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Photon-pair generation in a lossy microring resonator. I. Theory
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We investigate entangled photon-pair generation in a lossy microring resonator using an input-output formalism
based on the work of M. G. Raymer and C. J. McKinstrie [Phys. Rev. A 88, 043819 (2013)] and P. M. Alsing
et al. [Phys. Rev. A 95, 053828 (2017)] that incorporates circulation factors that account for the multiple
round-trips of the fields within the cavity. We consider the nonlinear processes of spontaneous parametric
down-conversion and spontaneous four-wave mixing, and we compute the generated biphoton signal-idler state
from a single-bus microring resonator, along with the generation, coincidence-to-accidental, and heralding
efficiency rates. We compare these generalized results to those obtained by previous works employing the

standard Langevin input-output formalism.
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I. INTRODUCTION

Over the last decade, advances in chip-based fabrication
have made micron-scale, high-quality-factor Q integrated
optical microring resonators (mrr’s) coupled to an external bus
ideal sources of entangled photon-pair generation, requiring
only microwatts of pump power [1-6]. Such high-Q micror-
ing resonators exhibit nonlinear optical properties allowing
for biphoton generation arising from the x® processes of
spontaneous parametric down-conversion (SPDC) and the
x® processes of spontaneous four-wave mixing (SFWM).
Much theoretical research has been devoted to studying the
generation of entangled photon pairs within cavities and mrr’s
in the weak pump field driving limit [2,7-14] and, more
recently, in the strong pump field regime [15] where higher-
order nonlinear effects such as self-phase and cross-phase
modulation become important.

The predominant method of analysis for analyzing a driven
cavity or mrr is the standard Langevin input-output formalism
[16-20], which allows one to express the output field in terms
of the intracavity and external driving fields. This formalism
is valid in the high-cavity-Q limit, near cavity resonances,
but does not adequately address processes throughout the
entire free spectral range of the cavity. In this work we
investigate entangled photon-pair generation in a microring
resonator using a recent input-output formalism based on
the work of Raymer and McKinstrie [21] and Alsing et al.
[22] that incorporates the circulation factors that account for
the multiple round-trips of the fields within the cavity. We
consider biphoton-pair generation within the mrr via both
SPDC and SFWM and compute the generated two-photon
signal-idler intracavity and output states from a single-bus
(all-through) microring resonator. We also compute the two-
photon generation, coincidence-to-accidental, and heralding
efficiency rates. We compare our results to related calculations
[7,10,13] obtained using the standard Langevin input-output
formalism.

This paper is organized as follows. In Sec. II we derive
and solve the equations of motion for the pump, signal,
and idler fields within a mrr coupled to a single external
bus using a combination of the formalism of Raymer and
McKinstrie [21] and Alsing et al. [22]. We consider the weak,
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nondepleted pump field limit where higher-order nonlinear
processes such as self-phase and cross-phase modulations
effects are neglected. We also examine the commutators of
the quantum noise fields introduced to account for internal
propagation loss which need not commute within the mrr,
a phenomena noted previously by Barnett et al. [23] and
Huang and Agarwal [24] in their studies of circulating cavity
fields. In contrast to the standard Langevin approach, we
show these commutators, which can be uniquely solved for by
requiring the unitarity of the input and output fields, contain
pump-dependent contributions. In Sec. IIIl we compute the
output biphoton state and calculate its generation rate, along
with the coincidence-to-accidental and heralding efficiency
rates. In Sec. IV we compute the biphoton state generated
within the mrr since it is the state most often calculated in the
literature and affords the most straightforward comparison.
Again, we calculate the biphoton generation, coincidence-
to-accidental, and heralding efficiency rates. We investigate
how the mrr self-coupling (bus-bus, mrr-mrr) and internal
propagation loss affect these rates. In Sec. V we summarize
our results and indicate avenues for future research. In the
Appendix we examine our expressions for the output fields
and for rates derived from them in the high-cavity-Q limit
where the standard Langevin input-output formalism is valid
and compare them with prior works in the literature.

II. SPDC AND SPFM PROCESSES INSIDE A (SINGLE-BUS)
MICRORING RESONATOR

A. Preliminaries

In this section we examine the nonlinear processes of SPDC
and SFWM inside a single-bus mrr of length L = 27 R, as
illustrated in Fig. 1. Here, a is the intracavity field which
is coupled to a waveguide bus with input field a;, and output
field aqy. The parameters p,, 7, are the beam-splitter-like self-
coupling and cross-coupling strengths, respectively, of the bus
to the mrr such that | p,|* + |7,|> = 1. z = 0, is the point just
inside the mrr which cross couples to the input field a;,, and
z = L_ is the point after one round-trip in the mrr that cross
couples to the output field ay.

©2017 American Physical Society
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FIG. 1. A single-bus (all-through) microring resonator (mrr) of
length L = 27 R with intracavity field a, coupled to a waveguide bus
with input field a;, and output field a,y. p, and 7, are the beam-
splitter-like self-coupling and cross-coupling strengths, respectively,
of the bus to the mrr such that | o, |*> + |7,|*> = 1. z = 0, is the point
just inside the mrr which cross couples to the input field a;,, and
z = L_ is the point after one round-trip in the mrr that cross couples
to the output field aqy,.

In the work of Raymer and McKinstrie [21] (abbreviated
as RM) the cavity field a satisfies a traveling-wave Maxwell
ordinary differential equation in the absence of internal
propagation loss given by

(0 + vq ;) a(z.1) = atpor, P(2,1), (D

where a(z,t) is the ring-resonator cavity field (in the time
domain), v, is the group velocity, P(z,t) is the polarization,
and ap,, is a coupling constant. The carrier wave frequency
has been factored out so that all frequencies are relative to the
optical carrier frequency. The input coupling and periodicity
of the cavity are captured by the boundary conditions

a(04,1) = pga(L_,t) + 74 ain(t), (2a)
aou(t) = T a(L_,t) — pg ain(2), (2b)

where we have taken the beam-splitter-like self-coupling p,
(buss-bus, mrr-mrr) and cross coupling 7, (bus-mrr) to be real
for simplicity and the minus sign in Eq. (2b) accounts for the
7 change in phase arising from the “reflection” of the input
field off the higher index of the refraction mrr to the output
(bus) field. The input and output fields satisfy the free-field
commutators

[ain(),al, (1] = 8(t — ') = [aou(t),aly (). (3)

The output field a,y(w) is easily solved from Egs. (1),
(2a), and (2b) in the Fourier domain, yielding the unimodular
transfer function Gy in(®@) defined by

Aou() = Gout,in(w) ain(w),

1 - Pa e_in“
1 — P eia)T,,

Gouin(@) = €' [ 4)

| Gout,in(a))| =1
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Note that in the classical case (see, e.g., Yariv [25] and Rabus
[26]) one obtains the result with phenomenological loss factor
0<a, <1,

a, ei

dou(@) = G 1 (@) ain(@) = ( — P )am«o),

1— pka,ei
|G w(@)| < 1, )

which is the same coefficient that appears in the quantum
derivation with loss [see Eq. (13g) in Alsing et al. [22]
(abbreviated as AH) with p, — 7, being real] and 6, = w T,.
The lossless case corresponds to ¢, — 1.

For the quantum derivation including internal propagation
loss (generalizing the lossless mrr considerations begun in
[271), AH [22] used an expression by Loudon [28,29] for
the attenuation loss of a traveling wave, modeled from a
continuous set of beams splitters acting as scattering centers
[28,29],

a(L_,w) = L q(0,,w)
L
+iM/ dz &5 @D gz w),  (6)
0

where /Sl =, ei%, with a, =e 2 Ta/v)L and @, =
(wn(w)/c)L =wT,, and I, incorporates both coupling
and internal propagation losses. Here, s(z,w) are the
noise scattering operators that give rise to the inter-
nal loss and satisfy [s(z,0),sT(z/,0)] = 8(z — ') 8(w — ).
AH explicitly showed that a(L_,w) in Eq. (6) satisfied
[a(L_,w),a'(L_,&')] = 8(w — ). By tracking the infinite
number of round-trip circulations of the cavity field in the
single-bus mrr, AH derived the expression (with t — p, and
Kk — T, 1in [22])

_ 0, i
out(@) = <&) (@) — 17> VTa Y (02)"
n=0

1— pfa, e

(n+1)L
X / dz eiﬁa(w)[(n-i—l)L—Z]f(Z,w). (7)
0

AH showed by explicit calculation that the output field satisfies

[agu(w), alm(w)] = §(w — &'). In general, this allows one to
write

Aour(@) = Gout,in(w) ain + Hout,in(a)) Ja(w),

|Hout,in(w)| = 1 - |G0ut,in(w)|2,

which defines the quantum noise operator f,(w) from the
unitary requirement of the preservation of the free-field output
commutator. In the Appendix we examine Gy in(®w) and
Hoyiin(w) in the high-cavity-Q limit, where the standard
Langevin input-output formalism is valid.

®)

B. Derivation of output operators from input
and noise operators

For the consideration of nonlinear biphoton-pair gener-
ation, we now consider three intracavity fields circulating
within the mrr: the signal field a(z,?), the idler field b(z,?),
and the pump field c(z,f). As in the previous section, we
work in the interaction picture where the carrier frequencies
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wy for d € {a,b,c} have been removed, so that the fields are
slowly varying in time. In the interaction picture the nonlinear
Hamiltonian for these processes are taken to be

HY G = 8opac (ca' b + Ha), o = w4 + wp, (9a)
HAL = gwm (Palb' + Ha), 2w.=w, +wp. (9b)

Each field d(z,t) for d € {a,b,c} satisfies the equation of
motion and input-output boundary conditions

(3 + vg 3) d(z,1) = —i [d(z,0),H"*]

- % d(z.1) + oty Fa(z,t),  (10a)

d(04.,1) = pgd(L_.1) + 74 din(1), (10b)

dou(t) = T4 d(L_.1) — pq din(1), (10c)

where we have included the internal mrr propagation loss
given by the rate y;. We also allow for different group

velocities vy(w) = ¢/nqa(w) for each mode d, leading to
different round-trip times T; = L /v, for k € {a,b,c}. Junction

J
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coupling losses between the ring resonator and the bus are
taken into account by later defining the self-coupling loss y,
via pg = e 7 Ta/2 [21].

In the above F,(z,t) are the noise operators inside the
ring resonator, and o1, is a coupling constant of the internal
modes a,b to the polarization field, giving rise to internal loss
(see RM [21]). While the noise operators could be derived
directly as in AH [22] by tracking the multiple round-trips
of each field d through the mrr, here, we have opted for
the Langevin-based approach indicated (but not explored)
in RM [21]. Here, we differ from RM by not explicitly
indicating the value of the commutation relations for the noise
operators Fy(z,t), preferring instead to compute their values
later by the causality condition that the output fields d, of the
above coupled set of equations satisfy the free-field canonical
commutation relations, given that the input fields dj, do. The
particular value of the commutators is important when we
compute the reduced density matrix p,, for the two-photon
output signal-idler state. For now the noise operators F, are
simply carried along through the computation.

The above equations are most easily solved in the frequency domain [30] [using d(z,®) = ffooo dtd(z,t) e ford € {a,b,c}

and f;(z,w) = ffooo dt Fy(z,t) e'®']. Here, the interaction Hamiltonians are given by

®©d
HYE = / 2 gpac(@) [c(.0) al(2.0) b (z,0) + Hal,  gopac(@) =

o 2T

© d
HVL / 0 (@) [P(z.0) al (2.0) b (2,0) + Hal,  guum(@) =

0o 2T

3(hw)*? x@ (11a)
460 4 Vring ’
3(hwe)? @
ey X7 (11b)
4eg 1* Viing

where the values of gg,dc(w) and ggrwm () [12,13] depend on the volume Vi, of the ring mode and the nonlinear susceptibilities
x®@ and x® are accessed uniformly in the ring. Here, 7 is the average index of refraction of the ring (assumed constant), and

is the permittivity of free space.

In the undepleted pump approximation, employed here, the equation of motion for the pump mode c¢ satisfies Eq. (1) [with
a — cand P(z,t) = 0], and Hamiltonian terms such as —i gspac @ b and —i gsrwm ¢ a b are considered to be small and hence are
dropped along with the noise term f, [31]. This equation is then classical, and the value of the lossless pump inside the ring

becomes

T
(c(04,0)) = 1= el

{cn(@)), (c(L-,w)) =

iwT,

(cin(@)), (12)

1 — Oec ein"

where the angle brackets indicate that we are dealing with a c-number field value. Outside the ring, the pump field is given by

(Cout(@)) = Grpen (@) (n(@), Gy (@) = 6T [

1 — . —ioT.

1 - Pc ein‘

Therefore, in the Hamiltonian we replace the operator ¢, by {(c(z,)) and write

HNE =/ d—wg(w) [ (z.0) a' (z.0) b (z,0) + &y(z.0) a(z,0) b(z.w)],

oo 2T

8(w) = gyped(®),

g(®) = gstam(®),  ,p(z,0) = ((z,0)).

ap(Z’a)) = <C(Z,C{))>,

(14a)

(14b)
(14c)

Thus, for both nonlinear processes the signal and idler modes satisfy the equation of motion in the frequency domain,

(—i 0+ v, 8,) a(z,w) = —i g a,(z,0) b (z,0) — % a(z,w) + apolz fu(z,0),

(—i 0+ v,9,)b'(z,0) = i g&(z,0) a(z,w) — % b'(2,0) + oty fo(2,0).

(15a)

(15b)
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Equation (15a) has the formal solution

L
a(L_,w) = a(04,1) " + / d7' [(—igap/va) bl(z @) + (poie/Va) fulZ sw)] € 5L, (16)
0

where &, = (w+1iy,/2)/v, so that i §,L = (iw — y,/2) T,. For fast molecular damping we approximate the last term by
setting 7’ — L (the upper limit of the integral) and factoring out «,(L_,w) b'(L_,w) from the integral. The remaining

integral yields [—i g op(L_,)/v,] fOL d7 e &= = [—iga,(L_,w)/v)(1 — %L /(=i&,) > —ig atp(L_.) Ty = —i ro(w),
defining the dimensionless pump parameter r,(w) = g o, (w) T,. Thus, we write Eq. (16) as

L
a(L_,w) = a(04,1) &L —ir, (@) b'(L_,t) + fo(@),  ful®) = (Cpols/Va) f d7 fu(Z \w) e 5=, (17a)
0
Similarly, Eq. (15b) yields
L
bUL_,0) = b0y, 1) e +iry(w)a(L_,t) + f (@), f(@) = (Xpoiz/Va) / d7 f(Z ) e &L=, (17b)
0

where we have defined f,(w) and f,j (w) and used the notation 7,(w) = ga,(L_,w) T, and ry(w) = ga;(L,,a)) T,. We can
therefore put equations of motion and boundary conditions for the signal a and idler » modes in matrix form as

Ma(L_0) = P d(04.0) + f(o), (18a)
Q(04.0) = T, d(L_,0) + X, din(w), (18b)
aoul(w) = X; a(L—,w) - Tp Ziin(w)v (18¢)

where we have defined

_ 1 ir, _ eibal 0 _(pa O (@ O
M_<_l.rb 1), Pg_<0 e,-g,,L>, Tp—<0 o) x=(% 1) (19)

> - din(w - Aout W rs alw

a(w) = (ZT((CZ)))) apn(w) = (bifngw;) Aout(®) = (bluIEwD flw) = (;;Ew;) (20)
Here, T, represents the through coupling “reflection” from the input bus off the ring resonator to the output bus (and the
self-coupling within the mrr), while X, represents the cross-coupling “transmission” between the bus and the ring resonator. The
term P represents the round-trip phase accumulation and intrinsic loss within the ring resonator, and we define ¢’ = o €%
withey = e %2 and O = w Ty, ry = g, Ty, and rp, = gas T

A substitution of a(0,w) from Eq. (18b) into the right-hand side of Eq. (18a) allows for the solution of the intracavity field

(just before exit) a(L _,w) in terms of dj,(w) and f (w). A subsequent substitution of this solution for a(L _,®) into the right-hand
side of Eq. (18c) produces the desired output field gy (w) in terms of the input field di,(w) and noise operators f (w). After some
lengthy but straightforward algebra, the output fields can be expressed in terms of the input fields as

and

Gout(@) = G() Gin(@) + H(w) f(w), 2D
where
_ _ —1 i _ Gu(w) Gyp(w)
G((,z)) - [X‘E(M PS Tp) ]PE X‘L’ Tp = (Gba(w) be(w) (223)
— i (eié,,L - /Oa) (1 — Pb eigbL) + Ya¥p Pa —i YaTa Tp eigbL (22b)
- D irp Ty T, €5k @E — pp) (1 — pg ey +rorppp)
with
D=(1-p, Y1~ ppe®)y—ryry, 1o =gapT,, rp=gapTy, (23a)
ap=e W2 g =T, for kef{ab) (23b)
and
_ B 1 _ (Huw(@) Hap(0)) _ l 7, (1 — pbeigbL) —i T4 T
H)= XM =P T,)" = (Hba«o) be(a») o\ inn  na-peth) @9

Note that to lowest order in |ga,|, we have 1/D ~ S, Sj,, where S, = I—,Okﬁ =32, (ok €LY =3 ) (o o €'%)" for
k € {a,b} are the geometric series factors resulting from the round-trip circulations of the internal fields k € {a,b} inside the
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ring resonator. For a typical ring resonator of radius R = 20 um and pump laser power of 1 mW (x@® ~ 2 x 1072 m/V,
«, ~ 10° V/m) and round-trip times of T ~ 1 ps, we have r, ~ 107> [32].
A comparison of the matrix forms of G(w) in Eq. (22a) and H(w) in Eq. (24) reveals the useful relationship

G(w) = H(®) P;(0) X:(0) — Ty(w). (25)

In the Appendix we examine G(w) and H(w) in the high-cavity-Q limit defined by o = e % /2 — 1, @ T, < 1, where
the standard Langevin approximation [17,20] is valid, and compare our results with recent related work [10] using the latter
formulation.

C. Commutators of the noise operators
1. Linear equations determined by causality
The commutation relations between the noise operators are fundamentally determined by the canonical commutators of the
free input and output fields. Given that the input fields satisfy [ain(w),ajn(w’)] = [bin(w),b;fn(w/)] = §(w — &') and that they each

commute with the noise operators f,(w), fp(w) (via causality), one must also have that [aou[(a)),agm(a)’)] = [bou[(a)),biut(w’)] =
8(w — o'). Using Eq. (25), this unitary requirement determines the set of linear equations

[dou(®),aly(@)] = 8(w — @) = |Hual® Caa — |Hapl? Chpp + 2Re(Hua Hy Dap) = 1 — (IG aa|* — |G ), (26a)
[Bou(®), bl (@)] = 8(w — @) = —|Hpa|* Caa + | Hypl? Cpp + 2Re(Hpa Hy Dap) = 1 = (1G> = |Gal®), (26b)
[dout(@),Bout(@)] = 0 = Huy Hjy Caa — Hap Hy Cop + Hua Hyy Doy + Hap Hiy DYy = Gy Gy — Gaa Gl (26¢)
[dou(®). bl (@')] = 0 = det(H) Cyp = 0 (26d)

for the four constants C,,, Cpp, Cap, Dyp defined by the commutation relations

[fa(w)’fj(a)/)] = Cy 8(0 — &), [fb(w),flj(w’)] = Cpp (w0 — &), (27a)
[fu(@), f1 (@) = Cap (@ — @), [fal®), f(@)] = Dap 8 — o). (27b)

Since det(H) # 0, Eq. (26d) reveals that C,, = 0. The first three equations are four equations in the four (real) unknowns C,,,
Cpp, Re(D,p), Im(D,), which therefore have a unique solution. Note that in the standard Langevin approach [17,20] one assumes
the canonical values C,, = Cp, = 1 and C,;, = D, = 0. But the standard input-output formalism (here, valid near resonances
of the ring resonator) was explicitly constructed so these canonical values identically satisfy the above set of linear equations
(see, for example, the G and H matrices used in Tsang [10] and Barzanjeh et al. [33]). These special commutator values are
not necessarily valid in general, and in particular D,;, # 0, as pointed out in the works of Barnett et al. [23] and Huang and
Agarwal [24]. In general, the values of C,,, Cpp, D,p must be computed from Eqgs. (26a), (26b), and (26¢). The values of these
commutators not only are important for the self-consistency of the theory but are also relevant when one computes the accidental
singles rate upon the loss of either the generated signal or idler photon due to noise in the ring resonator. However, the values
of these commutators do not affect the two-photon portion of the total state (see the next section) where neither a signal nor an
idler photon is absorbed within the mrr.

2. Exact solution of the commutator equations

Using the expressions in Eq. (22a) for G(w) and Eq. (24) for H(w), a long but straightforward calculation results in the
following simple exact solutions for the commutator equations (26a)—(26c):

Cu(@) =1—af — |l =1—e " —|ga, i> — Y Ti — g, Til*, k€ {a,b}, (28a)
highQ

Dap =i(ry —ra) =igay (T, — Ty, (28b)

where for C,,(w) and Cpp(w) we have also indicated their values in the high-cavity-Q limit. We note that Cyi(w) for k € {a,b}
contains a power-dependent correction |rx|* = |g &, T¢|? of higher order than the leading-order term 1 — o7, which approaches
¥; Ty in the high-Q limit. If we were to redefine the noise operators as fi(w) = (Tx)'/? f{(w), then Cix(w) = Ty Cri, Where
Cu = [fk’(a)),fk/*(w)] ~ Y| 8(w — w') to lowest order in |7%)?. This is the scaling employed by Raymer and McKinstrie [21] for
the intracavity fields when comparing the operator equations of motions in the high-Q limit to the standard Langevin approach.

Other authors (see, e.g., [10,33]) using the standard Langevin approach often simply state from the outset that
[ (), fkw(a)’)] = §(w — o), with the assumption that all cross commutators are zero (i.e., Cy, = Dy, = 0), invoking
independent noise sources. One could, of course, obtain this form of the diagonal commutators by redefining fi(w) =
(Cu)'? '(w) [with an appropriate rescaling of H(w)]. However, even in the high-Q limit, we see from Eq. (28b) that the
cross commutator [ f,(w), fp(w)] = Dy 8(w — ') remains nonzero (though small), unless we assume equal group velocities
(index of refractions) for both the signal (@) and idler (») modes so that 7, = 7.
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III. THE OUTPUT TWO-PHOTON SIGNAL-IDLER STATE

Inside the ring resonator the Hamiltonian in frequency space is
L- * dw
=/ dZ/ — g(w) (@, (z,0) a'(z,w) b1 (z,w) + &) (z,0) a(z,0) b(z,w)). (29)
0, —00 2

For a weak driving field o, (@) = |a,(w)| "%, the two-photon state inside the mrr is given by

(W (Tup)ap = ¢ 1 T |0y, & (1 — i HVE T,p)|vac) (30a)
® d . .
= {1 —i f Z—wrub(a)) [e“’v<w>aT(L_,w)bT(L_,w)+e—'%(w)a(L_,w)b(L_,w)]}|vac>, (30b)
oo 2T

where we have taken 7, = +/T,T, = L/./va vp, assuming the group velocities of the generated signal and idler photons v, vy
are not too different and |7, (w)| = |g(w) ap(L_, @) Typl.

For simplicity, in Eq. (30b) we have assumed perfect phase matching and zero dispersion. In general [7,13,15,32,34],
when the field operators inside the mrr are decomposed in terms of their spatial Fourier components, the spa-

tial integral produces a phase-matching contribution term, fOL; dzexp{ilky(wp) — ka(wy) — kp(wp)] 2} for SPDC and

fOL; dzexpli[2ky(wp) — ka(wa) — kp(wp)] 2} for SFWM, yielding oscillatory sinc function contributions over the longitudinal
momentum-conservation mismatch within the mrr. Further, dispersion effects within the mrr could be accounted for by Taylor
expanding k(wy) = wy nx(wi)/c about central frequencies wy o for k € {p,a,b} to either first or second order. While these spatially
modulating sinc factors (which are unity for perfect phase matching) and dispersion effects are important to account for in actual
physical devices, we will ignore them here in this work for ease of exposition.

The output state W), is obtained from the internal |V (7)), as the Heisenberg operators evolve from inside the mrr to the
output bus. Making the substitutions a(L _,w) — aow(w) and b(L _,w) — by (w) in Eq. (30b) and inserting the expressions for
dout(w) and boy(w) from Eq. (21) into Eq. (30b), we obtain the output state

|¥) out = / O O ) [vaC) o
oo 2T
— i [rap(@)| [ (@), 10} £ (@)IVac)eny + 10)a |05 (@), £ (@) [Vac)eny + 10)ap |9 (@))eny ] 31)

where the vacuum state is given by |vac) = |0)4p|vac)eny = |0)4 |0)p [Vac)eny such that aiy|0), = bin|0)p = f410)eny = f510)eny =
0. The states in Eq. (31) are given by

(WP(@)ap = 27 (@) — i [Fap(@)] Cuac(@)] [VaC)ap — i [Fap(@)] ¥ 5 (@) af, (@) B (@) [0)ap (32a)
Cuc(@) = €% [G(0) Gpp(@) + H}y (@) Hpp(@) Cpp()]
+ 7 [G 0 (@) Gy (©) + Hag(0) Hiy(0) Cog(@)] (32b)
Y (@) = %@ G (0) Gpp(@) + €77 Gop() Gy (o), (32¢)
lp (@), = [ G2 () Hypp(@) + e G} (@) Hap(@)] @ (@) [0),
= ¢"(®) [10)a, (32d)
|0 (@), = [ G (@) H}, (@) + 7% Gup(w) Hy, ()] b () [0),
= 0, (@) [1_0)s. (32¢)
0P ()., = [ H () Hpp() f (@) f} (@) + %) Hyp(w) Hy\ () f(@) f(@)] [vac)eny.- (321)

In the above, Cy,(w) is the first-order [in |r,;(w)|] correction to the signal-idler vacuum state, and |rg;(w)| 1//;?((») is the
two-photon wave function. From Eqgs. (32c) and (A6) we observe that to zeroth order in |g ct,, T;;|, the output two-photon state

¥ D(w) ~ €@ G* () Gyy(w) involves the frequency-dependent shifts of the input fields to the output fields. The second term
in Eq. 32¢), e 191’(“’) Gup(w) Gy (w) < |g o, T,»|%, represents a higher-order pump-dependent correction to wﬁ)(a)) involving
the product of Lorentzian line-shape factors ,/yx/(s + I'x/2) (where s = —iw can be considered a Laplace-transform-solution
variable [10]), relating the fields (a); inside the cavity to the input fields (&, ).

We are interested in the reduced density matrix of the signal -idler system obtained from p,, = Trem,[|\l/)om(‘ll 1.

To trace over the environment we use the fact that Trenv[ f ()| vac)eny (vac| f,(a))] _env(vac| fi(w) f (') |vac)eny =
Cii8(w — '), where we have used fi f-T Lfir ,f ]+f fir. Similarly, Trepy[ f (a))f (") [vac)eny (vac| fi(w) fi(w)] =
env{vac| fi(w) fj(w) fi,(a))f;,(a) ) [vac)eny = [Ciin(w) Cj j(w) + C j/(w) Cji(w)] §(w — o). Using the additional fact that
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C.p(w) = 0 from Eq. (26d), we have

*d *d
pus = / D@ (P2 @) + rapeo) ( / 2O o (@)]0)ap (O], (332)
oo 2T oo 2T
*do | 4, 2 > do M 2
+ 2—|¢a (@)]” Cpp(@) 16,0045 (1,01 + — Cua(®) @), (@)]710,1,)a(0, 1] |
oo 2T oo 2T
WD (@))ap = [27 8(@) — i [7ap(@)] Cyac(@)] 10)ap — i [Fap(@)] Y2 (@) 10 1) ab (33b)
Ro(@) = Cap(@) Cap(w) |7 H (@) Hpp(w) + e Hyp(w) Hy (o). (33¢)

In the above, | W (w)), is the two-photon signal-idler state including the vacuum. The two-photon generation rate [7,10] is given
by Rup(w) = [Fap(@)|? |1ﬂ$(a))|2. The second line of Eq. (33a) gives the single-photon contributions due to the loss of an idler

(leftmost term) or signal (rightmost term) photon with singles rates |ru(@)[? [¢{)(@)[? Cop(@) and [rap(@)[? Cau(@) [0S ()2,
respectively, where the effect of the noise commutators is explicitly evident. We can therefore write

pab = Tren [ W)ou (W1 = D peply). Twlpl]=1. Y p=1 (34)
k=0,1,2 k=0,1,2

Here, ,05;), with k € {0,1,2}, represents the k system-photon (i.e., signal-idler) portion of the reduced density matrix p,;. One can
then define the output coincidence-to-accidental rate (CAR) [10] as

iy @)

R(C‘):g(w) = M, 2 M, )2
|60 @) Cop(@) + Caal@) |}, (@)
_, |Gia(@) Gi(@) _ ( Ya Ve Yo Vs )‘1 %)
ol 1Ga(@) Hn(@)P + 1Hiy (@) G@) \o® +(8a/2)° o +(8,/2)°
and the output heralding efficiency [10] of, say, the idler photon by the measurement of a signal photon as
2) 2
R(out) |1/fab (a))|
herald (Cl)) ) 2 ) 2
|¢a (@) Con(@) + |1, (@)
. 1Giu(@) G(@)I? _ (1 7 )1 6)
2 G (@) Hn(@) + (G, () (@) @ + (D)2

where we have used Hyx(w) Cix — Hi() (1 — a)V/? — y| Hy(0) = Hi(w) in the high-cavity-Q limit. Note that in the first
lines in Eqs. (35) and (36) a common factor of |7y (w)|* = |g « » T,»|? in the numerator and denominator has been canceled.

IV. THE TWO-PHOTON SIGNAL-IDLER STATE INSIDE THE mrr
It is noteworthy to investigate the state of the two-photon state inside the mrr cavity since it is this state which is most often
computed in other treatments [7,10] (with the output field usually given as simply ./, ¥» times the input field; see, e.g., [7,17]).
For a weak driving field o, (w) = |0t ()] €'%(@) the two-photon state inside the mrr is given by Eq. (30a), which for convenience
we restate:

(W (T ap = ¢ " oo W)y & (1 — i HVE T)|vac)

[T dw i0,(w) 1 t —i6,(w)
=1{1—i P rap(w) [ a"(L_,w)b"(L_,w) + ¢ ' a(L_,w) b(L_,w)] ¢ |vac). 37
oo 2T
Using the output boundary condition (18c) and Eq. (25) relating the output fields to the input fields, we obtain
A(L_0) = [X;' H) Py X:]dn + [X;' H)] f(@) = GV (@) dn@) + HY () f(), (38)
with [employing the expression for H(w) in Eq. (24)]
. 1 [t (l—ppe®hyelset —irg Ty et
G )(a)) — ‘ ‘ ) (39a)
D(s) irp T, el 7y (1 — pge'bel) il
N : 1 VY i
. S4T./2 —lTa (erFa/Z) (s+r,,b/2) et (39b)
high . N I it, N ’
O(IIgg'ail) L7 (erl"H/Z) (s+r,,/2) eltat ﬁ’
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where in Eq. (39b) we have used /5" ~ 1, and

. . 12
L (= peitity  —ir, . Lo 0
HO@) = — ] = AP@ AT @) A = =) 7Y R
D(s) irp (1 — pye'sal) 0 (1—ap) !
1 3 1 i&L
— ( 5HT./2 LTa (s+1“u/2) (s+l"b/2) e ) (40b)
4 1 eléa 1 ’
otsan \~i 7o (517) () € s+/2?

where we have similarly defined H”)(w) as in Eq. (A4). The calculation of the wave function |W(7,;))4, and reduced density
matrix p,,(Ty,) inside the mrr at z = L_ proceeds identically as in Sec. IV except for the replacement of G(w) — G (w) and
H(w) — HY(w) in Egs. (31) and (33a), respectively. Analogous to Eq. (32¢c), the two-photon wave function inside the mrr is
given by |r,p(w)| times

U e (@) = €79 G @) Gy () + e G5)(0) G (). (1)
To zeroth order in |ga, T,p|, the first term gives wah (@) & GL*w) G (w) = [/7a/(s + Ta/DN/V6/(s + Tp/2)], the
product of the standard Langevin input-output theory Lorentzian line-shape factors for each field a,b. This is the typical
expression found in other works computing the two-photon state inside a cavity or mrr [7,10,11,35]. The starting point for many
such calculations invoking the standard Langevin input-output formalism [17,20] begins with the statement that the (generic)
free-field operator a(w) is modified inside the cavity or mrr by the change in the density of states, which is accounted for
by the substitution a(w) — /¥a a(®)/(s + I',/2). Again, the second term, ¢~/ G(w) G (w), in ‘/’cﬁ{ (@) represents a
second-order (in |g «,,|) pump-dependent correction. Inside the mrr cavity, the expression for the CAR is

V) (@)

R(mm)

Rear (@) = 2 >
|6 (@)]” Cop(@) + Caa@) |0} (@)
GL* G(L) ’
@ (L) ‘(L)W @) ((L;’ AN J,/+yb 7> (42)
sy |G (@) Hy, @)+ [HD* (@) GE )| vaVatry,
and that for the heralding efficiency of, say, an idler photon by the measurement of a signal photon is
2)
R(mrr)( ) _ iwab mrr( )|
herald = 2
- |68 e @)|* Con(@) + [ (@)
* L 2
N |G (@) G} (@)] _ Ya¥e W “3)

i ~ 2 / - .
ol |G ) By ()] + |G (@) GP@)|* YaVptVavs T

Equations (42) and (43) generalize the expressions of Tsang [10], which were computed for a cavity using the standard Langevin
input-output formalism [recalling that to lowest order in |g &, Ta| We have Cy ~ y; for k € {a,b}, so that H;lf)(a)) Cik —
Fl,f,f) (w)]. Both of the above expressions suggest that the minimization of internal propagation losses y; < yx is desirable for the
generation of pure entangled photons.

The expression for the biphoton production rate inside the mrr is given by

2
RO = 1ran(@) V55 e (44)
where the two-photon wave function inside the mrr is given by
wl(i) (@) = PUACY Gz(zz)*(a)) G(L)(a)) + ¢ 0@ GEL)(Q)) G(L)*(a))
_ a0t TaTp €40 [ |1y | || — (1 — €% ay pa)(e® — atppp)] 45)
[t r, | |1y — (€% — tqpa) (€% — appp)I[(1 — €%ty pa) (1 — €% appp) — |ral |rp]]
In Fig. 2 we plot R(m“) |1//{§i)mrr(a))|2 R(m“)/|ra;,(a))|2 for a weak driving pump |r,| = |rs| = r = 107 on mrr resonance

0 =wT =0and shghtly off resonance at & = 0.1. In this plot (and subsequent ones), we have considered equal mrr round-trip
times T, = T, = T for both the signal and idler so that 6, = 6, =60 = w T, as well as equal coupling p, = p, = p and internal
loss o, = o, = . Here, @ = (0.99,0.95) represents the physically relevant values of 1% and 5% propagation loss within the mur,
respectively. Note that R, (m") is independent of the pump phase 6,,, as can be observed from the overall factor of ¢’ in Eq. (45).
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r=10-%, 9=0
10’3ab
:
10° — @=0.999
4 — @=0.990
10
--. @=0.980
10° — a=0.970
. - - @=0.960
10 —-r @=0.950
10’

0.0 0.2 0.4 0.6 0.8

FIG.2. R}™ = |y,

ab,mrr

for @ = (0.999,0.99,0.98,0.97,0.95,0.95).
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r=10-5, 6=0.1

10’$ab
— @=0.999
— @=0.990
--. @=0.980

10' — @=0.970
--- @=0.960
--- @=0.950

0.0 0.2 0.4 0.6 0.8 1.0p

(@)* = R%™ /|rap(w)|? for r = 1073 and (left) on mrr resonance & = 0 and (right) slightly off mrr resonance 6 = 0

The surface of 1%3},“” > 1 for resonance 8 = 0 as a function of coupling p and internal propagation loss « is plotted in Fig. 3.
This plot indicates that strong biphoton-pair production is favored by a high cavity Q (o — 1) and low internal propagation loss

(mrr)

(@ — 1).InFig. 4 we plot R}

as a function of 6 = w T for p = 0.95 and p = 0.50, where the effect of the resonance structure

of the mrr is manifest. In the Appendix we compare the expression for the biphoton generation rate in the high-cavity-Q limit
with other expressions derived in the literature [7,10] using the standard Langevin approach.

(mrr)

The expressions for Rgx{)(w) in Eq. (42) and R, ;4(®) in Eq. (43) take on simple analytic forms given by

2.2.2_2
T, T

RER (@) =

o’ (1—p%)

where in the last expression we have againused 7, =T, = T,
Pa = pp = p,and o, = o, = «. Note R(CmA‘;)(a)) is independent
of 6,,6,. In Fig. 5 we plot R™\?(w) with r = 1075 for the
operationally relevant (for @ < 0.99) internal propagation loss
values & = (0.999,0.99,0.98,0.97,0.95,0.95).

The heralding efficiency R\ (w) takes an even simpler
form, which again is independent of the phase accumulation

angle 6,:
o (1= p;)

(1= Irl* = o p7)

In Fig. 6 we plot R™™ () with r =105 for the
internal propagation loss values (left) o = (0.99,0.95,0.90,
0.85,0.80,0.75) and for the operationally relevant (for o <
0.99) internal propagation loss values o = (0.999,0.99,
0.98,0.97,0.95,0.95,0.90). Even for high values of loss
(o < 0.95), the heralding efficiencies remain relatively high
over a broad range of the coupling parameter p;.

(mrr)
Rherald (w) =

(47)

V. SUMMARY AND DISCUSSION

In this work we have investigated photon-pair generation
via SPDC and SFWM in a single-bus microring resonator
using a formalism that explicitly takes into account the
round-trip circulation of the fields inside the cavity. We in-
vestigated the biphoton generation, coincidence-to-accidental,
and heralding efficiency rates as a function of the bus-mrr
coupling loss p = ¢ 7 /2 and internal propagation loss o =
e 7'T/2 at rates y and y’, respectively [with T being the
round-trip circulation time of the field(s)]. We showed in

H b
(I =lradD oy +al[(1 =l —op)tl —aja;]  2(1—|r* —a?)

(46)

a

(

Eq. (21) that the signal-idler output fields @y (w) can be
expressed in terms of the input fields din(w) and quantum
noise operators f (@) as dou(®) = G(w) din(w) + H(w) f ().
The matrix G(w) encodes the classical phenomenological
loss (for @ < 1) [25,26] of the mrr, while the matrix H(w)
incorporates the coupling and internal propagation loss due to
the quantum Langevin noise fields f (w) required to preserve
the unitarity of the composite system (signal-idler) and
environment (noise) structure. While the standard Langevin
input-output formalism often used in the literature is valid in
the high-cavity-Q limit (o ~ 1 -y T/2 > 1,0 T « 1) and
near cavity resonances, the formulation developed here is valid

FIG. 3. R)™ = |y}

ab,mrr

0for0.5< p<1.0and0.75 < a < 1.0.

(w)|?* for r = 1073 on mrr resonance § =
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r=10"%, p=0.95
Rab

— @=0.999
— @=0.990
--- @=0.980
— a=0.970
-+ @=0.960
--- =0.950

0

0!_

L 3

—371'—‘r'2—”—27t'—3?’r - -2 0 % g 32z 2 3

2 2 2
FIG. 4. RG™ = |y

ab,mrr

(0.99,0.95,0.90,0.85,0.80,0.75).

throughout the free spectral range of the mrr. We explored
values of the noise-field commutators which were uniquely
derived by invoking the unitarity of the input and output fields
(which required the latter’s commutators to have the canonical
form for free fields). For unequal signal and idler group
velocities the cross-noise commutators were nonzero, while
in general, the noise commutators contained pump-dependent
contributions.

This work purposely concentrated on the weak (undepleted)
pump limit and perfect phase matching in order to focus on the
influence of the mrr coupling p and internal propagation loss
o parameters. As indicated earlier in this work, nonzero phase
matching can be straightforwardly included, which modifies
the G and H matrices with multiplicative sinc function
contributions. Similarly, this work included only the effects
of dispersion through the mrr round-trip times 7 = L /vy for
k € {a,b} for the signal (a) and idler (b) fields with possibly
different group velocities v;. Expansion of the frequency-
dependent momentum vectors for the signal and idler fields
about a central frequency could also be straightforwardly
accommodated. A further logical extension of this work would
be to consider the strong pump field regime in the spirit of the
recent work by Vernon and Sipe [15] in which effects such
as pump depletion and self-phase and cross-phase modulation
could be taken into account.

r=107°
(mrr)
CAR
10°
102 — @=0.999
10" pommmmeaae — a=0.99
.'""""'""‘:::::::::II::::-.,_ - @=0.98
10° — @=0.97
107" - @=0.96
102 — 2=0.95
1072

00 02 04 06 08 10F

FIG. 5. Coincidence-to-accidental rate RUyn(w) with r = 107
for ¢ = (0.999,0.99,0.98,0.97,0.96,0.95).
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r=10"%, p=0.5

— a=0.99
— a=0.95
--- =0.90
— a=0.85
--- =080
--- a=0.75

S

"= g z 7(
[Br-> 28-S -n -2 0 =
2 2 2 2

(w)[* for r = 107° and (left) p = 0.95 and o = (0.999,0.99,0.98,0.97,0.95,0.95) and (right) p = 0.5 and o =
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APPENDIX: THE HIGH-CAVITY-Q LIMIT

1. The high- O limit and reduction to the standard Langevin
input-output formalism for a single mrr field

Both Raymer and McKinstrie [21] and Alsing et al. [22]
considered the comparison of their formulations to the high-Q
limit. Raymer and McKinstrie define the high- Q limit through
the physical conditions (see [21], Sec. III): (i) the cross
coupling 7, is very small so that the cavity storage time is
long, (ii) the cavity round-trip time 7, is small compared
to the duration of the input-field pulse, i.e., ® T, < 1, and
(iii) the input field is a narrow band and thus well contained
within a single free spectral range of the mrr. By defining (now
including internal loss)

Pa = e—}/aTa/Z ~1 - yuTa/z» Tg = Y, 1— /03 ~ Vv VaTav

o, 267%;7“&/2%1—)/“/];/2, ein,l %1+ina’ (Al)
we have from Eq. (8)
if
pa —0ge “
Gou in =\ 7
' @) (1 — Pa ¥q el >
' a— V)2
_, et (. J/a)//  (A2e)
higho i@+ (Ya+¥)/2
|Ta|2 (1 - Otg)
Houtin(0) = |Hou,in(@)| = 0
11— pg o, e |
VYa¥i A2

—> )
highQ a)2 + [(ya + V(ﬁ)/z]z
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r=10-% r=10"°

(mrr)
Rherald

--- 0,=0.999 — ap=0.999
— ap=0.99 — ,=0.99
— ,,=0.95 --- ,=0.98
- p=0.90 — @,=0.97
— @,=0.85 --- =096
- @p=0.80 - ap=0.95
--- ap=0.75 — @,=0.90

0.0 0.2 04 0.6 0.8 1.0 Pb 0.0 0.2 04 0.6 0.8 1.0 Pb

FIG. 6. Heralding efficiency Rh:}'l;)d(w) with 7 = 107> for (left) @ = (0.999,0.99,0.95,0.90,0.85,0.80,0.75) and (right) the operationally
relevant values o = (0.999,0.99,0.98,0.97,0.95,0.95,0.90).

where, without loss of generality, we have taken the phase considering the transfer function G, ;,(f) in the time domain,
of Houtin(w) to be zero [or, equivalently, absorbed into the the equation of motion (without noise) becomes 0; a(t) =
definition of the noise operator f,(w)]. —%y[j a(t)+ \/)7(; aine(t). Additionally, the output boundary

Under the assumptions of the high-cavity-Q limit one has condition (2b), in the limit p, — 1, 7, — /¥/ T,, becomes
a(L_,t) =~ a(04,t). Raymer and McKinstrie [21] showed that Aou(t) = \/Va(t) — ajp, which is the standard Langevin
by defining the rescaled cavity field as a(t) = +/T, a(0,,t) and boundary cor(;dition in + Gow = /Va @ [17,20].

J
2. The high-cavity- Q limit of G(») and H(®)

The high-cavity-Q limit is defined by (see Raymer and McKinstrie [21]) pp = e T2 2 1 — y Ty /2 for k € {a,b}, which
implies T ~ y; T, and by taking the limit o T} < 1, €'% ~ 1 4 i w Ty. If we further assume that the internal propagation loss
is small, we can also take oy ~ 1 — y, T} /2. We then have S; = (1 — proy e )7~ [(s + I'v/2) Til7', a complex Lorentzian
line-shape factor, where for simplicity we have defined s = —iw (s can be considered a Laplace-transform-solution variable) and
have defined the total decay rate I'y = yx + y;. Let us also further define Ay = y, — ¥, as the difference between the coupling
and internal propagation losses. Then, e’ — pp — (—s + Ar/2) Ty, and D(s) ~ [(s + To/2) (s + T%/2) — |ga, 21T, Ty =
D(s) T, T),. We then obtain from Eq. (22b)

6 1 [(=s+Au/2) (s +Tp/2) + |ga,|* [1 — yu Tu/2] igoy SYa Vo NTo/Ta[1 — (s +y,/2) Tp] )
N .
high 0 D(s) —i gy SYa Vo NTa/ T 1 — (s +v,/2) TL] (=5 4+ Ap/2) (s + T0/2) + |ga, > [1 — 5 T, /2]

(A3)

For the noise terms, let us redefine the noise operators as fi(w) = (1 — a?)~'/? fi(w) for k € {a,b} and, equivalently, the

values of the commutators as [ f¢(w), f{(@)] = Cu(@) = (1 — o) Cie(w) and Dyp(@) = (1 — &) (1 — a)'* Dap(w), so that
[fe(@), fe(@)] = Cix(w) 8(w — ') and [ fu(), fo(@)] = Dap(w) §(w — @'). Then
i o (1-a2)"” 0
dout = G(w) ain + H(w) f(®), H(w) = H®) Ay, Ao = N E (A4)
o (o)’

From Egs. (24) and (A4) in the high-Q limit, where (1 — &?)!/?> — /y/ T¢, we then have

1 ( VYa Vi (s +T5/2) lgap\/yayb\/Tb/T)
H(w) — (AS)
higho D(5) —i gy Y v VTl Ty Vo v (s +Ta/2)

Except for the extra correction factors indicated in the square brackets in G(w) (which can be safely approximated as unity to
lowest order in |g «,|), these matrices are the same expressions as obtained by Tsang [see (4.11) in [10]] using the standard
Langevin input-output procedure and assuming 7, = T, = L /v.

Note further that to zeroth order in |ga,,| we have D™' ~ S, S, /(T, Ty) — [(s + Ta/2)™" (s + T/2) T, T,]7", and thus, G(w)
reduces in first order in |ga,| to

—s+A4/2 . JVa N
G(C{)) N s+Ta/2 Lgay (S-H",,/Z) (s-H"b/Z) (A6)
higho ( JVa ) ( N ) —s+Ap/2 ’
olga,h \ 718 (3F,7) (3r 2 ST
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where we have also used ¢'é = 1. In this limit, the diagonal terms Gy, which directly couple (douw)x to (din)x for k € {a,b},
have same frequency-dependent shifts of the output signal-idler fields relative to the internal signal-idler fields as given by the
conventional Langevin approach [17,20,36]. The lower-order (in |g o, |) off-diagonal terms G, and G}, contain the product of
Lorentzian line-shape factors ,/yx/(s + I'x/2) relating the output signal-idler fields to the opposite idler-signal fields inside the
cavity. Similarly, for H(w) we have

A/ Va Yo igay A/ Va V[;
I:I(a)) _) s+, /2 (s+T4/2) (s+T/2) (A7)
01(“‘9;9 N iga Vv NI
8% \ G2/ 61572 S4T5/2

3. Biphoton generation rate R,;(w) in the high- Q limit

To make a connection with other works, let us more closely examine the two-photon generation rate given by R,;(w) =
[Fap(@)? |Wﬁ)(a))|2 in the high-cavity-Q limit. Note that from Eq. (23a) we can write D(s) in Egs. (39a) and (40a) as D(s) =
(1= paage )1 — ppape* ) —|ga,|* T, T,, where s = —i w. The pole structure of D(s) is obtained by the roots sy of
D(s1) = 0. In general this is a transcendental equation which must be solved numerically. If we approximate e 57 ~ 1 — 5T},
we obtain a quadratic equation in s with poles s, and

D(s) ~ (s — s4) (s —5-),

1 a 1 a 2 1— (07
Sp = — y_+& + — y__& +|go{p|2’ Xk = Pk Ok, ykzm (A8a)
2\x, x 2\x, x Ty
r,+T T, — T\’
. <Q>i\/(—b> Flga,l = 1 (A8b)
highQ 4 4
—-T,/2

—

— {—rb /3 for 1=, (A8c)
o(lga,))

where my are the poles of D(s) as computed by Tsang [10] using a standard Langevin input-output calculation. Then, the
two-photon generation rate becomes to lowest order in |g o, |

Rap(@) = [rap(@)? |42 (@)]* % lrap(@))? | GE* (@) G ()]

2 |ei€uL|2 (,;_b)z ‘ 1_p;f,1§hL ‘2 IeiEble
a

() |5 N
T. 7, T
— lg o, (A9a)
por—s—s ) (@ 5D (@ +52) (@02 +53) (? +52)
2 2 2 2

2 Yalo? + ([T/27] vy [0® + (Ta/2)%]
s ga (A9b)
high Q g el (0?4 52) (@? + 52) (0? + 52) (@2 + 52)
o, 18l G R o 2R (A%

8dp

where in the third line we have used |e/5"|> ~ 1 and in the fourth line we have used Eq. (A8c). The above expressions generalize
the two-photon rate Ruy(w) = |g apl? va v6/[(@* + 53) (@ + 52)] computed by Tsang [10], which to O(|g «,|*) agrees with
Eg. (A9D). The last line, Eq. (A9c¢), is the form computed by Scholz using the (complex) Lorentzian modified form ,/y, a(w)/(s +
[y/2) and \/yp bi(w)/(—s + T',/2) for the field operators inside the mrr. Expression (A9a), quadratic in the poles s.., more fully

takes into account the effect of the the field circulation factors S, = 1/[1 — px €'%%] on the two-photon generation rate.
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