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Generation of the superposition of mesoscopic states of a nanomechanical resonator by a single
two-level system
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We propose measurement-based conditional generation of the superposition of mesoscopic states of a
nanomechanical resonator. We consider a two-level quantum mechanical system (qubit) coupled with a nano-
mechanical resonator through phonon exchange. An interaction, which produces shifts in the state of the
nanomechanical resonator depending on the state of the qubit, is realized by driving the qubit through two
resonant fields or a single field with controlled phase. The measurement of the state of the qubit produces
superposition states of the nanomechanical resonator. We show that the quantum interference between the
generated states in the superposition may lead to an arbitrary large displacement in the resonator. We also discuss
decoherence of the generated states using the Wigner function.

DOI: 10.1103/PhysRevA.96.033837

I. INTRODUCTION

Nanomechanical resonators (NRs) have a wide range of
applications, which includes ultrasensitive mass detection [1],
force detection [2,3], imaging, and lithography [4]. Now, it is
possible to cool the fundamental mode of a NR to its ground
state [5,6] and create single-phonon excitation in a controlled
manner [6]. Clearly, it is a milestone in demonstrating quantum
mechanical behavior of a mesoscopic system consisting of bil-
lions of atoms, which can lead to applications such as quantum
limited measurements [7], generating nonclassical mechanical
states [8], and the realization of hybrid quantum mechanical
systems for quantum information processing [9–14]. Apart
from having a high-quality factor, NR can be coupled with vari-
ous quantum mechanical systems through magnetic, electrical,
or optical interactions. Such developments have opened up
important possibilities to encode quantum information into a
mechanical state and mediate the interaction between different
types of quantum systems. Mainly, two types of hybrid systems
have been realized by coupling NR to either a cavity where
the electromagnetic field directly couples through radiation
pressure [9,10] or by coupling with a qubit where states of
the qubit can be manipulated by external fields [11–15]. In
the case of a cavity-coupled NR, various phenomena such
as optomechanically induced transparency [16], single-photon
blockade [17], and generation of micro-macro entangled states
[18] have been realized.

Due to its versatile nature, a NR has been efficiently
coupled to various types of qubits such as superconducting
qubit [11,12], quantum dot [15], cold atoms [19], and nitrogen
vacancy (NV) center [13,14] which provide a mechanical
analog of cavity quantum electrodynamics. Such systems are
of vital importance, particularly for controlling and generating
nonclassical states of a NR. There have been proposals for
cooling [20] or lasing [21] the NR by coupling with a two-level
quantum system. A quantum dot (QD) [15] or a NV center
[14] embedded in a nanowire naturally couples through the
phonon mode by strain-mediated interaction. The effects of
such coupling have been witnessed in florescence spectra
from a quantum dot or NV center driven by an external field.
A QD or NV center embedded in a nanowire also provides
very high collection efficiency for emitted photons, which has
been utilized in the realization of high-efficiency single-photon

sources [22]. However, a major difficulty for the quantum
manipulation of mechanical states using a coupled two-level
system is that it requires the coupling strength to be at least
of the order of the decoherence rate of the two-level system
[15]. For a QD and superconducting qubit, where coupling
strength could be as large as 500 kHz, the decoherence rate
is of the order of GHz. Similarly, for NV centers where the
decoherence rate could be as small as a few kHz, the coupling
strength has been of the order of 10 Hz. In this paper, we present
a scheme for generating the superposition of mesoscopic states
of NR by externally deriving a coupled two-level system and
measuring the state of the system. Our proposal could be
feasible for the NR having frequency equal to the decoherence
rate of the qubit, which could be achieved, for example, by
using a GHz-frequency resonator [6] coupled with a QD
or superconducting qubit and by using a 10-kHz-frequency
resonator [13] coupled with a NV center.

Our paper is organized as follows. In Sec. II, we present
our model for the realization of effective interaction. Sec-
tion III presents a method for generating the superposition
of mesoscopic states of a NR. In Sec. IV, we discuss
the effects of decoherence. Finally, we present possibilities
for the experimental realization in the current scenario and
conclusions in Sec. V.

II. MODEL FOR REALIZATION OF EFFECTIVE
HAMILTONIAN

We consider a qubit coupled with NR, where the qubit is
driven by two external resonant fields, and the fields have
phase difference of π/2. Further, the intensity of one field is
much greater than the other. The schematic diagram is shown
in Fig. 1. The Hamiltonian of the system in the rotating frame
is given by

H = h̄ωa†a + h̄�1(σ+ + σ−) + ih̄�2(σ+ − σ−)

+ h̄g|e〉〈e|(a + a†), (1)

where ω, a (a†), �1 (�2), g, σ−, and σ+ are, respectively, the
frequency of the NR mode, annihilation (creation) operator
for the phonon field, coupling constants for the qubit with first
(second) external field, coupling constant for the qubit with
NR mode, and lowering and raising operators for the qubit.
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FIG. 1. Schematic for a nanomechanical resonator coupled with
a two-level quantum mechanical system (qubit). The qubit is driven
by two external fields, where one field is strong and another is weak.

We notice that a similar Hamiltonian was considered earlier
by Freedhoff and Ficek [23] in the context of a modification
in Mollow’s sidebands and the results have been recently
verified by He et al. [24]. We also notice that the Hamiltonian
(1) can also be realized using a single driving field with a
controlled phase. For example, if the coupling of the single
driving field is �eiφ , then �1 = � cos φ and �2 = � sin φ.
By fixing the value of φ properly, one can have �1 � �2.
Further, a singly driven qubit has been utilized in a proposal
[25] for generating the coherent state of a NR. In order to
get a clear picture of the interaction of the Hamiltonian (1),
we perform a time-independent unitary transformation [20,26]
H̃ = esHe−s , with s = η|e〉〈e|(a† − a), where η = g/ω, and
the above Hamiltonian takes the form

H̃ = h̄ωa†a + h̄�1[σ+eη(a†−a) + σ−e−η(a†−a)]

+ ih̄�2[σ+eη(a†−a) − σ−e−η(a†−a)]. (2)

Under the above unitary transformation, the state of the system
transforms as |ψ̃〉 = es |ψ〉, which produces constant shift
η in the phonon mode when the qubit is in excited |e〉.
However, the state remains unaffected if the qubit is initially
prepared in ground state |g〉 and detected in |g〉. For the QD
and superconducting qubits (g ∼ 100 kHz) coupled with NR
having ω ∼ 1 GHz and for NV centers (g ∼ 1 kHz) coupled
with NR having ω ∼ 1 MHz, we have η ∼ 10−3. Therefore,
we consider the terms up to second order in η. We also
consider that the qubit is strongly driven by one of the fields,
say, �1 � g,ω,�2,	, where 	 is the decoherence rate for
the qubit. We further rewrite the above Hamiltonian in the
interaction picture in which the interaction with the stronger
field has been diagonalized. In this picture, the state of the
system |ψ̃〉 and the Hamiltonian H̃ are transformed to

|ψ̄〉 = eiht |ψ̃〉, H̄ = eiht H̃ e−iht ; h = �1(σ+ + σ−). (3)

The qubit spin operators σ± transform as

eihtσ±e−iht = σ± cos2 �1t + σ∓ sin2 �1t ∓ iσz sin 2�1t.

(4)

We consider that the qubit is driven strongly such that �1 is
very large, and therefore we can neglect the highly oscillating
terms in Eq. (4), i.e., sin 2�1t ≈ 0. A similar approximation
was extensively used earlier in various contexts [27]. Under
this approximation, the effective Hamiltonian becomes

H̄eff = h̄ωa†a + ih̄�2ησx(a† − a)

+ h̄�1η
2

2
σx(a† − a)2, (5)

where σx = σ+ + σ−. We note that H̄eff commutes with h,
thus changing to the previous interaction picture, where the
effective Hamiltonian becomes

Heff = h̄ωa†a + h̄�′
1σx

+ih̄�2ησx(a† − a) − h̄�1η
2σxa

†a, (6)

where �′
1 = �1(1 − η2/2). Here we have neglected two

phonon transitions which produce a small squeezing in the
coherent state of NR when �1 is switched on and the squeezing
is undone when �1 is switched off. We relegate the details to
the Appendix. The Hamiltonian Heff can be diagonalized in
the basis of eigenstates of σx as follows:

Heff ≈ h+|+〉〈+| + h−|−〉〈−|, (7)

h± = ±h̄�′
1 + h̄(ω ± �1η

2)A†
±A±, (8)

where A± = a ± i�2η/ω. In the expression of h±, the first
term gives the change in phase and the second term gives the
change in phase as well as the displacement in the NR state
during evolution of the qubit-NR coupled system. Clearly,
the magnitude of displacement in the NR state depends on �2;
further, the displacement will be negative or positive depending
on the qubit states |±〉. When �2 = 0, the Hamiltonian
changes to the optically driven qubit-NR system [25], where
the effect of qubit-NR coupling leads to the modifications
in qubit energy states as well as a shift in the frequency of
the NR. Next, we exploit this interaction for generating the
superposition of mesoscopic states of a NR.

III. GENERATING SUPERPOSITION OF
MESOSCOPIC STATES

A. Superposition of multiple coherent states and quantum
random walk

We initially consider that the qubit is in ground state |g〉
and the NR is in coherent state |α0〉, in which the initial state
of the system can be written as

|ψ(0)〉 = 1√
2

(|+〉 − |−〉)|α0〉. (9)

In the presence of field �1, when �2 is switched on, the phonon
annihilation operator a transforms to A±, depending on the
qubit state |±〉, i.e., a → D(∓i�2η/ω)aD(±i�2η/ω). As a
result, the state of the NR changes as |α〉 → D(∓i�2η/ω)|α〉,
where D is the displacement operator. Similarly, when �2

is switched off, the phonon annihilation operator transforms
as a → D(±i�2η/ω)aD(∓i�2η/ω) and the state of the
NR transforms as |α′〉 → D(±i�2η/ω)|α′〉. Therefore, cor-
responding to qubit states |±〉, a small positive or negative
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displacement in the NR state is produced when �2 is switched
on or off. In order to get a constructive effect during one on-off
cycle of �2, we work on a strategy in which the time between
switching on and off of �2 should be such that the phonon
field has changed its phase by π . Therefore, we consider that
�1 and �2 are switched on for half of the time period of NR,
i.e., for t = 0 to t = π/ω, and remain off for the other half.
The state of the system at t = π/ω is given by

ψ(π/ω) = 1√
2

[e−iφe−il1Re(α0)|(α0 − il1)e−i(ω−�1η
2) π

ω 〉|+〉

− eiφeil1Re(α0)|(α0 + il1)e−i(ω+�1η
2) π

ω 〉|−〉] (10)

= 1√
2

[e−iφe−il1Re(α0)|(−α0 + il1)eil2π 〉|+〉

− eiφeil1Re(α0)|(−α0 − il1)e−il2π 〉|−〉], (11)

where Re represents the real part, φ = �′
1π/ω, l1 = �2η/ω,

and l2 = �1η
2/ω. For time t = π/ω to t = 2π/ω, fields �1

and �2 are switched off, and therefore the state of the system
is given by

ψ(2π/ω) = 1√
2

[e−iφe−il1Re[α0+(α0−il1)eil2π )]

× |(α0 − il1)eil2π − il1〉|+〉
− eiφeil1Re[α0+(α0+il1)e−il2π )]

× |(α0 + il1)e−il2π + il1〉|−〉]. (12)

If we measure the qubit in the ground state |g〉 or in the excited
state |e〉, the state of the NR is projected into a coherent
superposition of the mesoscopic state |(α0 − il1)eil2π − il1〉
and |(α0 + il1)e−il2π + il1〉. Clearly, for small values of l1 and
l2, these states overlap considerably, and therefore the effects
of quantum interference become significant. If we assume that
the qubit is measured in ground state |g〉 after switching off
the fields, the projected state of the NR is given by

ψ(2π/ω) = [e−iφe−il1Re[α0+(α0−il1)eil2π )]|(α0 − il1)eil2π − il1〉
+ eiφeil1Re[α0+(α0+il1)e−il2π )]|(α0 + il1)e−il2π

+il1〉]. (13)

After sending one pair of pulses, consisting of one square pulse
of each field �1 and �2, which are on for half of the time period
of the NR and off for the other half simultaneously, the phonon
field is displaced anticlockwise or clockwise along a circle in
a random fashion. If we pass n such pulse pairs and every time
detect the qubit in its ground state, the state of the NR will be
equivalent to an n-step random walk along a circle [28]. The
state of the NR can be expressed as

|ψph(n)〉 = C[e−iφÔ(−l1,−l2) + eiφÔ(l1,l2)]n|α0〉, (14)

where C is the normalization constant and operator
Ô(l1,l2)|α〉 = D(il1)e−il2πa†aD(il1). We note that
operators Ô(l1,l2) and Ô(−l1,−l2) commute each
other: [Ô(l1,l2),Ô(−l1,−l2)] = 0 for real l1,l2 and
Ô(l1,l2)Ô(−l1,−l2)|α〉 = |α〉. Therefore, the state of
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FIG. 2. Probability distribution |ψph(n,x)|2 for the amplitude of
the nanomechanical resonator after passing different numbers of pulse
pairs. The parameters are l1 = 0.1, l2 = 0.01, φ = 9π/2, and initial
state as |0〉.

the NR can be written as

|ψph(n)〉 = C

n∑
m=0

(
n

m

)
[e−imφÔm(−l1,−l2)

× ei(n−m)φÔn−m(l1,l2)]|α0〉,

= C

n∑
m=0

(
n

m

)
ei(n−2m)φÔn−2m(l1,l2)|α0〉,l (15)

= C

N∑
m=0

(
n

m

)
ei(n−2m)φe−iθn−2m |αn−2m〉, (16)

where we have recursive expressions θj = θj−1 +
l1Re(αj−1 + αj ) and αj = (αj−1 + il1)e−il2π + il1. Now,
expressing this result in coordinate representation, we get the
wave function of the NR ψph(n,x) = 〈x|ψph(n)〉,

ψph(n,x) = C

n∑
m=0

(
n

m

)
ei(n−2m)φe−iθn−2mψαn−2m

(x), (17)

where ψαj
(x)=π−1/4 exp{−[x − √

2Re(αj )]2/2 + i
√

2Im
(αj )x − iRe(αn)Im(αnj )}; Im(αj ) is the imaginary part of
αj . In Fig. 2, we plot the probability distribution for the
displacement of NR |ψph(n,x)|2, using initial state |α0〉 = |0〉
and typical values of φ, l1, l2 for different values of n.
The displacement of the NR depends on l1, l2, φ and the
number of pulse pairs n. For l1 = 0.1 and l2 = 0.01, we
calculate values of α1 = 0.00314107591 + 0.199950656i,
α5 = 0.0783720116 + 0.995810825i, and α10 =
0.311558267 + 1.96710148i, with α−n = α∗

n. The maximum
expected value of displacement x for a typical value of n is
given by 〈x〉n = √

2Re(αn). From Eq. (17), it is clear that the
final state of the NR is the coherent superposition of n + 1
coherent states; further, their relative phases depend on φ and
θs . For small values of l1 and l2, these coherent states overlap
considerably, leading to dominating quantum interference
effects. The unexpected displacement in the state of NR is due
to the constructive interference between the coherent states
generated after passing n pulse pairs. Here we must emphasize
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that the choice of φ is also critical for the final displacement
in the NR state. For φ equal to odd multiples of π/2, we get
maximum displacement, and for even multiples of π/2, the
displacement is negligible. For φ equal to odd multiples of
π/4, only one peak in the probability distribution appears
which has displacement between the maximum and minimum
values. For n = 1, we get two equal peaks symmetrically
placed on the positive and negatives sides around x = 0.
When the value of n increases, the peak on the negative side
starts dominating; in fact, for n � 10, the peak along the
positive side becomes negligible. The final state of the NR is
equivalent to the quantum random walk defined by Aharnov
et al. [29,30] along a circle.

B. Superposition of two coherent states

Next, we discuss how one can generate a superposition state
of two coherent states which are well separated in phase space.
We consider that the strong driving field �1 is on for a few
cycles of mechanical oscillations and the weak driving field is
modified in a similar fashion as discussed above. We consider
the initial state of the system as |g〉|β0〉 with β0 = 0. If after
n cycles of mechanical oscillations, when n pulses of �2 have
been passed, �1 is switched off and we measure the state of
the qubit in ground state |g〉, then the projected state of the NR
is given by

|ψcat(n)〉 = K(e−iφ′
eiθ ′

−n |β−n〉 − eiφ′
eiθ ′

n |βn〉), (18)

where K is the normalization constant and φ′ =
�′

12nπ/ω, βj = (βj−1 + il1)e−2il2π + il1e
−il2π , θ ′

j = θ ′
j−1 +

l1Re[βj−1 + (βj−1 + il1)e−2il2π ], with θ ′
0 = 0. Clearly, the

above method can be used to generate the superposition of
two mesoscopic states similar to Schrodinger cat states.

IV. DECOHERENCE

In Sec. III, we have shown that the unexpected displacement
in the NR state is produced due to quantum interference.
Therefore, it is important to maintain coherence in the system
during the generation of the superposition of mesoscopic states
of the NR. For a nanomechanical resonator having high-quality
factor, we can neglect the effects of decoherence in the gener-
ated superposition state due to phonon-mode damping [31]. In
the following, we consider the decoherence of the generated
states due to spontaneous decay of the qubit. During the
generation of states (16) and (18), the qubit remains in dressed
states |+〉 and |−〉. Using the density matrix of qubit ρq , we
evaluate the density matrix elements at time t , where the diago-
nal elements remain constant, 〈+|ρq(t)|+〉 = 〈−|ρq(t)|−〉 =
1/2, and the off-diagonal elements decay as 〈±|ρq(t)|∓〉 =
〈±|ρq(0)|∓〉 exp(−3	t/4) [32]. We include the effect of
qubit decoherence in the generated state (16) as follows. We
calculate density matrix ρph(n) for the generated NR state after
n pulse pairs are passed using the recursion relation,

ρph(n) = C[Ô(l1,l2)ρph(n − 1)Ô(l1,l2) + Ô(−l1,−l2)

×ρph(n − 1)Ô(−l1,−l2) + e2iφe−ξ Ô(l1,l2)ρph

× (n − 1)Ô(−l1,−l2) + e−2iφe−ξ Ô

× (−l1,−l2)ρph(n − 1)Ô(l1,l2)], (19)

FIG. 3. Wigner function W (x,p) of the generated superposition
of multiple mesoscopic states (17) for n = 5. (a) ξ = 0, (b) ξ = 0.2,
(c) ξ = 0.5, and (d) ξ = 1; other parameters are the same as in Fig. 2.

with ρph(0) = |α0〉〈α0|, where ξ = 3	T/8, T = 2π/ω and
C is the normalization constant. In Fig. 3, we plot the Wigner
function for state (19) for n = 5 using different values of ξ .
The Wigner function for the density matrix ρ is defined as

W (x,p) = 1

πh̄

∫
e2ipy/h̄〈x − y|ρ|x + y〉dy. (20)

In Fig. 3(a), for ξ = 0, the Wigner function shows two
peaks at x ≈ ±2: one smaller peak at x = 2 and one
dominating peak at x = −2. The interference fringes are
visible between these peaks which are a direct signature of
coherence. The Wigner function acquires negative values
in the region between the peaks. The negative value of the
Wigner function clearly indicates the nonclassical nature of
the generated superposition state. Further squeezing in the x

quadrature [33] is also visible, which is also clear in Fig. 2. In
Figs. 3(a)–3(d), as the value of ξ increases, the interference
diminishes progressively. In Fig. 3(d), for ξ = 1, the generated
superposition state (16) turns into a mixed state completely and
the displacement in the NR state becomes approximately zero.

FIG. 4. Wigner function W (x,p) of the generated superposition
of two mesoscopic states (18) for n = 10. (a) 	 = 0, (b) 3n	T/4 = 2;
other parameters are the same as in Fig. 2.
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We follow similar calculations for generated state (18). In
Fig. 4(a), we plot the Wigner function for state (18) using
n = 10 for 	 = 0. In Fig. 4(b), we plot the Wigner function
for the same parameters used in Fig. 4(a) except the value of
the spontaneous decay rate is chosen such that 3n	T/4 = 2.
From Figs. 3 and 4, it is clear that the lifetime of the qubit is a
crucial factor for generating the superposition of mesoscopic
states of the NR.

V. CONCLUSIONS

We have presented a scheme to generate the superposition of
mesoscopic states of a nanomechanical resonator by coupling
with a two-level quantum mechanical system. We have shown
that the displacement amplitude of the resonator could be
exceptionally large as a result of quantum interference. We
also find some squeezing in the position quadrature. We have
discussed decoherence of the generated states due to spon-
taneous decay of a two-level quantum mechanical system. For
ξ = 3	T/8 = 0.2, we find small changes in the Wigner func-
tion. This condition can be satisfied for resonator frequency
ω ≈ 	; thus a quantum dot coupled with a nanomechanical
resonator of frequency 1 GHz could be considered for possible
experimental realization of our results. In NV center qubits,
the lifetime of the qubit is very large and η = g/ω ∼ 10−3

can also be achieved. Therefore, NV centers as a qubit using
a resonator of frequency 1 MHz could be another system for
potential realization.
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APPENDIX: NEGLECTING TWO-PHONON TRANSITIONS
IN EFFECTIVE HAMILTONIAN

The Hamiltonian (5) in the original picture becomes

Heff = h̄ωa†a + ih̄�2ησx(a† − a)

+h̄�1σx − h̄�1η
2σx(a† − a)2. (A1)

The term containing �2 commutes with the terms containing
�1. In order to understand the effect of the last term in Eq. (A1),
we consider the case when �2 = 0. The Heisenberg equations
of motion for phonon field operators are

ȧ = −i(ω − �1η
2σx)a − i�1η

2σxa
†, (A2)

ȧ† = i(ω − �1η
2σx)a† + i�1η

2σxa. (A3)

For the qubit state, if we choose to use eigenstates of σx as the
basis, the solution of these equations at any time t gives

a(t) = a(0)e−iω′t − i�1η
2λ

2ω′ sin(ω′t)a†(0), (A4)

a†(t) = a†(0)eiω′t + i�1η
2λ

2ω′ sin(ω′t)a(0), (A5)

where λ = ±1 corresponds to the qubit states |±〉 = (|e〉 +
|g〉)/√2 and we have used the approximation, for �1η

2 � ω,√
(ω2 − 2ω�1η2λ = ω′, with ω′ = ω − �1η

2λ. For the first-
order approximation, we notice that a(t) ≈ a(0)e−iω′t , a†(t) ≈
a†(0)eiω′t . We substitute first-order values of a(t) and a†(t) in
the above expressions and rearrange the results in the form

a(t) + �1η
2λ

2ω′ a†(t) =
[
a(0) + �1η

2λ

2ω′ a†(0)

]
e−iω′t , (A6)

a†(t) + �1η
2σx

2ω′ a(t) =
[
a†(0) + �1η

2λ

2ω′ a(0)

]
eiω′t . (A7)

Clearly, the effect of the last term in Eq. (A1) is equivalent to
transforming the NR frequency as ω → ω′ and to transforming
the operators as a → a + �1η

2λ

2ω′ a†, a† → a† + �1η
2λ

2ω′ a. For a
coherent state of the NR, this transformation in the field opera-
tor leads to qubit state-dependent squeezing by a small factor of√

1 − �1η2/ω in the phonon field quadratures. However, when
driving field �1 is “off,” the field operators transform back
as a + �1η

2λ

2ω′ a† → a, a† + �1η
2λ

2ω′ a → a† and the squeezing is
undone. Therefore, we neglect the transformation in the field
operators and consider the transformation in frequency only
in Eq. (6).

[1] K. L. Ekinchi, X. M. H. Huang, and M. L. Roukes, Appl. Phys.
Lett. 84, 4469 (2004).

[2] J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S.
Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).

[3] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature
(London) 430, 329 (2004).

[4] S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A.
Atalar, and C. F. Quate, Appl. Phys. Lett. 73, 1742 (1998).

[5] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,
K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and
R. W. Simmonds, Nature (London) 475, 359 (2011); J. Chan,
T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause,
S. Gröblacher, M. Aspelmeyer, and O. Painter, ibid. 478, 89
(2011).

[6] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M.
Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides,

J. Wenner, J. M. Martinis, and A. N. Cleland, Nature (London)
464, 697 (2010).

[7] C. A. Regal, J. D. Teufel, and K. W. Lehnert, Nat. Phys. 4, 555
(2008).

[8] U. B. Hoff, J. Kollath-Bönig, J. S. Neergaard-Nielsen, and U. L.
Andersen, Phys. Rev. Lett. 117, 143601 (2016); M. Asjad and
D. Vitali, J. Phys. B 47, 045502 (2014).

[9] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and
K. W. Lehnert, Nature (London) 495, 210 (2013); E. Verhagen,
S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, ibid.
482, 63 (2012).

[10] J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N.
Cleland, Nat. Phys. 9, 712 (2013).

[11] E. K. Irish and K. Schwab, Phys. Rev. B 68, 155311 (2003).
[12] A. N. Cleland and M. R. Geller, Phys. Rev. Lett. 93, 070501

(2004).

033837-5

https://doi.org/10.1063/1.1755417
https://doi.org/10.1063/1.1755417
https://doi.org/10.1063/1.1755417
https://doi.org/10.1063/1.1755417
https://doi.org/10.1103/RevModPhys.67.249
https://doi.org/10.1103/RevModPhys.67.249
https://doi.org/10.1103/RevModPhys.67.249
https://doi.org/10.1103/RevModPhys.67.249
https://doi.org/10.1038/nature02658
https://doi.org/10.1038/nature02658
https://doi.org/10.1038/nature02658
https://doi.org/10.1038/nature02658
https://doi.org/10.1063/1.122263
https://doi.org/10.1063/1.122263
https://doi.org/10.1063/1.122263
https://doi.org/10.1063/1.122263
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nphys974
https://doi.org/10.1038/nphys974
https://doi.org/10.1038/nphys974
https://doi.org/10.1038/nphys974
https://doi.org/10.1103/PhysRevLett.117.143601
https://doi.org/10.1103/PhysRevLett.117.143601
https://doi.org/10.1103/PhysRevLett.117.143601
https://doi.org/10.1103/PhysRevLett.117.143601
https://doi.org/10.1088/0953-4075/47/4/045502
https://doi.org/10.1088/0953-4075/47/4/045502
https://doi.org/10.1088/0953-4075/47/4/045502
https://doi.org/10.1088/0953-4075/47/4/045502
https://doi.org/10.1038/nature11915
https://doi.org/10.1038/nature11915
https://doi.org/10.1038/nature11915
https://doi.org/10.1038/nature11915
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nphys2748
https://doi.org/10.1038/nphys2748
https://doi.org/10.1038/nphys2748
https://doi.org/10.1038/nphys2748
https://doi.org/10.1103/PhysRevB.68.155311
https://doi.org/10.1103/PhysRevB.68.155311
https://doi.org/10.1103/PhysRevB.68.155311
https://doi.org/10.1103/PhysRevB.68.155311
https://doi.org/10.1103/PhysRevLett.93.070501
https://doi.org/10.1103/PhysRevLett.93.070501
https://doi.org/10.1103/PhysRevLett.93.070501
https://doi.org/10.1103/PhysRevLett.93.070501


MANOJ DAS, J. K. VERMA, AND P. K. PATHAK PHYSICAL REVIEW A 96, 033837 (2017)

[13] S. Kolkowitz, A. C. B. Jayich, Q. P. Unterreithmeier, S. D.
Bennett, P. Rabl, J. G. E. Harris, and M. D. Lukin, Science
335, 1603 (2012); P. Rabl, S. J. Kolkowitz, F. H. L. Koppens,
J. G. E. Harris, P. Zoller, and M. D. Lukin, Nat. Phys. 6, 602
(2010).

[14] J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky,
Phys. Rev. Lett. 113, 020503 (2014); P. Ovartchaiyapong, K. W.
Lee, B. A. Myers, and A. C. B. Jayich, Nat. Commun. 5, 4429
(2014).

[15] I. Yeo, P.-L. de Assis, A. Gloppe, E. Dupont-Ferrier, P. Verlot,
N. S. Malik, E. Dupuy, J. Claudon, J.-M. Gèrard, A. Auffèves,
G. Nogues, S. Seidelin, J.-Ph. Poizat, O. Arcizet, and M.
Richard, Nat. Nanotechnol. 9, 106 (2014); M. Montinaro, G.
Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A.
Fontcuberta i Morral, R. J. Warburton, and M. Poggio, Nano
Lett. 14, 4454 (2014).

[16] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet,
A. Schliesser, and T. J. Kippenberg, Science 330, 1520
(2010).

[17] A. Nunnenkamp, K. Børkje, and S. M. Girvin, Phys. Rev. Lett.
107, 063602 (2011); P. Rabl, ibid. 107, 063601 (2011).

[18] R. Ghobadi, S. Kumar, B. Pepper, D. Bouwmeester, A. I.
Lvovsky, and C. Simon, Phys. Rev. Lett. 112, 080503 (2014); P.
Sekatski, M. Aspelmeyer, and N. Sangouard, ibid. 112, 080502
(2014).

[19] S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch,
and P. Treutlein, Phys. Rev. Lett. 107, 223001 (2011).

[20] I. Wilson-Rae, P. Zoller, and A. Imamoḡlu, Phys. Rev. Lett. 92,
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