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Detecting Casimir torque with an optically levitated nanorod
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The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce
the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively,
the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we
propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The
axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When
its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir
torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated
nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the
torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir
torque under realistic conditions, and will be an important tool in precision measurements.

DOI: 10.1103/PhysRevA.96.033843

I. INTRODUCTION

A remarkable prediction of quantum electrodynamics
(QED) is that there are an infinite number of virtual photons in
vacuum due to the zero-point energy that never vanishes, even
in the absence of electromagnetic sources and at a temperature
of absolute zero. In 1948, Casimir predicted an attractive force
between two ideal metal plates due to the linear momentum
of virtual photons [1]. The number of electromagnetic modes
between two metal plates is less than the number of modes
outside the plates, thus the plates experience an attractive
force, which is Casimir force. Casimir force has already been
measured many times throughout the years [2–10]. Besides the
linear momentum, the angular momentum carried by virtual
photons can generate the Casimir torque (or van der Waals
torque) for anisotropic materials [11–13]. Despite significant
interests about the van der Waals and Casimir torque [14–22],
the torque has not been measured experimentally though it
was predicted over 40 years ago, mainly due to the lack of a
suitable tool [7–10].

Here we propose a method to measure the Casimir torque
with a nanorod levitated by a linearly polarized optical tweezer
in vacuum near a birefringent plate. The relative orientation
between the nanorod and the birefringent crystal could be
manipulated by the polarization of the trapping laser beam.
When the long axis of the nanorod is not aligned with a
principle axis of the birefringent plate, there will be a Casimir
torque acting on the nanorod, which tries to minimize the
energy, as shown in Figs. 1(a) and 1(b). Here d is the separation
between the nanorod and the plate, and θ is the angle between
the long axis of the nanorod and the optical axis of the
birefringent plate. Casimir torque is related to separation d and
relative orientation θ , which will be shown in the next section.

An optically levitated nanoparticle in vacuum can have an
ultrahigh mechanical quality factor (Q > 109) as it is well
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isolated from the thermal environment, which is excellent
for precision measurements [23–35]. Optical levitation of a
silica (SiO2) nanosphere in vacuum at 10−8 torr [35] and force
sensing at the 10−21-N level with a levitated nanosphere [34]
have been demonstrated in two separate experiments. The
libration of an optically levitated nonspherical nanoparticle
in vacuum has also been observed [26,33], which provides a
solid foundation for this proposal. We are going to detect the
torsional vibration of the nanorod and measure its orientation
with the laser polarization in a scheme similar to those reported
in Refs. [26,33]. The nanorod will be levitated using an optical
tweezer formed by a linearly polarized 1064-nm laser beam
near a birefringent plate (Fig. 1). The torsional vibration of the
nanorod will dynamically change the polarization of the laser
beam, which can be detected with a polarizing beam splitter
and a balanced detector. The birefringent plate will cause a
static change of the polarization of the laser, which can be
canceled by a tunable waveplate as shown in Fig. 1(c).

In this paper, we will show that a silica nanorod with a
length of 200 nm and a diameter of 40 nm levitated by a
100-mW optical tweezer in vacuum at 10−7 torr will have
torque detection sensitivity about 10−28 N m/

√
Hz at room

temperature. The Casimir torque between a nanorod with the
same size and a birefringent plate separated by 266 nm is
calculated to be on the order of 10−25 N m. The Casimir torque
is three orders of magnitude larger than the minimum torque
we can detect in 1 s, and thus will be detectable with our
system. A levitated nanorod in vacuum will be several orders
more sensitive than the state-of-the-art torque sensor. The best
reported torque sensitivity is 2.9 × 10−24 N m/

√
Hz, which

was achieved by cooling a cavity-optomechanical torque
sensor to 25 mK in a dilution refrigerator [36]. The force
detection sensitivity will be limited by the thermal noise when
the pressure is above 10−7 torr. When the pressure is below
10−7 torr, the force sensitivity is mainly limited by photon
recoil, which is about 10−21 N/

√
Hz. Our calculated turning

point of the force sensitivity around 10−7 torr is consistent
with the experimental observation of photon recoils around
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FIG. 1. (a) A nanorod levitated by a linearly polarized optical
tweezer in vacuum near a birefringent plate. Its axis tends to align
with the polarization direction of the optical tweezer. (b) There will
be a Casimir torque on the nanorod when its axis is not aligned with a
principle axis (the black arrow) of the birefringent plate. The trapping
laser beam can also be used as the detecting beam to measure the
torsional motion of the nanorod. Here d is the separation between the
nanorod and the plate, and θ is the angle between the long axis of the
nanorod and the optical axis of the birefringent plate. (c) A proposed
experimental scheme for detecting torsional (TOR) vibration of a
levitated nanorod. A silica nanorod (represented by a brown rod) is
levitated by a tightly focused linearly polarized 1064-nm laser beam
and it is very close to a birefringent plate. The angle of the nanorod is
monitored by the exiting trapping laser. A tunable waveplate balances
the power of the beams after the polarizing beam splitter (PBS) for
the TOR detector.

10−7 torr [35]. The exact turning point depends on the size
and shape of the nanoparticle, as well as the intensity of the
trapping laser.

Compared to the recent proposal of detecting the effects
of Casimir torque with a liquid crystal [20], our method with
a levitated nanorod in vacuum will be able to measure the
Casimir torque at a much larger separation (d > 200 nm),
where retardation is significant. We will also be able to
investigate the Casimir torque as a function of relative
orientation in detail. As an ultrasensitive nanoscale torsion
balance [36], our system will also enable many other precision
measurements.

II. TRAPPING POTENTIAL

We consider a silica nanorod with a length of l = 200 nm in
the long axis and a diameter of 2a = 40 nm trapped with a lin-
early polarized Gaussian beam in vacuum. The electric field of
the beam can be described under the paraxial approximation as

Ex(x,y,z) = E0
ω0

ω(z)
exp

{−(x2 + y2)

[ω(z)]2

}

× exp

(
ikz + ik

x2 + y2

2R(z)
− iζ (z)

)
, (1)

Ey(x,y,z) = Ez(x,y,z) = 0, (2)

where E0 is the electric-field amplitude at the origin, ω(z) is the
radius at which the field amplitudes fall to 1/e of their axial val-
ues at the plane z along the beam, R(z) is the radius of curvature
of the beam’s wavefronts at z, and ζ (z) is the Gouy phase at z.

In the case of rods with a large aspect ratio, the components
of the polarizability tensor [32] parallel and perpendicular to
the symmetry axis are α‖ = V ε0(εr − 1) and α⊥ = 2V ε0(εr −
1)/(εr + 1). Here V is the volume of the object and εr is
the relative permittivity of the object. The absorption of
electromagnetic field of the silica is negligible, so we assume
εr is real.

When the size of the nanorod is much smaller than the
wavelength of the laser (here we choose wavelength as
1064 nm), we can apply the Rayleigh approximation. The
induced dipole will be p = αxEx x̂N + αyEy ŷN + αzEzẑN ,
where the instantaneous electric field of the laser beam E is
decomposed into components along the principle axes of the
nanorod. The long axis of the nanorod will tend to align with
the polarization of the laser. When the vibration amplitude
is small, the optical potential is harmonic around the laser
focus and the vibrations of the trapped nanorod along different
directions are uncoupled. Here we focus on its center-of-mass
motion along the z axis and its rotation around the z axis. Thus
the potential energy of the nanorod in the optical tweezer is

U (z,φ) = − 1

2cε0
[α‖ − (α‖ − α⊥) sin2 φ)]Ilaser(z), (3)

where c is the speed of light, ε0 is the vacuum permittivity,
φ is the angle between the long axis of the nanorod and the
polarization of the Gaussian beam, and Ilaser(z) is the laser
intensity at the location of the nanorod. In free space, the peak
laser intensity at the focus is given by Ilaser = Pk2

0NA2/(2π ),
where P is the laser power, NA is the numerical aperture of
the objective lens, and k0 is the magnitude of the wave vector
of the laser beam. We assume NA = 0.85 in this paper.

Here we also need to consider the reflection from the sub-
strate, which will form a standing wave with the incident wave
and strengthen the trapping potential at the 1/4 wavelength
point (Fig. 1). We assume that the center of the Gaussian beam
is 1/4 wavelength away from the surface of the substrate.
In our case, the wavelength is 1064 nm, so the center of
the beam will be 266 nm from the substrate surface. The
refractive index is n0 = 1 for vacuum, and the indices are
no = 2.269 and ne = 2.305 for the ordinary and extraordinary
axis of the birefringent crystal BaTiO3 at 1064 nm [37],
respectively. If the laser is perpendicular to the surface, the
reflectances along the ordinary and extraordinary axis are
Ro = 0.16 and Re = 0.15. For a laser beam focused by a
NA = 0.85 objective lens, the angular aperture is 58◦. The
angle of incidence varies a lot at the surface of the birefringent
crystal and then the reflectance will become location and
orientation dependent. However, only the reflected wave from
light with a small incident angle will interfere with the incident
wave and contributes to the trapping potential near the z axis,
where the nanorod is trapped. Furthermore, when a linearly
polarized laser beam is focused before hitting a surface, 50%
of the laser will be parallel to the incident plane (p polarized),
while the other 50% of the laser will be perpendicular to
the incident plane (s polarized). The average reflectance of
a 50% p-polarized and 50% s-polarized laser at the maximum
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incident angle 58◦ is 0.19, which is still close to Ro = 0.16
and Re = 0.15. Therefore, we use Ro and Re in the calculation
for simplicity.

We assume that the linearly polarized laser is polarized at
π/4 relative to both optical axes of the birefringent crystal,
and the axis of the nanorod is aligned with the polarization of
the Gaussian beam (φ ≈ 0). Then the potential near z = 0 (or
d = d0) is

U (z) = U (d − d0) ≈ −1

4
α‖E2

0

[
ω2

0

[ω(d − d0)]2

+ Ro + Re

2

ω2
0

[ω(d + d0)]2
+ (

√
Ro +

√
Re) cos(2kd)

× ω2
0

ω(d − d0)ω(d + d0)

]
, (4)

where d0 = 266 nm is the distance from the center of the
Gaussian beam to the birefringent crystal. We use Eq. (4)
to calculate the trapping potential and the result is shown in
Fig. 2(a). Here the laser power is 100 mW and the waist radius
is approximately 400 nm. The potential energy at the center
of the beam is around −2.2 × 104 K, which allows us to avoid
losing the nanorod from thermal motion at room temperature.

III. CASIMIR INTERACTION

The Casimir force and the van der Waals force have the same
physical origin, as they both arise from quantum fluctuations.
Casimir forces between macroscopic surfaces involve sepa-
rations typically larger than 100 nm where retardation effect
plays an important role, while van der Waals forces often
refer to separations smaller than a few nm where retardation is
negligible [7–10]. To calculate the Casimir interaction between
a nanorod and a birefringent plate, we follow the method in
Refs. [17,38] by assuming that a half space is a dilute assembly
of anisotropic cylinders. With that we could extract the
interaction between a cylinder and one semi-infinite half space
from the interaction free energy between two half spaces. We
notice that Ref. [17] has two typos. In Eq. (5) about the function
N in Ref. [17], the first term in the third line should be ρ2

3 (ε3 −
ε1,⊥)(Q2 + ρ1,⊥ρ3) instead of ρ3

3 (ε3 − ε1,⊥)(Q2 + ρ1,⊥ρ3). In
Eq. (7) for the function f̃ (φ) in Ref. [17], the term inside
the square root should be Q2((ε1,‖/ε1,⊥) − 1) cos2 φ + ρ2

1,⊥
instead of Q2((ε1,‖/ε1,⊥) − 1) cos2 φ + ρ2

1,‖. The corrected
interaction free energy per unit length of the cylinder,
g(d,θ ), between a single cylinder and a half-space substrate
is

g(d,θ ) = kBT a2

4π

∞∑
n=0

′ ∫ ∞

0
QdQ

∫ 2π

0
dφ

[
e−2dρ3

N

D

]
, (5)

where

N =
(


‖
2

− 
⊥

)
(Q2 sin2(φ + θ ) × {f̃ (φ)ε1,⊥[Q2 sin2 φ(ρ1,⊥ + ρ3) + ρ1,⊥ρ3(ρ3 − ρ1,⊥)]

+ (ε1,⊥ − ε3)[ρ3(ρ1,⊥ + 2ρ3) − Q2]} − 2f̃ (φ)ε1,⊥ρ1,⊥ρ2
3

[
2Q2 sin φ cos θ sin(φ + θ ) + ρ2

3 sin2 θ
]

+ f̃ (φ)ε1,⊥ρ2
3 [Q2 sin2 φ(ρ1,⊥ − ρ3) + ρ1,⊥ρ3(ρ1,⊥ + ρ3)] + ρ2

3 (ε3 − ε1,⊥)(Q2 + ρ1,⊥ρ3))

+ 2f̃ (φ)
⊥ε1,⊥
[
Q2 sin2 φ

(
Q2ρ1,⊥ − ρ3

3

) + ρ1,⊥ρ2
3 (Q2 cos(2φ) + ρ1,⊥ρ3)

]
−
⊥(ε1,⊥ − ε3) × [(

Q2 + ρ2
3

)
(Q2 + ρ1,⊥ρ3) + (

Q2 − ρ2
3

)
(Q2 − ρ1,⊥ρ3)

]
(6)

and

D = ρ3(ρ1,⊥ + ρ3){ε1,⊥f̃ (φ)[Q2 sin2 φ − ρ1,⊥ρ3]

+ ε1,⊥ρ3 + ε3ρ1,⊥}. (7)

In the equations above,

ρ1,⊥ =
√

Q2 + ε1,⊥ω2
n

c2
, (8)

ρ3 =
√

Q2 + ε3ω2
n

c2
, (9)

f̃ (φ) =
√

Q2[(ε1,‖/ε1,⊥) − 1] cos2 φ + ρ2
1,⊥ − ρ1,⊥

Q2 sin2 φ − ρ2
1,⊥

. (10)

Here 
⊥ = (ε2,⊥ − ε3)/(ε2,⊥ + ε3) and 
‖ = (ε2,‖ −
ε3)/ε3 are the relative anisotropy measures of the cylinder,
d is the separation between the cylinder and the half space,
a is the radius of the cylinder, kB is the Boltzmann con-
stant, T is temperature, ε3 is the dielectric response of the

isotropic medium between the cylinder and the half space,
ε1,⊥ and ε1,‖ are the dielectric responses of the birefringent
material, and ε2,⊥ and ε2,‖ are the dielectric responses of the
cylinder material. Subscript n is the index for the Matsubara
frequencies, which are ωn = 2nπkBT /h̄, and the prime on the
summation in Eq. (5) means that the weight of the n = 0 term
is 1/2. All the dielectric responses should be considered as
functions of discrete imaginary Matsubara frequencies, i.e.,
as ε3 ≡ ε

(n)
3 = ε3(iωn), ε1,⊥(iωn), ε1,‖(iωn), ε2,⊥(iωn), and

ε2,‖(iωn).
The dielectric properties of many materials are well de-

scribed by a multiple oscillator model (the so-called Ninham-
Parsegian representation) [39]. For most inorganic materials,
only two undamped oscillators are commonly used to describe
the dielectric function [40,41]:

ε(iξ ) = 1 + CIR

1 + (ξ/ωIR)2
+ CUV

1 + (ξ/ωUV)2
, (11)

where ωIR and ωUV are the characteristic absorption angular
frequencies in the infrared and ultraviolet range, respectively,
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FIG. 2. (a) Calculated trapping potential for a silica nanorod with
a length of 200 nm and a diameter of 40 nm as a function of separation
d . Here we set the center of the Gaussian beam at d = 266 nm, laser
power as 100 mW, and laser waist radius as 400 nm. Inset: Calculated
Casimir free energy at 300 K as a function of separation d at relative
orientation θ = π/4. Here we choose the substrate material to be
barium titanate. (b) Calculated Casimir force at 300 K as a function
of separation d between the silica nanorod and a birefringent crystal
at relative orientation θ = π/4. The blue solid line and red dashed
line represent the Casimir force when the birefringent crystals are
barium titanate and calcite, respectively.

and CIR and CUV are the corresponding absorption strengths.
For the birefringent materials, there are separate functions
describing dielectric functions for the ordinary and extraordi-
nary axis. The model parameters used for our calculations are
summarized in Table I.

TABLE I. Model parameters used to determine the dielectric
function of the materials [14,40,41].

CIR CUV ωIR(rad/s) ωUV(rad/s)

Calcite ‖ 5.300 1.683 2.691 × 1014 1.660 × 1016

Calcite ⊥ 6.300 1.182 2.691 × 1014 2.134 × 1016

Barium titanate ‖ 3595 4.128 0.850 × 1014 0.841 × 1016

Barium titanate ⊥ 145.0 4.064 0.850 × 1014 0.896 × 1016

Silica 0.829 1.098 0.867 × 1014 2.034 × 1016
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m
)
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-4
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4

(b)

Barium titanate
Calcite

FIG. 3. (a) Calculated Casimir torque at 300 K as a function of
separation d between the silica nanorod (l = 200 nm, a = 20 nm) and
a birefringent crystal at relative orientation θ = π/4. The blue solid
line and red dashed line represent the torque when the birefringent
crystals are barium titanate and calcite, respectively. (b) Calculated
Casimir torque at 300 K as a function of relative orientation θ between
the silica nanorod (l = 200 nm, a = 20 nm) and a birefringent crystal
by a separation d = 266 nm. The blue solid line and red dashed line
represent the torque when the birefringent crystals are barium titanate
and calcite, respectively.

We could use Eqs. (5)–(11) and parameter data in Table I to
calculate the Casimir free energy G(d,θ ) = g(d,θ ) × l, where
l is the length of the cylinder [42]. The inset in Fig. 2(a)
shows that the Casimir free energy is very small for separation
d > 100 nm, compared to the optical trapping potential. So
the nanorod will be trapped near the center of the laser beam
without being attracted to the substrate by the Casimir force.
When d < 100 nm the size of the nanorod is comparable to the
separation between the nanorod and the birefringent crystal,
thus the dilute cylinder approximation will fail. Therefore, we
only consider the situation when d > 100 nm.

Then the retarded Casimir (or Casimir-Lifshitz) force is
given by

F = −∂G(d,θ )

∂d
, (12)

and the torque induced by the birefringent plates is given
by [12]

M = −∂G(d,θ )

∂θ
. (13)

Using Eqs. (12) and (13), we have calculated the Casimir
force and torque expected for different separations at relative
orientation θ = π/4, both for the barium titanate and calcite
as the birefringent crystal. The results obtained for T = 300 K
are reported in Figs. 2(b) and 3(a). The force and torque
both decrease as the separation increases. The force follows
the same power dependence of the separation for different
birefringent materials. However, there is no single power-
law dependence that describes the torque at all separations
regardless of the choice of materials. That is because the
Casimir torque is directly determined by the dielectric response
difference between ordinary and extraordinary axes, which is
discrepant between barium titanate and calcite (see Table I).

We have also calculated the Casimir torque at d = 266 nm
as a function of the relative orientation. From the results
reported in Fig. 3(b), one can clearly see that the torque
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oscillates sinusoidally with periodicity of π : M = M0 sin(2θ ).
The maximum magnitude of the torque occurs at θ = π/4
and 3π/4. For different birefringent crystals, the maximum
magnitudes of the torque are different, but have the same
periodicity. As expected, materials with less birefringence give
rise to a smaller torque. Thus Casimir torque between the silica
nanorod and calcite is smaller than that with barium titanate.

IV. EFFECTS OF THERMAL PHOTONS

Several papers have reported measurements of the thermal
Casimir force [43,44], which is due to thermal photons
(blackbody radiation) at finite temperature rather than quantum
vacuum fluctuations of the electromagnetic field. At room
temperature, the thermal Casimir force is typically much
smaller than the conventional Casimir force due to quantum
vacuum fluctuations. The measurements of thermal Casimir
force could test different models of materials. In fact, it is still
under debate about how to calculate the thermal Casimir force
between real materials [45]. It is thus interesting to see how
thermal photons affect the Casimir torque and whether thermal
Casimir torque will be detectable with our proposed method.

When the separation between the nanorod and the birefrin-
gent crystal is relatively small and the temperature is relatively
low, the blackbody radiation could be neglected. But when the
temperature and the separation increase, a small fraction of
the torque will come from thermal photons. To single out the
effects of thermal photons, we assume the dielectric functions
of materials are independent of temperature. The effect of
temperature is only included in the Bose-Einstein distribution
of thermal photons. In other words, we let the explicit
temperature T in Eq. (5) and the Matsubara frequencies ωn =
2nπkBT /h̄ be a variable, while assuming all parameters listed
in Table I to be constants. While this is a crude approximation,
it can help us to understand the effects of thermal photons
on the Casimir torque. In real experiments, the properties of
materials will depend on temperature. So the situation will be
more complex.

The calculated results of the Casimir force and torque
for d = 266 nm as a function of temperature are shown in
Figs. 4(a)–4(d). We can see that the thermal Casimir effect
is very small (less than a few percent). So the measured
torque will mainly come from quantum fluctuations. The
purpose of this calculation is to estimate the magnitude of
the effect of thermal photons. Since we did not consider the
change of the dielectric constants of the real materials as a
function of temperature, the temperature dependence of the
experimental results is expected to be different from Fig. 4.
To avoid complications, it will be better to do the experiment
at a fixed temperature. Because the effect of thermal photons
is very small for separations considered here, the measured
temperature dependence of the Casimir torque will be most
likely due to the temperature dependence of the dielectric
functions, instead of thermal photons.

V. TORQUE MEASUREMENT METHOD

For d = 266 nm, the maximum magnitude of the Casimir
torque on a silica nanorod (l = 200 nm, a = 20 nm) is
around 3.2 × 10−25 N m for barium titanate and around 4.6 ×
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FIG. 4. (a, b) Calculated temperature dependence of Casimir
force between a silica nanorod and a birefringent crystal, separated
with a distance of 266 nm and aligned with an angle of π/4. The
materials of the birefringent crystals are barium titanate and calcite,
respectively. To single out the effects of thermal photons, we did not
consider the temperature dependence of dielectric parameters in the
calculation. When the temperature is below 400 K, the force is almost
unchanged, with only 2% difference. As the temperature increases,
the Casimir force increases and temperature dependence becomes
more and more significant. For barium titanate, the temperature
range for tetragonal structure is 278–393 K, and the blue solid line
represents this range. Calcite is a very stable birefringent crystal
during the plotted temperature range. (c, d) Calculated temperature
dependence of Casimir torque. When the temperature is below 400 K,
the torque is almost unchanged. As the temperature increases, the
Casimir torque decreases and temperature dependence becomes more
and more significant. (e, f) Dielectric functions as a function of
imaginary angular frequency for barium titanate and calcite. Blue
solid lines and red dashed lines represent ε‖ and ε⊥, respectively.

10−26 N m for calcite (Fig. 3). In order to prove that our
optically levitated nanorod system is able to detect the Casimir
force and torque, we calculated the sensitivity of the force and
the torque, and the results will be shown in Secs. V A and V B.

In a real system, there are some other effects, such as stray
fields, surface roughness, and patch potential on the surface,
which may introduce errors to the measurement. We will
analyze these effects in Secs. V C and V D.

A. Torque sensitivity

To understand the limit of torque sensitivity in the quantum
regime, one must consider the noise limit which comes from
thermal fluctuations, as well as from photon recoil. In air, the
interaction between the nanorod and the thermal environment
dominates the noise, thus the photon recoil from the laser can

033843-5



ZHUJING XU AND TONGCANG LI PHYSICAL REVIEW A 96, 033843 (2017)

be neglected. However, in high vacuum, the dominant source
of noise can come from the unavoidable photon recoil in the
optical trap and sets an ultimate bound for the sensitivity.

For small oscillation amplitudes, the equation of motion of
a harmonic torsional oscillator is

θ̈ + γ θ̇ + �2
r θ = M(t)/I, (14)

where θ is the angular deflection of the oscillator, �r is the
frequency of rotational motion, M is a fluctuating torque, I

is the moment of inertia around the torsion axis, and γ is the
damping rate of the torsional motion which can be written
as γ = γth + γrad. Here γth accounts for the interaction with
the background gas, and γrad refers to the interaction with the
radiation field.

When the torque fluctuation is from Brownian noise,
the angular fluctuations of an oscillator excited by such
a stochastic torque could be calculated. The thermal noise
limited minimum torque that can be measured with a torsion
balance is [46]

Mth =
√

4kBT Iγth


t
, (15)

where kB is the Boltzmann constant, T is the environment
temperature, and 
t is the measurement time. The damping
coefficient from thermal noise is γth = fr/I . I = ρπa2l3

12 is
the moment of inertia of the nanorod around its center and
perpendicular to its axis, ρ is the density of the nanorod, a is
the nanorod radius, and l is the nanorod length. fr = kBT /Dr

is the rotational friction drag coefficient. Dr is the rotational
diffusion coefficient for a rod in the free molecular regime and
can be represented as [47]

Dr = kBT Kn/

{
πμl3

[(
1

6
+ 1

8β3

)

+ f

(
π − 2

48
+ 1

8β
+ 1

8β2
+ π − 4

8

1

8β3

)]}
, (16)

where β = l/a is the rod aspect ratio, Kn = λ/a is the

Knudsen number, λ = μ

p

√
πkBT
2mgas

is the mean free path, mgas

is the molecular mass, μ is the gas viscosity, and f is the
momentum accommodation, where we choose f = 0.9. Thus
the minimum detectable torque due to thermal fluctuations Mth

decreases with the square root of the measurement duration 
t ,
while it increases with the square root of the pressure p.

Apart from fluctuations due to contact with the background
gas, the unavoidable photon recoil from the optical trap also
contributes to the noise limit. The shot noise due to photon
recoil can be understood as momentum or angular momentum
kicks from the scattered photons. The photon recoil limited
minimum torque is

Mrad =
√

4I


t

d

dt
KR, (17)

where the rotational shot-noise heating rate of a nanorod from
a linearly polarized trapping beam is [48–50]

d

dt
KR = 8πJp

3

(
k2

0

4πε0

)2

(α⊥ − α‖)2 h̄2

2I
. (18)
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FIG. 5. (a) Calculated torque sensitivity limit of the rotational
motion of a levitated silica nanorod (l = 200 nm, a = 20 nm) as
a function of the background gas pressure. The blue solid line and
the red dashed line represent the torque sensitivity limit due to only
the thermal noise and due to both photon recoil and thermal noise.
The laser power is 100 mW and the laser waist radius is 400 nm.
(b) Calculated force sensitivity limit of the translational motion of a
levitated silica nanorod as a function of gas pressure. The blue solid
line and the red dashed line represent the force sensitivity limit due
to only the thermal noise and due to both photon recoil and thermal
noise.

Here the photon flux Jp is equal to the laser intensity over the
energy of a photon, which means Jp = Ilaser/h̄ω0. ω0 is the
frequency of the incident beam, and k0 is the incoming wave
vector. Therefore, the total torque limit is given by

Mmin =
√

M2
th + M2

rad. (19)

We calculate the torque limit by using Eqs. (15)–(19) and
the result of the calculation is shown in Fig. 5(a). The torque
detection sensitivity of a levitated nanorod will be limited by
the thermal noise when the pressure is above 10−7 torr. When
the pressure is below 10−7 torr, the torque sensitivity is mainly
limited by photon recoil from the 100-mW trapping laser, and
is around 10−28 N m/

√
Hz. Thus the Casimir torque will be

three orders larger than the minimum torque our system can
detect in 1 s, and is expected to be measurable.

B. Force sensitivity

Similar to the torque sensitivity, both thermal noise and
photon recoil needs to be considered to determine force
sensitivity. For small oscillation amplitudes, the nanorod’s
motion is described by three independent harmonic oscillators
(for three directions), each with its own oscillation frequency
�0i and damping rate γi , which is a result of the asymmetric
shape of the optical potential. For example, the motion along
y is described by

ÿ + γyẏ + �2
0yy = 1

m
Fy(t), (20)
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where y is the motion of the center of mass, m is the nanorod
mass, and Fy is a fluctuating force along the y axis acting on
the nanorod. The thermal noise limited minimum force in one
direction i that can be measured with a force balance is

Fth(i) =
√

4kBT mγi


t
. (21)

Here m is the mass, and γi is the damping coefficient of
the translational motion due to the background gas. For a
nanorod, damping coefficients are directly related to the drag
coefficients at each direction, which means that γ⊥ = K⊥/m

(the component perpendicular to the axial direction) and
γ‖ = K‖/m (the component parallel to the axial direction).
In the free molecular regime, the drag forces along different
directions for a cylindrical particle are expressed by F⊥ =
K⊥V⊥ and F‖ = K‖V‖, and drag coefficients are [51]

K⊥ = 2πμa2

λ

[(
π − 2

4
β + 1

2

)
f + 2β

]
, (22)

K‖ = 2πμa2

λ

[(
β + π

4
− 1

)
f + 2

]
. (23)

In our system, we only consider the motion perpendicular to
the axis, which will affect the measurement of Casimir force.
The force inducted by thermal fluctuations is

Fth =
√

4kBT


t
K⊥, (24)

while the photon recoil limited minimum force is

Frad =
√

4m


t

d

dt
KT . (25)

Here the translational shot-noise heating rate of a nanorod
from a linearly polarized trapping beam is [48]

dKT

dt
= 8πJp

3

(
k2

0

4πε0

)2

α2
⊥

h̄2k2
0

2m
. (26)

Therefore, the total force limit will be

Fmin =
√

F 2
th + F 2

rad. (27)

Then we use Eqs. (23)–(27) to calculate the force sensitivity
limit, and the result is shown in Fig. 5(b). The force detection
sensitivity will be limited by the thermal noise when the
pressure is above 10−7 torr. When the pressure is below
10−7 torr, the force sensitivity is mainly limited by photon
recoil, which is about 10−21 N/

√
Hz. The Casimir force is

approximately 10−16 N at d = 266 nm, therefore, it is expected
to be measurable.

C. Pulsed measurement scheme

Since the reflectances along the ordinary and extraordinary
axes of the birefringent plate are different, the reflected light
will not have the same polarization as the incident light (Fig. 1).
Thus there will be an optical torque from the laser reflected
by the birefringent plate. To eliminate this effect, we will
apply a pulsed measurement scheme, which means to switch
the optical tweezer on and off repeatedly to detect the Casimir
torque by observing the rotation of the nanorod. We can extract
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FIG. 6. (a) Separation evolution diagram. (b) Relative orientation
diagram. t = 0 to t1 = 10 μs, the laser is on. t1 = 10 μs to t2 = 20 μs,
the laser is off. t2 = 20 μs to t3 = 40 μs, the laser is on again. During
this period, there is no feedback cooling. t3 = 40 μs, the laser is still
on and we add feedback cooling to the nanorod.

the contribution which comes from the Casimir effect to the
rotation during the period when the laser is off.

When the laser is off, the nanorod will experience the torque
attributed to the Casimir effect. We can use this method to
extract the torque from the Casimir part. However, when the
laser is off, the nanorod will fall to the substrate by gravity
as well as the Casimir force between it and the substrate.
Therefore, we may lose the nanorod when the off period is
too long, while increasing the length of the off period can
amplify the signal observed from the Casimir torque. Figure 6
shows the simulation for this method. Initially the polarization
of the laser is set to be 45◦ relative to the optical axis of the
birefringent plate, and the center of the laser beam is set at
a distance of 266 nm from the substrate. Figure 6(a) is the
separation evolution during the pulse measurement. During
the period zero to t1 we will keep the laser on. During this
time, the nanorod is trapped stably around the center of the
beam (d = 266 nm), which is an equilibrium position. At t =
t1 = 10 μs, we will turn off the laser. So at this moment the
nanorod will fall to the substrate with an acceleration of about
200 m/s2 due to gravity and the Casimir force. We notice
that the nanorod will only fall 10 nm for a 10-μs period.
At t = t2 = 20 μs, we turn on the laser again. The trapping
force from the laser will pull back the nanorod. Then the
nanorod will do harmonic oscillations around the equilibrium
position (d = 266 nm). When time reaches t3 = 40 μs, we will
intentionally apply feedback cooling to the nanorod [31,35].
So the amplitude of the nanorod will decay to almost zero.
At the end of a measurement cycle, the nanorod will come
back to the initial situation. Figure 6(b) is the angle evolution
during a pulsed measurement cycle. When the laser is on,
the nanorod experiences an optical torque from the incident
laser beam and from the reflected light, as well as a relatively
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small Casimir torque. Since the optical torque provided by the
trapping laser can be far larger than the Casimir torque, the
initial relative orientation is approximately 45◦. When the laser
is off during t1 = 10 μs and t2 = 20 μs, the torque comes only
from the Casimir effect. We will repeat this sequence many
times (could be millions of times [52]) and average the results
to extract the signal from the noise. The effective measurement
time will be t2 − t1 times the number of measurement cycles.

D. Other effects

In real experiments, there could be external stray fields,
surface roughness, and surface patch potentials that could
affect measurements. If the nanorod has a permanent electric
or magnetic dipole, there may be a torque on the nanorod due
to stray electric or magnetic fields. Different from the Casimir
torque, such torque due to a permanent dipole has a period
of 2π . So if we rotate the nanorod by 180◦, the dipole torque
will change its sign, while the Casimir torque will be the same
[Fig. 3(b)]. Thus we can cancel out this dipole torque on the
nanorod by a careful design.

Roughness can change the effective separation between the
nanorod and the plate, and induce an additional torque on
the nanorod. However, after polishing, the roughness could
be controlled to be less than 3 nm for the regime near the
nanorod [53]. Figures 2(b) and 3(a) show the dependence
of Casimir force and torque on the separation. When the
separation changes 3 nm at an average separation about

266 nm, the force and the torque do not change much.
Therefore, the torque generated by surface roughness can be
neglected.

Additionally, there could be an inhomogeneous surface
patch potential along the surface of real materials. Such patch
potential can introduce a force and a torque, which can affect
Casimir force and torque measurements. Luckily, it has been
experimentally demonstrated that most levitated nanoparticles
have zero electric charge, which can be verified by driving the
particle with an ac electric field [34,54].

When there is no charge on the nanorod, the electric field of
a patch potential can still cause a force and a torque due to the
induced dipole. Here we analyze this situation and consider
that there is a round patch with a diameter of 5 μm on a large
birefringent plate. The patch is assumed to have a potential
of 10 mV, while the plate is kept at zero potential. Then the
potential at any point above the plane is given by [56,57]

�(ρ,z) = V0r0

∫ ∞

0
e−λzJ1(λr0)J0(λρ)dλ, (28)

where r0 = 2.5 μm is the radius of the patch, V0 = 10 mV is
the fixed potential of the patch, J0 and J1 are the zeroth-order
and first-order Bessel function of the first kind, and ρ and z are
the position of the potential in polar coordinates. The long axis
of the rod aligns with the laser polarization, which is assumed
to be the y direction in Fig. 7(a). Then the induced torque along

FIG. 7. Calculation results of the electric potential, electric field, and induced torque on the nanorod due to a patch potential. We assume
that a round patch with a diameter of 5 μm lies on the birefringent plate and it is maintained at a potential of 10 mV, while the plate is kept at
zero potential. (a) The potential at a height of 266 nm above the plate (a plane parallel to the birefringent plate). The center of the round patch
is at (0,0). (b) The amplitude of the electric field at the height of 266 nm above the plate. The electric field reaches its maximum at the edge of
the patch and is always pointing away from the center of the patch. The white arrows show the directions of the electric field. (c) The torque
induced by the patch potential. The axis of the nanorod is parallel to the y axis. (d) The potential in a plane perpendicular to the birefringent
plate and going through the center of the patch [y = 0, shown as the white dashed line in (a)]. The center of the patch is at (0,0), which is not
shown in the plot. (e) The electric field from the patch in the X-O-Z plane [shown as the white dashed line in (b)]. Here we only consider the
electric field along the x axis. (f) The torque induced by the patch potential in a plane perpendicular to the birefringent plate and 1.77 μm from
the center of the patch [y = 1.77 μm, shown as the black dashed line in (c)].
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the z axis from the patch potential on the nanorod becomes

Tz = (α⊥ − α‖)ExEy, (29)

where α‖ and α⊥ are the components of the dc polarizability
tensor parallel and perpendicular to the axis of the nanorod,
and Ex and Ey are the electric fields along the x axis and y

axis, respectively. Here the positive torque is in the direction
along the positive z axis.

The calculated results of the electric potential, electric
field, and induced torque on the nanorod due to the patch
potential are shown in Fig. 7. Figure 7(a) is the calculated
patch potential in the plane 266 nm above the birefringent
plate. Figure 7(b) shows the calculated electric field in the
plane 266 nm above the birefringent plate. We can see that
the electric field reaches the maximum value at the edge
of the patch and is always pointing away from the center
of the patch. Figure 7(c) shows the induced torque from the
patch potential and it also reaches the maximum at the edge.
The torque at the edge could reach 2 × 10−25 N m, which
is at the same order as the Casimir torque. Figure 7(d) is the
calculated potential in a plane perpendicular to the birefringent
plate [y = 0, shown as the white dashed line in (a)]. Here the
height above the plate ranges from 100 to 500 nm. Figure 7(e)
is the calculated patch potential in the X-O-Z plane [y = 0,
shown as the white dashed line in (b)]. Here we only consider
the electric field along the x axis. We can see that the electric
field is anti-symmetric with respect to the z axis and is large
at the edge of the patch. Figure 7(f) shows the induced torque
from the patch potential in a plane perpendicular to the plate
but has a distance of 1.77 μm from the center of the patch
[y = 1.77 μm, shown as the black dashed line in (d)]. In this
plane, the maximum electric field is 45◦ relative to the plane.
The torque also reaches the maximum at the edge.

Figure 8 provides a more detailed profile of the induced
torque at a height of 266 nm and 1.77 μm from the center
of the patch [corresponding to a horizontal line in Fig. 7(f)].
Comparing the induced torque by the patch potential with the
Casimir torque between the silica nanorod and two birefringent
plates, we can see that the maximum value of the induced
torque is at the same order as the Casimir torque. However,
when the nanorod is not close to the edge of the patch,
the induced torque is far smaller than the Casimir torque.
Additionally, the induced torque has different signs at different
positions, while the Casimir torque is independent of the
location for a single-crystal birefringent plate. Therefore, we
can cancel out the torque from the patch potential by measuring
the torque at multiple locations along a line [one-dimensional
(1D)] or along a two-dimensional (2D) array.

One possible way is to measure the torque at points that are
equally spaced on the birefringent plate. For a 1D scan, we will
measure the points along the direction which is perpendicular
to the axis of the nanorod. We assume that the axis of the
nanorod is trapped along the y direction, then we will measure
the torque along positions that are equally spaced along the x

axis. In this way, the average of measured torque will be

M1D(x) = 1

N

N−1∑
i=0

M

(
x + L

N
i

)
, (30)
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FIG. 8. The torque profile at z = 266 nm, y = 1.77 μm when
there is a round patch with a diameter of 5 μm at the center. The patch
is maintained at a potential of 10 mV. The green dashed line is the
induced torque from the patch potential on the surface [corresponding
to a horizontal line at z = 266 nm in Fig. 7(f)]. The red dotted line
is the Casimir torque between a silica nanorod and a barium titanate
plate at a separation of 266 nm (the same result as Fig. 3). The blue
solid line is the Casimir torque between a silica nanorod and a calcite
plate at a separation of 266 nm. The maximum value of the induced
torque is at the same order as the Casimir torque, for both barium
titanate and calcite situation. But the induced torque will change its
sign at different positions. Therefore, we can cancel out the effect
from patch potential by averaging the measured torque at multiple
locations.

where x ∈ (0, L
N

) is the position of the first measurement point,
N is the total number of measurements, L is the measurement
range, and M(x + L

N
i) is the torque measured at the ith point,

which includes both Casimir torque and the torque from the
patch potential. We let x be a variable to simulate the situation
when we do not know the exact location of the patch. The
measurement range L should be larger than the size of a patch.
In the situation when there are many nearby patches, it will
be better to increase L to cover as many patches as possible.
Here we simulate the results for the situation we discussed
before in Fig. 8 and set N to be 1, 2, 3, 4, 8, and 16. The
results are shown in Fig. 9. We compare the effect from the
patch at z = 266 nm, y = 1.77 μm with the Casimir torque
between the silica nanorod and the birefringent plates (barium
titanate and calcite). Here we set the measurement range L =
10 μm. Figure 9(a) shows the expected measured torque (blue
solid line) when the patch-induced torque is included, which
means M = MCasimir + Mpatch. The red dashed line shows the
Casimir torque between the nanorod and barium titanate plate.
Figures 9(b)–9(f) show the average of the torque measured at
N equally spaced positions on the plate when N = 2, 3, 4, 8,
and 16, respectively. We use Eq. (30) to the get the average
torque. We can see that the average torque from the patch
decays very fast when we increase N . Figures 9(g)–9(l) show
similar results when the birefringent plate is a calcite plate. In
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FIG. 9. The torque after averaging the measured torque at equally spaced positions. We assume there is a round patch with a diameter
of 5 μm at the center (x = 0, y = 0, z = 0) and the patch is maintained at a potential of 10 mV. We compare the patch-induced torque
at z = 266 nm, y = 1.77 μm [corresponding to a horizontal line in Fig. 7(f)] with the Casimir torque between the silica nanorod and the
birefringent plates (barium titanate and calcite). (a) The blue solid line shows the expected measured torque when the patch-induced torque is
included, which means M = MCasimir + Mpatch. The red dashed line is the Casimir torque between the nanorod and barium titanate plate. (b–f)
Torque after averaging the measured torque at N different positions, and these positions are equally spaced on the plate. We can see that the
torque from the patch decays very fast when we increase N . (g–l) Similar results when the birefringent plate is a calcite plate.

real experiments, we may not know the position of the patch.
However, as shown in Figs. 9(f) and 9(l), when N is large, the
torque from the patch potential will be negligible compared to
the Casimir torque and will only have a weak dependence of
the measurement position. Therefore, we can use this method
to minimize the effect from the patch potential.

We also consider a two-dimensional scan, which means we
will measure the torque following a 2D array in the X-O-Y
plane. In this way, the averaged torque will be

M2D(x,y) = 1

K2

K−1∑
i=0

K−1∑
j=0

M

(
x + L

K
i,y + L

K
j

)
, (31)

where (x,y) is the position of the first measurement point
on the plate and x ∈ (0, L

K
),y ∈ (0, L

K
). K is the number of

measurements along one axis, N = K2 is the total number of
measurements, L is the measurement range in one dimension,
and M(x + L

K
i,y + L

K
j ) is the torque measured at the ith point

along the x axis and the j th point along the y axis. Here we
also choose measurement range L to be 10 μm. Figure 10
shows the relation between the number of measurements
and the averaged torque from the patch potential, both for
one-dimensional (blue dotted line) and two-dimensional scans
(black dashed line). The vertical axis shows the maximum of
the averaged torque from the patch potential, and the horizontal
axis corresponds to the number of measurements. The red solid
line shows M = M0/N , where M0 = 2.65 × 10−25N m is the
maximum value of the patch-induced torque at 266 nm above
the birefringent plate (no averaging). For the two-dimensional
averaging method, the maximum averaged torque from the
patch potential approximately follows the 1/N law. The 1D

averaged torque from the patch along the x axis decays much
faster than the 2D averaged torque from the patch potential.
When N = 30, the maximum value of the 1D averaged torque
from the patch potential is about 3 × 10−28 N m, which is
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FIG. 10. The maximum value of the averaged torque from a patch
potential Max(Mpatch) as a function of the total measurement number
N . The effect from the patch potential decreases after averaging the
measured torque at equally spaced positions. Here the blue dotted
line shows the maximum torque after averaging for one-dimensional
measurements along the x axis, while the black dashed line shows the
maximum torque after averaging for two-dimensional measurements.
The red solid line shows the equation M = M0/N , where M0 =
2.65 × 10−25 N m is the maximum value of the patch-induced torque
at 266 nm above the birefringent plate (no averaging).
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three orders smaller than the Casimir torque between a silica
nanorod and a barium titanate plate. This further proves that we
can decrease the effect from the patch potential by measuring
the torque at multiple locations.

Meanwhile, we can reduce the surface patch potential by
careful preparation of the sample, as done in an experiment
that measured the Casimir force which improved the flatness
to be less than 3 nm over a square millimeter area [58]. We
can determine the topography and observe the patch potential
on the surface by using Kelvin probe force microscopy and
choose the area with relatively small roughness and patch
potential to do the measurement [53,55]. We can also measure
the toque due to the surface patch potential directly by utilizing
the angular dependence of the Casimir torque. As shown in
Fig. 3(b), the Casimir torque will be maximum when the
relative angle between the nanorod and the optical axis of
a birefringent crystal is 45◦, and it will be zero when the angle
is 0 or 90◦. So we can directly measure the torque due to the
patch potential by setting the angle to be 0 and 90◦ when the
Casimir torque is zero. We can then subtract the torque due to
the surface patch potential from the total measured torque to
obtain the Casimir torque at 45◦.

VI. CONCLUSION

In this paper, we show that the calculated Casimir force is on
the order of 10−16 N and the torque is on the order of 10−25 N m
between an optically levitated silica nanorod (l = 200 nm,
a = 20 nm) and a birefringent crystal separated by 266 nm.
Considering noise from thermal interaction and photon recoil,
we get the sensitivity of our system, which is on the order of
10−28 N m/

√
Hz at 10−7 torr. Therefore, the system will allow

us to measure the Casimir torque and test the fundamental
prediction of quantum electrodynamics [2–13]. Besides its
fascinating origin, the QED torque between anisotropic sur-
faces is expected to be important for the anisotropic growth
of some crystals [21] and biological membranes. Our system
will enable many other precision measurements, such as a
measurement of the torque on a single nuclear spin [26]. It can
also study electrostatics of surfaces.
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