuum state in the presence of noise. We also constructed
the unitary operator that evolves the input modes to the output
modes �aout(ω) = G(ω) �ain(ω) + H (ω) �f (ω) [see Eq. (9)] with
the inclusion of loss. Since the mrr is essentially a linear
optical beam splitter with passive feedback, Gaussian input
states are evolved to Gaussian output states even in the
presence of noise. Hence, we investigated the entanglement
of the mrr output two-mode squeezed state using the log
negativity and the symplectic structure of mixed Gaussian
states. We showed that the transfer matrix G(ω) which encodes
the classical phenomenological loss (for α < 1) pulls the
symplectic eigenvalues of the covariance matrix of the mixed

Gaussian state towards zero, where the log negativity is large,
indicating strong entanglement. On the other hand, the noise
matrix H (ω) pulls the eigenvalues towards the value of 1/2,
where the log negativity, and hence the entanglement, is
small. We investigated the role of the (constant) driving pump
and nonlinear coupling constant gαp on the entanglement of
the output mixed Gaussian squeezed state and showed that,
depending on its strength, the symplectic eigenvalues can be
driven towards zero for certain values of the self-coupling
(reflection) parameter ρ when propagation losses are small (α
near unity).

This work represents the most recent step toward our
overarching goal of developing a comprehensive theoretical
framework and computational tool kit for the design and
optimization of a class of scalable, on-chip linear quantum
optical information processing devices. Previously, we have
(i) examined the quantum dynamics of a single-bus microring
resonator [23], (ii) proposed and analyzed a “fundamental-
circuit” element for this class of devices [12], and (iii) extended

FIG. 8. E
(out)
N (ν̃(G)

± ) for (left) on mrr resonance θ = 0, (middle) slightly off mrr resonance θ = π/2, and (right) midway between mrr
resonances θ = π for the case of no quantum noise signal-idler photon loss [i.e., EN computed without the H terms in Eq. (9)].
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FIG. 9. Contour plots of E
(out)
N (ν̃(G)

± ) ∈ {0.1,0.5,1.0,2.0,5.0,10.0}
(surfaces from right to left in the cube, corresponding
to symplectic eigenvalues ν̃− ∈ {0.450,0.300,0.180,0.068,3.4 ×
10−3,2.3 × 10−5}) for the case of no quantum noise signal-idler
photon loss [i.e., EN computed without the H terms in Eq. (9)].

the analysis of the fundamental-circuit element to examine its
response in the presence of quantum noise [3]. Specifically, in
Refs. [3,12,23] we demonstrated theoretically advantageous
enhancements of the operating parameter spaces of the devices

we consider owing to the passive quantum optical feedback
(PQOF) that is a signature feature of the architecture for
this class of device. In this paper and in the first paper
in this two-paper sequence (AH-I), we have extended the
analysis to include on-chip, intraring photon generation via
the processes of SPDC and SFWM. In this paper specifically,
we have analyzed the competitive effects due to (i) (amplitude)
attenuation noise and (ii) quantum noise arising from coupling
with the environment on the level of entanglement present in
states transmitted from a single-bus device featuring PQOF.
These results are instrumental to understanding the practical
quantum information processing capabilities of devices of this
sort under more realistic operating conditions.

Our current and future work is focused upon using the
theoretical and computational tools we have developed so
far in [1,3,12,23] and this current work to inform the design
and to optimize the function of devices of high impact for
linear quantum optical information processing, such as the
Knill-Laflamme-Milburn controlled-NOT (CNOT) gate [24].
Further, we are investigating larger networks of directionally
coupled silicon-nanophotonic-waveguide–mrr arrays for pos-
sible quantum advantages with respect to communications,
sensing, and metrology [25,26].
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