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Optical turbulence and transverse rogue waves in a cavity with triple-quantum-dot molecules
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We show that optical turbulence extreme events can exist in the transverse dynamics of a cavity containing
molecules of triple quantum dots under conditions close to tunneling-induced transparency. These nanostructures,
when coupled via tunneling, form a four-level configuration with tunable energy-level separations. We show that
such a system exhibits multistability and bistability of Turing structures in instability domains with different
critical wave vectors. By numerical simulation of the mean-field equation that describes the transverse dynamics
of the system, we show that the simultaneous presence of two transverse solutions with opposite nonlinearities
gives rise to a series of turbulent structures with the capability of generating two-dimensional rogue waves.
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I. INTRODUCTION

Although they are called by different names, rogue, freak,
killer, and extreme waves and even rogons and freakons,
rogue waves (RWs) are characterized by amplitudes that are
much higher compared to the long-time average height of
the oscillations in a medium [1]. These waves, occurring
unexpectedly, are typically accompanied by wide and/or deep
troughs before or after the event. Such occurrences were first
studied in oceanography, where RWs have been reported to
damage or even destroy large vessels without warnings. Then
the concept of RWs gradually moved into other fields, like
optics, matter waves, and superfluidity, in the last decade [1,2].

As in any other newly introduced phenomenon in natural
sciences, there is still a lack of uniformity in the definition
and characterization of RWs. While oceanographers use the
basic criterion of their being 2–2.5 times larger than the
average height of other waves, several definitions of RWs
have been used in different contexts and physical systems
[3–6]. A common and very useful method for studying the
occurrences of RWs is the probability density function (PDF),
which determines the shape of the intensity (or amplitude)
distribution of events in a long enough time series. Normally
the distribution is of a Gaussian shape unless extreme events
occur, with the result of elongating its tail. Predictability of
RWs is also a recently debated feature with obvious appli-
cations in the control or forecasting of rare events. Although
it is widely accepted that RWs are chaotic to a large extent,
there have been some studies that successfully argue their
deterministic character in optical systems [4] and even suggest
ways to foretell their occurrence [5,7,8]. The key element for
the characterization of extreme events is the understanding of
the underlying mechanism leading to the formation of optical
RWs [6]. In nonlinear physics, a variety of mechanisms have
been identified [1,6] including, more recently, breather and
soliton turbulence in conservative systems [9].

In the context of transverse optics in resonators, the two
building blocks of optical turbulence and extreme events are
nonlinearity and modulation instability, which are typically
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present in Kerr cavities and semiconductor systems in the pres-
ence of diffraction and/or dispersion. Different mechanisms for
RWs in these systems have been identified: vortex-mediated
turbulence [10,11], spatiotemporal chaos [12], and even cavity
solitons [13]. On the other hand, the complexity and multi-
stability of solutions are generic properties of atomic systems
with enhanced material coherence provided by phenomena like
electromagnetically induced transparency and coherent popu-
lation trapping [14,15]. These systems display competing non-
linearities and lead to the formation of extended and localized
optical structures when additional coupling lasers induce mod-
ifications to the nonlinear properties typical of atomic systems.

Important features of atomic systems, such as sharp and
well-defined energy levels, are also provided effectively by
semiconductor quantum dots (QDs) whose electronic degrees
of freedom are discretized due to the confinement of electrons
and holes, leading to promising nanostructures. Furthermore,
quantum dot molecules (QDMs) can be formed when QDs
couple to each other by a tunneling mechanism which
is controllable by an external electric field (gate voltage),
eliminating the need for any additional coupling laser beam
[16]. Modification of the quantum states is then possible by
the novel interaction avenue displayed by coupled QDMs
under the settings of tunneling-induced transparency. In this
paper we focus on a triple QDM in a cavity to show that
tunneling-induced transparency is a suitable element to form
transverse spatial structures and competition of nonlinearities.
We extend the complexity to optical turbulent regimes and
RWs. In Sec. II we present the model equations and discuss
steady states. Then we turn our attention, in Sec. III, to spatial
structures in two different but overlapping instability domains.
Section IV explains the nature of competing nonlinearities,
followed by discussions of turbulent structures and RWs. We
present evidence for a previously unreported mechanism for
the generation of RWs in nonlinear optics: spatial competition
of periodic patterns. Conclusions are outlined and final
remarks made in Sec. V.

II. THE MODEL

The system of interest here is a Fabry-Perot cavity
filled with triple-quantum-dot molecules, where the dots in

2469-9926/2017/96(3)/033836(9) 033836-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.033836


ESLAMI, KHANMOHAMMADI, KHERADMAND, AND OPPO PHYSICAL REVIEW A 96, 033836 (2017)

FIG. 1. (a) Cavity configuration for a typical triple-quantum-dot
molecule with an injected pump and tunnelings. (b) Energy-level
structure for dots in the molecule.

individual molecules are coupled by electric gates as shown in
Fig. 1. Unlike atomic systems, where the presence of coupling
laser fields is necessary for the establishment of electromagnet-
ically induced transparency and coherent population trapping,
semiconductor quantum dots can use voltage gates to control
the tunneling condition of electrons between energy states,
which can be tuned to achieve tunneling-induced transparency.
Such a medium in a cavity can be described by a single
mean-field equation,

∂tF = Fi − [(1 + iθ ) + i�χ (F )]F + i∇2F, (1)

where F is the slowly varying amplitude of the electric field,
Fi is the injected pump field, with a frequency ωi close to
that of the transition |0〉 → |1〉, and the detuning term θ is
the frequency difference between the cavity resonance and ωi .
The diffraction term is given by the Laplacian operator in two
transverse dimensions and time is normalized to the photon
lifetime in the cavity.

� is the cooperative parameter directly proportional to the
number density of quantum dot molecules N through

� = Nμ2
01kL

h̄�ε0T
, (2)

where μ01 is the transition dipole moment, k the wave number
of the cavity field, L the length of the cavity, � the line
width, ε0 the permittivity of free space, and T the cavity
mirror transmittivity. χ (F ) is the complex susceptibility, which
contains all the medium-related details due to the off-diagonal
density matrix elements when multiplied by the field amplitude
F . For simplicity we consider a noninteracting situation among
individual QDMs inside the cavity.

For the configuration shown in Fig. 1(b), the Hamiltonian
of the system can be written as

H = H0 + HI + HT , (3)

where the unperturbed, interaction and tunneling Hamiltonian
terms are, respectively,

H0 = h̄

3∑
j=0

ωj |j 〉〈j |, (4)

HI = 1

2
Fiμ01|0〉〈1|e(ik.x−iωi t) + H.c., (5)

HT = TA|2〉〈1| + TB |3〉〈2| + H.c., (6)

where H.c. stands for Hermitian conjugate. In the Hamiltonian
terms above, j represents the respective energy level, x is the
longitudinal coordinate, and TA and TB denote the electron
tunneling matrix elements for the |1〉 → |2〉 and |2〉 → |3〉
transitions, respectively. Hole tunneling is neglected in the
considered time scales.

After some exhaustive but straightforward steps, the follow-
ing set of relations from density matrix equations of motion
can be obtained under the rotating-wave approximation and
steady-state condition:

− iF = (iδ − γ01)ρ01 + iTAρ02,

0 = {i(δ − ω12) − γ20}ρ02 − iFρ12 + iTAρ01 + iTBρ03,

0 = {i(δ − ω12 − ω23) − γ30}ρ03 − iFρ13 + iTBρ02,

0 = −(iω12 + γ12)ρ12 − iF ∗ρ02 + iTBρ13,

0 = −(iω23 + γ23)ρ23 − iTAρ13,

0 = −(iω13 + γ13)ρ13 − iF ∗ρ03 − iTAρ23 + iTBρ12,

(7)

where δ is the frequency mismatch between the injected field
and the |0〉 → |1〉 transition, here considered to be positive for
a self-focusing nonlinearity. ω12 is the frequency difference
between level |1〉 and level |2〉 and ω23 is that between |2〉 and
|3〉. Both of the level separations are managed by electric gates
which give control over the occupation of levels |2〉 and |3〉
[17]. We have also assumed the value of 1 for the relaxation rate
γ01 and 10−3γ01 for all others. Once these coupled equations
are solved for ρ01 and substituted in Eq. (1) according to
χ (F ) = ρ01/F , the nonlinear part of the mean-field equation is
obtained. We note that both ρ01 and the susceptibility χ (F ) are
complex functions of the intracavity field F . Dispersion and
absorption behaviors of the derived nonlinearity are shown in
Fig. 2(a), where vanishing absorption is identified at δ = 0.37.
Details of such calculations for a variety of QDMs can be
found in [17–19].

Investigations of the homogeneous steady states (∂t = 0
and ∇2 = 0) show a departure from bistable to multistable
behavior for the input-output relation when the population in
level |2〉 increases, as shown in Fig. 2(b). Therefore, we use
the parameter ω12 (or, equivalently, the gate voltage) as the
control parameter in the dynamical simulations. Another ex-
perimental possibility of choosing a control parameter would
be the frequency mismatch between the injected field and the
|0〉 → |1〉 transition, δ, while ω12 is kept fixed. However, as
detailed in [17], a better electron transfer between the levels
is obtained when the levels are off-resonance, thus making the
idea of a fixed ω12 with a varying input pulse frequency less
effective for observing clear results in practice.
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FIG. 2. (a) Imaginary (solid line) and real (dashed line) parts of
the complex susceptibility χ for |Fi |2 = 0.5, TA = 0.1, TB = 0.01,
ω12 = 0.67, and ω23 = 0.3. (b) Bistability and multistability in the
input-output intensities for � = 1, δ = 0.3, and θ = −0.5.

The linear stability of the homogeneous stationary solution
is analyzed by studying the response of the system to small
fluctuations around the steady state. We carry out a linear
stability analysis by adding an ansatz of the form F =
Fs + δFse

(λt−i(kxx+kyy)), where Fs , δFs , λ, and k⊥ denote,
respectively, the homogeneous stationary field, its deviation
from the steady-state value, and the growth rates of the ansatz
and transverse wave vectors. Once the ansatz is introduced
into the homogeneous stationary equation, it can be solved
along with its complex conjugate to obtain a characteristic
equation (not presented here, for brevity) for the unstable
spatial wave vectors. These wave vectors rule the periodicity
of the incoming pattern in a mechanism typical of Turing
pattern formation [20,21]. For this reason we label these
instabilities Turing instabilities. In conservative systems like
inviscid fluids or nonlinear Schrödinger equations in the
presence of dispersion, similar instabilities have been called
Benjamin-Feir or modulational instabilities. Our complex
Eq. (1) is, however, dissipative and the presence of diffraction
makes it mathematically equivalent to typical Turing diffusive

FIG. 3. (a) Turing instability domains having two different
critical wave vectors, indicated by Kc1 and Kc2, and (b) their map
on the multistability curve for ω12 = 0.8. (c) Variation of the control
parameter threshold versus the stationary intensity for the onset of
patterned solutions and (d) the corresponding critical wave vectors.
Other parameters are the same as in Fig. 2.

systems as demonstrated in [21]. It is important to stress that
the dynamic of the medium is considered much faster than
that of the cavity field and that the explicit time dependence of
matrix elements ρ is not considered here.

For the parameters giving rise to multistable behavior, we
expect separate Turing domains with different branches. In
Fig. 3(a) we show the domains when ω12 is kept fixed at
0.8 and the pump intensity is swept instead. The map of
the unstable domains on the multistability curve is shown
in Fig. 3(b), where the simultaneous presence of Turing
domains with different growth rates for the associated wave
vectors is evident. Since we consider ω12 to be the control
parameter rather than the pump intensity, the correspondence
between ω12 and the stationary intensity |F |2, which can
effectively replace the pump intensity, is displayed in Figs. 3(c)
and 3(d), where we show the saddle-node bifurcation points
and critical wave vectors for the upper two branches. As shown,
the threshold stationary intensity at which the homogeneous
solutions bifurcate to spatially modulated ones increases when
the control parameter ω12 is increased, meaning that more
electron transfer from the first dot to the second (and hence to
the third) delays the saturation. While this phenomenon occurs
for both saddle-node points on the curve, the critical wave
vector of the second instability domain is affected more by an
increase in the population of second and third dots, whereas
that of the first instability domain remains almost constant.

The instability ranges established via the linear stability of
the homogeneous states are tested by numerical simulations in
the next section.

III. SPATIAL STRUCTURES

The numerical code used for the dynamical simulation
of Eq. (1) is based on a split-step method which solves the
time derivative term by the Runge-Kutta algorithm and the
diffraction by a fast Fourier transform algorithm. We used
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FIG. 4. Average intensity for a sequence of transverse spatial
solutions for the instability domains of (a) the small and (b) the
large wave vectors, respectively. The rightward and leftward arrows
depict the direction of change in the control parameter ω12, implying
scans I and II. Note that the trajectories of solutions in scans I and
II depart from each other at ω12 = 0.36 and ω12 = 0.485 for the first
and second instability domains, respectively.

64 × 64 grids but checked the accuracy of the results with a
larger numerical grid of 128 × 128 sites. We note that in the
following we keep the stationary intensity |F |2 fixed at 0.2
while changing the control parameter ω12, i.e., simulating the
experimental situation of varying the gate voltage between the
first and the second dots.

A. Turing instability with a small critical wave vector

With reference to the instability domains of different wave
numbers in Fig. 3, two separate simulations were run for the
middle and upper branches of the tristable curve corresponding
to wave numbers Kc1 and Kc2. To run the simulations for the
branch with a small critical wave vector Kc2, we set the space
step to be 10 × 2π/Kc2 × 64, where the critical wave number
follows Kc2 = √

0.285 − θ , corresponding to the instability
domain of the uppermost branch. Starting from noise as the
initial condition and by increasing the control parameter from a
value well below the saddle-node point of the respective branch
ω12 = 0.13 (scan I), a variety of transverse solutions develops
as shown in Fig. 4(a). They begin with oscillating and scrolling
rolls which lock at ω12 = 0.21 and change to oscillating
hexagons at ω12 = 0.23. By further increasing the control pa-
rameter ω12, they lose their stability to a turbulent structure fol-
lowed by a honeycomb solution. This scan finishes with wavy
rolls and filaments which later break up into cavity solitons.

Also shown in Fig. 4(a) is a reverse scan of the same
instability domain upon decreasing the control parameter,
starting from ω12 = 0.40 and continuing beyond the point
where homogeneous solutions have set in through scan I
(see scan II). The transverse structures begin with regular
rolls, coinciding with filaments of scan I, which change into
honeycombs upon further decreasing the control parameter at
ω12 = 0.36 and then to turbulent structures. We note that for
this scan the sequence of the solutions departs from that of
scan I from the middle of the turbulent structures’ branch, and
it settles in the homogeneous solution attractor after passing a
series of honeycomb solutions. As we see later, the bistability
of honeycomb and hexagonal solutions can explain both the
oscillations in the peak intensity of the hexagonal patterns and
the emergence of turbulent structures at the points where the
trajectories of scans I and II separate.

B. Turing instability with a large critical wave vector

The same is done for the other instability domain using the
large critical wave vector of Kc1 = √

1.6 − θ . We observed an
interval of honeycomb solutions changing into hexagons after
a set of turbulent structures when we increased the control
parameter starting from ω12 = 0.462 (scan I). In the reverse
scan, starting from noise at ω12 = 0.55 and reducing the value
of the control parameter (scan II), we only observed hexagonal
structures forming from ω12 = 0.50 until the homogeneous
state set in again. Figure 4(b) shows the sequence of the
solutions in both scan I and scan II. The bistability between
honeycomb and hexagonal solutions along with the turbulent
range are once more the highlights of this instability domain
and we note that scan II of this domain presents no turbulent
structure. It should be remembered that the properties and
characteristics of all the transverse patterns described here
in the two cases of small and large critical wave numbers,
except for the turbulent structures, have already been well
documented in different contexts (see, for example, [20]).

IV. COMPETITION OF NONLINEARITIES
AND OPTICAL TURBULENCE

Hexagonal structures are common in pattern-forming sys-
tems and they come in two types: positive hexagons, with
triangularly arranged peaks (intensity maxima) on a darker
background; and honeycombs, which are dips (intensity min-
ima) on a brighter background. In systems where a quadratic
term governs the amplitude equations for the order parameter,
the type of hexagons depends on the sign of such nonlinearity
[22–27]. In particular, it has been shown that when spatial
instabilities occur in a finite interval of a control parameter,
the sign of the quadratic nonlinear term and thus the type of
hexagonal structure can be different on opposite ends of the
interval [26,27]. The formation of the two types of hexagonal
patterns at the two ends of an instability interval has also been
investigated in singly resonant parametric oscillators [10].

A. Self-focusing and self-defocusing regimes

For a Kerr medium, just one type of hexagons was observed
in the presence of self-focusing nonlinearities [28–33]. It has
been shown, however, that when moving from a self-focusing
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FIG. 5. Linear and nonlinear refractive indices versus increasing
values of the control parameter ω12. Hatched areas show the
n2 > 0 region where hexagons form; gray shaded areas, honeycombs
of n2 < 0.

to a self-defocusing regime the sign of the quadratic non-
linearity in the amplitude equation changes [25] with a
corresponding change in the type of hexagonal pattern gen-
erated. A straightforward transfer from a self-focusing to a
self-defocusing regime has been demonstrated experimentally
in electromagnetically induced transparency schemes based
on �-type atomic systems [34,35], where a clear change in
sign of the Kerr-nonlinear coefficient n2 was observed when
passing from negative detuning values, δ, to positive ones.

When scanning the control parameter ω12 we observe
regimes dominated by either hexagons or honeycombs. More
interestingly, we observe in both Fig. 4(a) and Fig. 4(b) regions
where hexagons and honeycombs coexist. It is exactly in these
regions where the sign of the Kerr nonlinearity changes and
optical turbulence appears. The change in sign of the Kerr
nonlinear coefficient n2 is shown to occur as a result of the
variations in the population of electrons occupying states |2〉
and |3〉, while the detuning value is fixed and the control
parameter only changes the tunneling rate between states
|1〉 → |2〉. Figure 5 shows that the nonlinear refractive index
crosses 0 and changes sign in two different regions belonging
to the two instability domains.

B. Onset of turbulent structures

When the system changes the sign of its nonlinearity n2,
the solutions pass through a region where turbulent structures
form. In Figs. 6(a) and 6(b), the turbulent regions are shown
in a plot of the wave number of the solutions versus the
control parameter ω12. It is shown that at the two sides of the
turbulence, there are bistabilities and competitions between
two complementary hexagonal structures corresponding to
opposite nonlinearities and having distinct wave numbers.

In Fig. 7, the transverse structures appearing before,
within, and after the regions where the change in sign of n2

takes place are shown. We observe that in both instability
domains, there are turbulent solutions mediating the two

FIG. 6. Wave numbers associated with different solutions in
different scans for the instability domains of (a) small and (b) large
wave numbers. Gray areas depict the turbulent interval in either
domain and the rightward (leftward) arrows show the direction of
scan I (scan II). Note that for scan II in (b) no turbulent structure is
excited.

complementary solutions at the moment of change in the sign
of the nonlinearity.

Bistability between periodic Turing structures is less
common than, for example, bistability or multistability of
homogeneous solutions [15,36]. This is because, in general,
stable Turing patterns are less common than homogeneous
solutions and require their instability. In the case presented here
the bistability is between the two complementary solutions
characterized initially by a relatively large difference in their
wave numbers. When changing the control parameter ω12 in
both instability regions, however, the sizes of hexagons and
honeycombs approach each other and competition for the
same spatial regions ensues. This competition leads to the
formation of turbulent structures characterized by irregular
spatiotemporal dynamics. As shown in Fig. 8 for a simulation
just above the threshold of the pattern bistability when the
complementary pattern solution starts to grow, one single
cell of the hexagonal pattern (i.e., an intensity peak) emerges
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FIG. 7. Transverse structures (a), (d) slightly below, (b), (e)
within, and (c), (f) slightly above the turbulent interval for the small
(top row) and large (bottom row) wave-number instability domains.

in the intensity dip of the more stable honeycomb pattern.
This competition between the two solutions corresponding
to opposite nonlinearities results in the appearance and
disappearance of localized cells of the less stable pattern within
regions of the more stable structure. At the moment of its
appearance (see Fig. 8) the emerging intensity peak pushes the
boundaries of an already present honeycomb cell and creates
a bigger hole. By increasing the control parameter and giving
more strength to the emerging pattern, the number of peaks
pushing away the walls of the background honeycomb pattern
increases, and finally, a collapse of the domain wall separating
the complementary structures takes place. It is here that one
observes the onset of optical turbulence, which persists until
the control parameter reaches a value where the emerging
pattern becomes the dominant one and invades the entire
transverse space.

The phenomenon here is rather different from what typ-
ically happens in fluid dynamics, where turbulent dynamics
is always accompanied by energy transfer between larger
and smaller scales of the motion through breakup of eddies
as a result of a very high Reynolds number (the ratio of
inertial forces to viscous forces within a fluid). This is known

FIG. 8. Left: Widening of the intensity dip in the background
pattern before the appearance of an intensity peak associated with
the emerging pattern. Right: The same cell of the background pattern
containing a peak of the new pattern, which shrinks after a short
time when the emerging peak disappears. This breathing behavior
continues until the control parameter is increased and more of these
breathing cells engage in the competition.

as Richardson cascade in fluid science and leads to a loss
of spatial correlation and to an energy distribution function
known as the Kolmogorov spectrum [37]. The essence of
optical turbulence discussed here, however, corresponds to
a loss of spatiotemproal correlation due to competition of
spatial structures of similar spatial scales but with opposite
nonlinearities. The energy flows between the two unstable
structures and is dissipated via the cavity losses, which depend
on the local value of the field amplitude.

V. TRANSVERSE ROGUE WAVES

It is interesting to investigate the intensity fluctuations when
the hexagonal and honeycomb structures compete with each
other. In the turbulent regime we observe from time to time
the appearance of high-intensity peaks in the transverse plane.
In transverse nonlinear optics, RWs have been described in
optical parametric oscillators and laser systems [10–13] by
extending methods developed for single transverse mode lasers
with injected signals [4,5]. Transverse rogue wave events
are pulses whose peak intensities are above the significant
wave height, which is defined as the average pulse intensity,
〈〈I 〉x,y〉t , plus 4 times the standard deviation, σ , of the intensity
fluctuations [38]. The significant wave height is between 5%
and 10% higher than the more classical definition of the mean
wave height of the highest third of the waves and has been
previously used in optics [5,39]. It has also been compared to
a similar definition that uses the average pulse intensity plus
8 times the standard deviation σ [4,10]. We note that all the
reported cases of transverse RWs in nonlinear optics are related
to active systems with a threshold. Our triple-quantum-dot
molecule device is instead a passive nonlinear optical cavity.
Consequently, we do not require definitions of rogue waves
that are more stringent than the significant wave height as
adopted, for example, in [13], where extremely high events are
due to laser Q-switchings, which are absent in our system. In
Fig. 9 time traces of the maximum intensity, transverse average
intensity, and standard deviation (from top to bottom) are
shown in the left-hand panels for two dynamical evolutions in
the optical turbulence regime (ω12 = 0.359 and ω12 = 0.363,
respectively). The corresponding probability density functions
are displayed in the right-hand panels in Fig. 9.

To characterize the presence of RW events we have fitted
the PDF data with Gaussian and Weibull distributions,

f (x) = a exp

[
−

(
x − b

c

)2
]
, (8)

f (x) = c xb−1 exp[−axb], (9)

respectively (see the solid red and dotted blue lines in the
right-hand panels in Fig. 9). When the control parameter value
is ω12 = 0.359 [Figs. 9(a) and 9(b)], we observe that the
PDF has a Gaussian profile (best-fitting parameters a = 0.983,
b = 1.51, c = 0.31), implying no RW events. As the control
parameter is increased to ω12 = 0.363 [see Figs. 9(c) and 9(d)],
the PDF clearly departs from a Gaussian profile (best-fitting
parameters a = 0.6289, b = −1.14, c = 0.88) and displays a
much longer tail containing pulses that satisfy the RW crite-
rion (Weibull best-fitting parameters a = 31.42, b = −4.98,
c = 0.294).
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FIG. 9. Left: Maximum intensity (blue), transverse average in-
tensity (orange) and standard deviation of the intensity (black)
versus time, respectively, for ω12 = 0.359 and ω12 = 0.363, from
top to bottom. Right: Corresponding PDF histograms for maximum
intensity values. The solid red (dotted blue) line represents the best
fit of the PDF data with a Gaussian (Weibull) distribution. Time is
normalized to the photon lifetime in the cavity.

It is interesting to note that the extreme events that we
observe during turbulence due to pattern competition tend
to correspond to phase jumps of either −π/2 or π/2. In
Fig. 10 we plot the intensities at the peaks versus their
phase values for the turbulent regime without RWs (filled
red circles), for the turbulent regime with RWs (blue circles)
and for the honeycomb structure after the turbulent regime
(green square). In all these cases, the spatial structures are
phase bound, i.e., the phase values have a limited range. The
persistence of phase-bound dynamics in the turbulent regimes
is different from the rotating cases of RWs in defect-mediated
turbulence presented in [11] for lasers with injected signals and

FIG. 10. Intensity versus phase values of the peaks. Filled red
circles, turbulent structure with no RWs at ω12 = 0.359; blue circles,
turbulent structure with RWs at ω12 = 0.363; and green square, stable
honeycomb pattern at ω12 = 0.370.

FIG. 11. The effect of noise on the probability density functions:
(a) ω12 = 0.361 and (b) ω12 = 0.363. The curves represent the best
Weibull fits with (solid red curve) and without (dotted black curve)
noise.

optical parametric oscillators. When approaching the turbulent
regime, the phase of the field tends to span a range between
−π/2 and π/2. In Fig. 10 for ω12 = 0.363, we show that the
maxima of the intensity corresponding to the RW peaks have
either phase π/2 or phase −π/2. The distributions of phase
and intensity values shrink to a small area when moving from
the turbulent regimes to the stationary honeycombs (see the
green square in Fig. 10).

As a final test of the robustness of the turbulent regimes,
we added spontaneous emission noise to the dynamical
equations to see if stochastic terms enhance or inhibit the
occurrence of RWs. We have repeated the simulations for
two control parameter values, ω12 = 0.361 and ω12 = 0.363,
in the presence of spontaneous emission noise of amplitude
10−5 and in the turbulent regime [see Figs. 11(a) and 11(b),
respectively]. The results show that the presence of noise does
not alter the overall picture of rare events very much. However,
we observe that for ω12 = 0.361, in the middle of the turbulent
solutions interval, the addition of noise triggers more RWs, in
contrast to ω12 = 0.363, where they are inhibited by the action
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of noise. This is somewhat expected since the latter lies just
at the end of the turbulent range of solutions and the action
of noise slightly drives the trajectory away towards the stable
attractor belonging to a neighboring regular pattern.

VI. CONCLUSION

The presence of spatiotemporal turbulence is a requirement
for the observation of RWs in transverse nonlinear optics.
Two-dimensional turbulence can have different origins: vor-
ticity [40], underlying integrable dynamics [41], interacting
vortices [11], and spatiotemporal chaos [12,13]. Here we have
demonstrated that competition of transverse patterns through
the simultaneous presence of focusing and defocusing nonlin-
earities first causes optical turbulence and then triggers RWs.

The turbulent states studied here owe their existence to
the coherent manipulation of quantum states originating from
conditions of tunneling-induced transparency in a cavity filled
with molecules of triple quantum dots. This arrangement

leads to a diversity of interesting phenomena including the
simultaneous presence of Turing instability domains with
different growth rates, multistability of steady states, pattern
competition, and dynamical solutions. It is important to stress
that the RWs described here are passive in nature since the
system has no underlying gain or laser action.

We have further investigated the nature, properties, and
robustness of the RWs in terms of probability distribution
functions. Both periodic and turbulent structures are phase-
bound states, with RWs accumulating at phase values of
π/2 and −π/2. We also demonstrated that the presence
of realistic noise has no significant role in the number or
distribution of optical RWs. We believe that the simplicity
and efficiency offered by semiconductor nanostructures for
coherent manipulations of quantum states along with the
complexity of the phase space due to the cavity configuration
make the triple-quantum-dot molecule system studied here
an ideal candidate for the investigation of extreme events in
solid-state devices.
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