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Exact electrodynamics versus standard optics for a slab of cold dense gas
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We study light propagation through a slab of cold gas using both the standard electrodynamics of polarizable
media and massive atom-by-atom simulations of the electrodynamics. The main finding is that the predictions
from the two methods may differ qualitatively when the density of the atomic sample ρ and the wave number
of resonant light k satisfy ρk−3 � 1. The reason is that the standard electrodynamics is a mean-field theory,
whereas for sufficiently strong light-mediated dipole-dipole interactions the atomic sample becomes strongly
correlated. The deviations from mean-field theory appear to scale with the parameter ρk−3, and we demonstrate
noticeable effects already at ρk−3 � 10−2. In dilute gases and in gases with an added inhomogeneous broadening
the simulations show shifts of the resonance lines in qualitative agreement with the predicted Lorentz-Lorenz
shift and “cooperative Lamb shift,” but the quantitative agreement is unsatisfactory. Our interpretation is that the
microscopic basis for the local-field corrections in electrodynamics is not fully understood.
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I. INTRODUCTION

With laser cooling and trapping and evaporative cooling, it
is now experimentally possible to prepare what is arguably
the most elementary medium for light propagation, atoms
effectively at standstill. More specifically, a cold enough gas
presents what according to the long-standing terminology of
laser spectroscopists is a homogeneously broadened medium;
the atoms move only a small fraction of the wavelength
over the time it takes their internal state to relax to steady
state. Each atom in the sample is subject not only to the
driving light but also to the light sent by all other atoms.
On the microscopic level this makes the problem of light
propagation in the medium a major challenge. This subject
is obviously very old, but cold atomic samples afford an
opportunity for experiments in unprecedented regimes and in
unprecedented detail. Correspondingly, new experiments are
emerging rapidly [1–10]. The measurements of the optical
response have been dominated by trapped inhomogeneous
atomic ensembles, but also those with atoms confined in a
slab geometry are emerging in increasing numbers in both
thermal vapor cells using a hot gas [11] and in the ultracold
regime [12].

On the theoretical side, there is the old idea that one could
solve the problem of light propagation in a medium on an
atom-by-atom basis directly numerically [13]. The growing
throughput of computers available to researchers is making
such a plan practical. These methods, whether called classical-
electrodynamics simulations or coupled-dipole simulations,
are now a routine theoretical tool [2,4,7,8,14–26]. Closely
related numerical techniques based on the analysis of the
eigenstates of the coupled system of the light and the atoms
[15,27–32] or density matrices and quantum trajectories
[33–35] are also widely used today. Other ideas drawn from
the theory of radiative transfer [36,37] and multiple scattering
[38,39], enhanced with numerics, also have potential to make
inroads into the questions about light propagation in atomic
media [40].

The present work started with our chance observation
in numerical light propagation simulations that the density-
dependent Lorentz-Lorenz (LL) shift of the atomic resonance
[41], a quintessential local-field correction, is absent in
cold, dense atomic samples [17]. Delving into the problem
deeper, we discovered that the standard electrodynamics of
polarizable media (EDPM) [42,43] and the resulting standard
optics may fail qualitatively in cold, dense atomic samples
[17,18]. However, adding inhomogeneous broadening that
mimics the Doppler shifts of thermal atoms restored the
behavior of standard EDPM. Along the way we made a
number of additional qualitative and quantitative observations.
Among others, in our analysis it emerged that the so-called
“cooperative Lamb shift” in a slab of atomic matter [44] can
be explained in standard EDPM as an etalon effect due to the
reflections of light from the faces of the slab of matter.

In retrospect the issues with the EDPM are not much
of a surprise, as EDPM is an effective-medium mean-field
theory (MFT) and is bound to fail when the light-mediated
dipole-dipole interactions make the atomic sample strongly
correlated. This MFT treats the radiative interactions between
the atoms in the average sense, and the position-dependent
correlations of the pointlike atoms are lost—even when the
system is entirely classical without any quantum effects. The
inhomogeneous broadening washes out these correlations,
which explains the validity of the standard MFT phenomenol-
ogy in such systems [17] and indicates that the usual EDPM
is an emergent phenomenon where strong correlation effects
are suppressed by thermal motion or dissipation. The origin of
macroscopic electromagnetism from microscopic principles
consequently is inherently related to the meaning of coop-
erative light-atom interactions [18,40] and the limits of the
predictive power of EDPM.

In this follow-up paper we add technical details and results
and discussions that illuminate, support, and expand on the
observations in Refs. [17,18]. We begin in Sec. II by reviewing
the theoretical basis of our classical-electrodynamics simula-
tions. This is considerably expanded from the descriptions
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in Refs. [17,18]. In Sec. III we discuss concepts such as
coherent and incoherent scattering and cooperative line shifts
and linewidths by presenting analytically solvable examples
that were not covered in Refs. [17,18]. Even if the examples
are simple, they demonstrate the subtlety of the concept
of cooperation. The core of the present paper, however, is
about the comparison of the EDPM solutions and numerical
simulations of the response of a gas of atoms confined to a slab
to light at normal incidence. What exactly is involved here is
explained in Sec. IV. In this section we have expanded the
results and discussion of Refs. [17,18] on how the numerics
is implemented, on the fluctuations of incoherently scattered
light, and on the differences between the full MFT and the
“cooperative Lamb shift” that represents a low-density limit of
the MFT. The remaining Secs. V and VI present and discuss the
results, also illustrating explicitly a difference between sample
density and optical thickness that we were not able to address
cleanly before.

II. BACKGROUND

The purpose of the present Sec. II is threefold. First we
briefly summarize our fully quantum mechanical approach
to light-matter interactions as in Refs. [45,46], especially
as it comes to a hierarchy of equations of motion for the
correlation functions that involve polarization of the atoms
and densities of the atoms in different points in space. Second,
following Ref. [13], we explain how and in what sense we may
solve the hierarchy for the correlation functions numerically
using classical-electrodynamics simulations. Third, both in our
numerical computations and in the discussions of this paper
we almost exclusive use certain natural units for microscopic
theory of light propagation in dipolar samples. We conclude
by introducing these units.

A. Quantum theory of light propagation in dipolar medium

Our approach [45] begins with the boson field operators
for ground-state and excited-state atoms ψg(r) and ψe(r). The
labels g and e implicitly include the Zeeman state labels of
the angular-momentum degenerate energy levels. We adopt a
summation convention whereby repeated indices g and e in a
product are summed over. Since we always deal with pairs of
atom field operators, we believe that our scheme is also valid
for fermionic atoms.

The atoms are coupled to the quantized electrodynamic
field via the dipole interaction. We deviate from the dominant
practice in that we adopt the Power-Zienau-Woolley viewpoint
[47–49], whereby the primary quantized variable having to do
with the electromagnetic field is the electric displacement D̂
not the electric field Ê. The result is a quantum field theory that
in appearance closely resembles the usual EDPM. However,
here we deliberate phrase our arguments in terms of the electric
field.

To begin with, we have the positive-frequency part of the
polarization operator for the atoms

P̂(r) = dgeψ
†
g(r)ψe(r), (1)

where dge are the dipole moment matrix elements. If there is a
difference between positive- and negative-frequency parts of

the quantity in question, we write down the positive-frequency
part without further comment. Correspondingly, when we
consider analogous classical quantities, we always assume a
dominant frequency of the driving light ω in the problem, so
that a classical counterpart of a positive-frequency part of a
quantity may be written as, say, 〈P̂(r,t)〉 = e−iωtP(r,t), where
P(r,t) now assumedly varies little over the time scale ω−1.
We then express the classical polarization (and electric field,
and dipole moment, and so on) in terms of the slowly varying
part P(r,t) without further ado. The physical polarization, a
real quantity, is 1

2 [P(r,t)e−iωt + c.c.]. This convention is, of
course, deeply ingrained in optical physics and quantum optics.

In analogy to classical electrodynamics, the electric field
operator is related to the polarization operator by

Ê(r) = Ê0(r) +
∫

d3r ′ G(r,r′)P̂(r′), (2)

where Ê0 ≡ D̂0/ε0 is the electric field in the absence of matter,
and G(r,r′), a 3 × 3 matrix, is the dipole propagator such that
G(r,r′)d is the electric field at r from an oscillating dipole
moment d at r′ [42,43]. The dipole propagator should also
include a singular term − 1

3δ(r − r′)/ε0 [42] in order for (2) to
be the integral representation of the correct Maxwell’s wave
equation, although its presence in the equations of motion for
matter is a subtle matter [46] to which we briefly return later.
Integrals involving G are typically not absolutely convergent
either at small or large |r − r′|. The values of such integrals
depend on how they are done. These types of ambiguities are
widespread in the theory of the electrodynamics of dipolar
media, and are often difficult to resolve. This is one of the
reasons why we think that one should be suspicious of any and
all “physical” approximations in this field.

One can have the electric field radiated by matter fall back
on the matter and change the atomic dipole moments, hence
polarization. The self-field giving rise to radiation reaction
and transition linewidths can be handled with the Markov and
Born approximations of quantum optics as usual, but otherwise
the ensuing operator equations are (most likely) impossible to
solve directly. Instead we go to expectation values.

Here we proceed under the limit of low light intensity, only
keeping the leading nontrivial contribution in the strength of
the incoming field Ê0, and specialize to the case when the
angular momenta of the levels are Jg = 0 and Je = 1; cf.
Ref. [50]. Specifically, introduce normally ordered correlation
functions for ground-state density and correlations between
polarization and ground-state density as

ρ1(r1) = 〈ψ†
g(r1)ψg(r1)〉 ≡ ρ(r1),

ρ2(r1,r2) = 〈ψ†
g(r1)ψ†

g(r2)ψg(r2)ψg(r1)〉,
. . . ; (3)

P1(; r1) = 〈P̂(r1)〉 = 〈dgeψ
†
g(r1)ψe(r1)〉 ≡ P(r1),

P2(r1; r2) = 〈ψ†
g(r1)P̂(r2)ψg(r1)〉,

P3(r1,r2; r3) = 〈ψ†
g(r1)ψ†

g(r2)P̂(r3)ψg(r2)ψg(r1)〉,
. . . . (4)
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A rigorous quantum mechanical analysis [45] finds a hierarchy
of equations of motion for these expectation values beginning
with

Ṗ(r1) = (i� − γ )P(r1) + iζE0(r1)ρ(r1)

+ iζ

∫
d3r2G(r1,r2)P2(r1; r2), (5)

Ṗ2(r1; r2) = (i� − γ )P2(r1; r2) + iζE0(r2)ρ2(r1,r2)

+ iζG(r2,r1)P2(r2; r1)

+ iζ

∫
d3r3G(r2,r3)P3(r1,r2; r3), (6)

Ṗ3(r1,r2; r3) = (i� − γ )P3(r1,r2; r3) + iζE0(r3)ρ3(r1,r2,r3)

+ iζG(r3,r1)P3(r2,r3; r1)

+ iζG(r3,r2)P3(r1,r3; r2)

+ iζ

∫
d3r4G(r3,r4)P4(r1,r2,r3; r4), (7)

and continuing along these lines all the way up to the order
equal to the number of the atoms N . Here the detuning
� = ω − ω0 is the difference of the frequency of the driving
light ω from the atomic resonance frequency ω0 and γ is
the HWHM linewidth of the transition. Further, we have ζ =
D2/h̄, where D is the reduced dipole matrix element related to
the linewidth and the wave number of resonant light k0 = ω0/c

by

γ = D2k3
0

6πh̄ε0
. (8)

In the usual way we assume that the incoming quantum light
is in a coherent state, and replace it with the classical electric
field E0.

Let us factor in Eq. (5) the second-order correlation function
P2 as in

P2(r1; r2) = ρ(r1)P(r2). (9)

The resulting approximate equation,

Ṗ(r1) = (i� − γ )P(r1) + iζE0(r1)ρ(r1)

+ iζρ(r1)
∫

d3r2G(r1,r2)P(r2), (10)

tells us that the polarization at r1, basically the dipole
moment of an atom at r1, evolves under the joint influence
of the incoming field and the electric field radiated from
the polarization of the atoms, as if the atoms were smeared
out continuously in space. This is an effective-medium
MFT. Moreover, it is easy to see in explicit examples
that this MFT is the same as the standard EDPM for the
atoms.

The equation of motion of the second-order correlation
function P2(r1; r2) has a similar structure except for one crucial
point, the term on the right-hand side ∝P2(r2; r1). This is the
effect of the dipolar field of the atom at the position r1 on the
atom at r2. The equation for P2(r2; r1) has an analogous term,
effect of the dipolar field of the atom at the position r2 on the
atom at r1. This is our first glimpse of recurrent scattering,
repeated photon exchange between a group of atoms—in this

case, two atoms. The equation for the correlation function
P3(r1,r2; r3) similarly exhibits recurrent scattering between
atoms at r1, r2, and r3, and so forth.

We also argued in Ref. [46] essentially as follows: First,
assume that the density equals a constant ρ, and all position
correlations factor as ρn = ρn. Second, state an ansatz for
all position-polarization correlations Pk(r1, . . . ,rk−1; rk) =
ρk−1P(rk). Third, ignore all recurrent-scattering cross terms
such as the direct coupling of P2(r2; r1) to P2(r1; r2). Then P(r)
from Eq. (10) gives the exact solution to the entire hierarchy
of the equations of the correlation functions. While this was
not claimed in Ref. [46], we believe that the same argument is
valid even if the density is not constant as long as all density
correlation functions factorize to a product of one-particle
densities. Thus, there would be two possible reasons for
beyond-MFT effects: repeated exchange of photons between
the atoms (recurrent scattering), and preexisting correlations
in the positions between the atoms.

Another mathematical point we made in Ref. [46] about the
cross terms runs as follows: Since the dipolar kernel G(r1,r2)
diverges for r1 = r2, it follows from (the steady-state version
of) Eq. (6) that P2(r1; r2) tends to zero when r1 and r2 tend to
the same value, and this observation is independent of whether
the delta function divergence is present in G(r1,r2). Therefore
the delta function divergence in G, if any, should have no effect
on P(r1) solved from Eq. (5). By an analogous argument, the
delta function divergence has no effect on P2(r1; r2), and so
forth. In short, any delta function divergence in G should have
no effect on the polarization of the gas. This observation is,
coincidentally, compatible with the physical notion that it is
impossible to overlay two atomic dipoles exactly, so the delta
function in G should never fire. Put mathematically, the actual
position correlations ρk for k � 2 should tend to zero when
any two of the positions get close. One then surmises from the
hierarchy that all correlation functions Pk for k � 2 have the
same property.

Given the solution to the hierarchy of the equations of the
correlation functions, one may obtain the expectation value of
the electric field E(r) = 〈Ê(r)〉 from Eq. (2),

E(r) = E0(r) +
∫

d3r ′ G(r,r′)P(r′). (11)

Notably absent from the formulation is the motion of the
atoms. At the quantum level one may treat the center-of-mass
motion of the atoms as a quantized degree of freedom, as one
often does in the theory of the mechanical effects of light. We
have not done so, however, as the ensuing theory would be
cumbersome and opaque. The point to remember here is that
the motion of the atoms, forces of light, and effects of photon
recoil are all ignored in our present analysis.

B. Classical-electrodynamics solution for light propagation

Obviously it is in general impossible to solve the hierarchy
for polarization correlation functions starting with Eqs. (5)–
(7), and so on, directly numerically. The present subsection
is mostly a brief summary of Refs. [13,50] that develop
a work-around. The idea is that, just as one might solve
a Fokker-Planck equation (diffusion equation) numerically
using stochastic Langevin equations for individual particles
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[51], one may solve for the polarization correlations using
stochastic classical-electrodynamics simulations.

Consider a gas of N atoms. The simulations start with
generation of random positions X1, . . ., XN for the atoms in
such a way that the positions are drawn from the probability
distribution that gives the prescribed density correlations
ρk . Incidentally, the normally ordered quantum correlations
correspond to the properly defined classical density correlation
functions for pointlike particles from which the singularities
corresponding to counting of the same particle more than once
have been eliminated. For instance, the classical two-particle
correlation function would be the stochastic average

ρ2(r1,r2) =
〈∑

i �=j

δ(r1 − Xi)δ(r2 − Xj )

〉
, (12)

where the restriction i �= j removes the singularity.
Four cases of atomic probability distribution have been

relevant in our work. First, we deal with classical atoms that
are assumedly distributed completely independently of one
another with the given density ρ(r). This strictly speaking
cannot be true, as, for instance, atoms attract or repel each
other at short distances, and the positions of the atoms may
also be correlated on the length scale of the thermal de Broglie
wavelength. However, we assume that the characteristic
distance between the atoms is much larger than correlation
lengths of this kind. Second, maybe paradoxically, the same
independent-atom model applies as the leading approximation
also to the Bose-Einstein condensate. Third, atoms confined in
optical lattices provide structured arrays where the positions
of atoms in the Mott-insulator states can be sampled [15,22].
Fourth, we have also done one-dimensional simulations of a
noninteracting one-component Fermi gas at zero temperature
[13,52]. The joint probability density for the positions of the
atoms is then given by the absolute square of the many-body
wave function, a Slater determinant. The characteristic feature
of the Fermi-Dirac statistics is that the atoms tend to avoid
each other, and end up with more evenly spaced positions than
classical atoms. Atoms with this position distribution may be
sampled using the Metropolis algorithm.

Given the positions of the atoms, corresponding to the
hierarchy for the correlation functions, we next have the
equations of motion for the dipole moments of the atoms.
Denoting the positions of the dipoles explicitly, we have

ḋ(Xi) = (i� − γ )d(Xi) + iζE0(Xi)

+ iζ
∑
j �=i

G(Xi ,Xj )d(Xj ). (13)

The dipole at Xi is driven by the external field E0 and by the
dipolar fields from all other atoms. This may be seen even
more graphically from the steady-state version of Eqs. (13),

d(Xi) = α

⎛
⎝E0(Xi) +

∑
j �=i

G(Xi ,Xj )d(Xj )

⎞
⎠, (14)

where

α = − ζ

� + iγ
= −D2

h̄

1

� + iγ
(15)

is the polarizability of an atom—in fact, the well-known
polarizability of the proverbial two-level atom at low light
intensity. In the present case the steady-state dipole moment
aligns with the net field at the position of the atom. This
isotropy is because of our underlying assumption of the Jg =
0 → Je = 1 transition. However, for other types of transitions
[53] the appropriate polarization tensor αij could be defined
such that the relation between the vector components of the
dipole moment and the electric field reads di = ∑

j αijEj .
In the present paper we deal solely with the steady-

state version of the theory, Eqs. (14). These are a closed
inhomogeneous set of linear equations for the dipole moments,
or, thinking about it in another way, for the electric fields at
the positions of the dipoles E(Xi):

E(Xi) = E0(Xi) + α
∑
j �=i

G(Xi ,Xj )E(Xj ). (16)

Given a sample of the positions of the atoms, we solve these
equations numerically for E(Xi). Regarding the analogy to
solving diffusion equations using particle simulations, this
solution would be the counterpart of a stochastic trajectory
obtained from the Langevin equation.

In the end we are interested in the total electric (and possibly
also magnetic) field everywhere in space. It is formally given
by

E(r) = E0(r) + α
∑

j

G(r,Xj )E(Xj ) (17)

everywhere except at the exact positions of the atoms, where
we have a divergence in the dipolar kernel. In an indirect way,
even this divergence has been taken into account: The dipolar
field acting back on the atom that sends the field is formally
infinite, but the action of this self-field is already included in
the damping rate γ , and the associated level shift (Lamb shift)
is incorporated into the energies of the levels. We also caution
that the electric field as in Eq. (17) is not necessarily the most
practical quantity to calculate. We return to this point below in
Sec. IV B.

The remaining step in the simulations is to repeat the
process for a large number of samples of the atomic positions,
and average the results. In the limit of an infinite number
of samples, the stochastic average of, say, the electric field
converges to the corresponding quantum mechanical average
that would be obtained by solving the entire quantum hierarchy
for the correlation functions.

Several analyses assuming that there is at most one photon
present at any time [16,30,54,55] also in effect show that in
the limit of low light intensity quantum theory of light-matter
interactions reduces to classical electrodynamics. There has
been an argument along these lines that found some deviations
from the standard EDPM [56]; specifically, a result that was
traditionally thought to apply for the displacement was derived
for the electric field. We emphasize, though, that by strictly
following the Power-Zienau-Woolley procedure [47–49], with
the inclusion of the polarization self-energy, we got results that
were in complete agreement with the structure of the usual
EDPM [45]; compare Eq. (13) of Ref. [45] and Eq. (14) of
Ref. [56] with Eq. (31) of Ref. [56]. There are also caveats to
the quantum-classical agreement, cases such as 1D nanofibers
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or photonic crystals [57,58] in which the atom-field coupling
can be so strong that one photon may saturate an atom. We will
not analyze such situations any further in the present paper.

From this point on we leave quantum mechanics behind,
and pretend that the electrodynamics of the dipolar medium
is, in fact, entirely classical. For instance, for any given atomic
sample we find the electric field which we may average over
many samples to get the averaged field. Likewise, given the
electric field, we square it, average, and obtain the average
of the square of the electric field, which is an intensity-like
quantity. This is not a trivial point in quantum mechanics:
If we were to compute the quantum average of Ê†(r) · Ê(r)
exactly from quantum mechanics, we would in principle have
to do something like develop a hierarchy of equations for
some other correlation functions than those we have dealt with
so far, and, if possible, develop a corresponding simulation.
The difference between the quantum mechanical average of
the square of the quantum field and the classical average of the
square of the classical field is in the quantum fluctuations.

Nonetheless, we do not expect significant quantum fluc-
tuations in the kind of situations we consider here. In fact,
for a model atom such as ours, in the limit of low light
intensity, there are no quantum fluctuations in the scattered
light. We may have an issue for instance if the light intensity
is increased, or if more than one electronic Zeeman ground
state is involved [50,59], although observing such quantum
fluctuations typically requires delicate experimental setups.

C. Units and conventions

All numerical computations described here were done in
units such that the numerical values

k = c = h̄ = 1

4πε0
= 1 (18)

apply. Here k = ω/c is the wave number of the driving light.
For parameters typical in laser spectroscopy the difference
between the wave number of the driving light and of resonant
light k0 = ω0/c is negligible, and we henceforth ignore it. The
unit of length k−1 is related to the wavelength of the driving
light by k−1 = λ = λ/2π , and the unit of quantities such as
area and density follow accordingly. Below all discussions are
in these units, unless explicitly stated otherwise.

For a dipole d at r0, the electric and magnetic fields of
dipole radiation at position r are

E(r) = G(r,r0)d, B(r) = H(r,r0)d, (19)

where G is again the dipolar field propagator, and H gives
the magnetic field from a dipole. Expressed in Cartesian
coordinates, these are matrices with the components

Gij (r,r0)

= êi ·
{

(n̂ × êj ) × n̂ + [3n̂(n̂ · êj ) − êj ]

(
1

r2
− i

r

)}
eir

r
,

(20)

Hij (r,r0) = êi · n̂ × êj

(
1 − 1

ir

)
eir

r
. (21)

Here r and n̂ are the distance from the source point to the
field point and the unit vector directed from the source point to
the field point, and êi are the Cartesian unit vectors. We have
dropped the contact term in Eq. (20) as we here observe the
light outside the sample, and in the interactions between the
atomic dipoles it is inconsequential [46]. The relation between
the positive frequency parts of the electric and magnetic fields
reads

B(r) = −i ∇ × E(r), (22)

and the energy density and Poynting vector at the given field
position are

E = 1

16π
(E · E∗ + B · B∗), (23)

S = 1

8π
Re[E × B∗]. (24)

Another convention here is that, by default, we express the
detuning in units of the linewidth of the transition,

� = δγ, (25)

with the dimensionless detuning δ. Be virtue of Eq. (8) and
our conventions, the relation between dipole moment matrix
element and linewidth reads

D =
√

3γ

2
, (26)

and the polarizability (15) is

α = −3

2

1

δ + i
. (27)

Assuming a single atom at the origin and an incoming
field with the vector amplitude E0, one may straightforwardly
obtain the dipole moment, the electric and magnetic fields, the
Poynting vector, and finally the radiated power. The result, a
useful reference, is

P = |α|2|E0|2
3

= 3|E0|2
4(1 + δ2)

. (28)

The intensity of the incoming plane wave is

I0 = 1

8π
|E0|2. (29)

Writing the radiated power in terms of the intensity and the
scattering cross section σ as P = σI0, we find

σ (δ) = 8π

3
|α|2 = 6π

1 + δ2
. (30)

The on-resonance light scattering cross section therefore is
σ (0) = 6π .

Except for being a practical method, our scaling also
constitutes a dimensional analysis of the problem of atoms
interacting with near-resonance light. We have no dimensional
parameters left, and all dimensionless constants of the theory
are on the order of unity. This shows that the wavelength of the
driving light, and maybe even more so the wavelength divided
by 2π , λ = 1/k = λ/2π , provides the relevant scale for length
and derived quantities such as area, volume, and density.
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III. SIMPLE EXAMPLES

In this section we discuss independent-atom response and
cooperative response to light in simple analytically solvable
cases. The main outcomes are two. First, we demonstrate
the difference between coherent and incoherent scattering.
Second, we show how even the seemingly starkly contrasting
concepts of cooperativity from Dicke states and radiation from
independent atoms may be difficult to tell apart. Our point
here is that the precise delineation between independent-atom
response, MFT, and cooperative and collective behavior is
not entirely straightforward even in theory, let alone in
experiments. We also introduce several pieces of optical
physics that are absent from the present simplest models,
but might well figure in real experiments and complicate the
interpretation of simulation results.

A. Radiation from a Gaussian cloud of atoms

1. Continuous medium

For the problem of N -atom gases, let us start with a
hypothetical model with a continuous spatial distribution of
atoms. In terms of macroscopic electromagnetism, there is a
monochromatic polarization of the sample P(r) = ρ(r) d(r),
where ρ(r) is the density of the sample and d(r) is the electric
dipole of an atom at the position r. Taking the atoms to
reside around the origin of the coordinates, in the far field at
the distance r � 1 and with r much larger than the size of the
sample, the terms ∝1/r2 and ∝1/r3 in Eq. (20) are negligible
and the field radiated (“scattered”) by this polarization is

ES(r) � eir

r

∫
d3r ′ e−ir̂·r′

ρ(r′) [r̂ × d(r′)] × r̂ ; (31)

r̂ = r/r is the unit vector that points from the source at �0
toward the field point at the distance r .

For easy analysis, we model the density with a Gaussian,

ρ(r) = 3
√

3N

2
√

2π3/2R3
e
− 3r2

2R2 , (32)

where N is the atom number and R is the size scale of the
sample. The parametrization is chosen in such a way that the
rms value of |r| equals R. In the limit R � 1 there will be a
narrow cone of radiation around the direction of the incoming
beam; let us denote the angle from the incident beam by θ .

For a tangible example we take a σ+ circularly polarized
plane wave propagating in the z direction, writing

E0(r) = E0 eiz ê+, ê+ = − 1√
2

(êx + iêy). (33)

The assumption is that the incoming light dominates even
inside the sample, i.e., that each atom responds to the incoming
light only. Accordingly, we write the dipole moment of an atom
at r as

d(r) = αE0(r) = αE0 eiz ê+. (34)

The radiated field from Eq. (31) is then

ES(r) = αNE0e
ir− 1

3 R2(1−cos θ)

r
[(r̂ × ê+) × r̂]. (35)

In the far field the light locally makes a plane wave, the Poynt-
ing vector points radially outwards and has the magnitude

SS(r) = |ES |2
8π

= |α|2N2E2
0e

− 2
3 R2(1−cos θ)(1 + cos2 θ )

16πr2
,

(36)

and the total power in the radiation is readily obtained as

PS =
∫

d2�r2 SS(r)

= 3|α|2N2E2
0

[
(4R4−6R2+9)−e− 4R2

3 (4R4+6R2+9)
]

32R6
.

(37)

The intensity of the scattered light scales with the square of the
atom number, N2. This is similar to an important characteristic
of superradiance. However, it is early for conclusions yet.
Instead, we will next inspect a more realistic problem with
discrete atoms.

2. Independent discrete radiators

Take a collection of N identical dipoles sitting at the
positions ri in the incoming field, and assume that each of
these dipoles radiates a field Ei(r) independently. In other
words, we again assume that only the incoming field E0(r)
drives each dipole. In terms of scattering theory, one might say
that a photon scatters from an atom at most once, so this model
is occasionally called the single-scattering approximation.

The total dipolar field at the point r is

ES(r) =
∑

i

Ei(r), (38)

with

Ei(r) = α G(r,ri)E0(ri). (39)

In the far field the radial component of the Poynting vector is

SS(r) = 1

8π
ES(r) · E∗

S(r)

= 1

8π

∑
i,j

Ei(r) · E∗
j (r). (40)

We take the position of each atom to be a random variable
independent of the positions of the other atoms, governed
by the probability density function f (r). Then the average
outward energy flux (average over many samples of the gas)
is determined from

8πS̄S =
〈∑

i �=j

Ei(r) · E∗
j (r) +

∑
i

Ei(r) · E∗
i (r)

〉

=
∑
i �=j

〈Ei(r)〉 · 〈E∗
j (r)〉 +

∑
i

〈Ei(r) · E∗
i (r)〉

= N (N − 1)|〈Ei(r)〉|2 + N〈Ei(r) · E∗
i (r)〉. (41)

The first term represents coherent scattering, as if the atom
was spread out to a continuous dielectric material with the
spatial shape specified by f (r). It arises from adding the fields
of different radiators, and is essentially proportional to N2.
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The second term ∝N is for incoherent scattering, the sum of
the intensities radiated by the individual atoms. It is present
because the gas is not a continuous (nonfluctuating) dielectric
medium, but consists of discrete scatterers.

Incidentally, while the above argument might not be as
widely known as it deserves to be, the basic message is far from
novel. If air were a continuous dielectric medium, it would not
scatter sunlight sideways and the sky would be black. The blue
sky comes from incoherent scattering that results because air
consists of discrete molecules. This observation goes back to
(at least) Lord Rayleigh [60].

For a comparison, we apply the same incoming light as in
Eq. (33), and the position distribution for each atom is taken
to be the same Gaussian,

f (r) = 3
√

3

2
√

2 π3/2R3
e
− 3r2

2R2 . (42)

Given the usual polarizability α, the far field (the 1/r part of
dipole radiation) averaged over the positions of an atom, the
absolute square of the former, and the absolute square of the
field averaged over the positions give

〈Ei(r)〉 = αE0e
− 1

3 R2(1−cos θ)[(r̂ × ê+) × r̂]
eir

r
, (43)

|〈Ei(r)〉|2 = |α|2|E0|2[3 + cos(2θ )]e− 2
3 R2[1−cos θ]

4r2
, (44)

〈|Ei(r)|2〉 = |α|2|E0|2[3 + cos(2θ )]

4r2
, (45)

and the total radiated power becomes

PS = |α|2|E0|2
3

⎛
⎝N (N − 1)

9
[
(4R4 − 6R2 + 9) − e− 4R2

3 (4R4 + 6R2 + 9)
]

32R6
+ N

⎞
⎠. (46)

The part ∝N (N − 1) in Eq. (46) is the same as it would
be for the continuous atom density in Eq. (32), except for the
factor of N (N − 1) instead of N2. In the forward direction
θ = 0, the intensities of coherently and incoherently scattered
components of light add up to exactly N2 times the intensity
from a single atom. The bigger is the sample, the narrower is
the cone in the direction θ � 0 for coherent scattering. This
aspect is demonstrated in Fig. 1. The sample acts as an antenna
that directs the radiation in the forward direction. The total
power of scattered light decreases with increasing size of the
cloud.

Conversely, in the limit R → 0 the intensity in all directions
is enhanced by the factor N2, and of course so is the total
power. Given the well-known Dicke cooperative regime, a
reader might erroneously interpret such an enhancement as a
cooperative phenomenon. It cannot be, since in this example
we have simply added the fields from independent radiators.

B. Radiation from two atoms

For two atoms (or ions, as things might be) the radiation
field can be solved explicitly, and there have even been

FIG. 1. Radiation patterns for a Gaussian cloud with N = 4, R =
0.1 (left), and R = 10 (right) in the single-scattering approximation.
The propagation direction of the driving light z is along the long axis
of the radiation patterns. The scale is arbitrary but the same for both
figures, so the total power is obviously much larger for the cloud with
the smaller radius 0.1.

experiments already a while ago [61,62]. We discuss as an
example the special case when a plane wave polarized in the x

direction and propagating in the z direction strikes two atoms
sitting on the x axis separated by the distance �. Specifically,
we have the incoming field and the two positions for the dipoles

E0(r) = E0 êx eiz, r± = ± 1
2 � êx. (47)

In this case the fields at the positions of the dipoles as solved
from Eqs. (16) are

E(r±) = �3

�3 + 2iα�ei� − 2αei�
E0 êx. (48)

Since the dipolar field diverges with decreasing distance from
the dipole, one might expect that the fields at the positions
of the dipoles should diverge when the dipoles approach one
another. However, the exact opposite holds true: For a fixed
detuning and hence fixed polarizability α, E(r±) actually tend
to zero as �3 when the distance � between the dipoles tends
to zero. Maybe counterintuitively, when the detuning is kept
constant and the atoms approach each other, they decouple
from the light altogether [53]. That is why we are not overly
concerned about some atoms being close to one another in the
steady-state numerical simulations.

Fixed detuning, however, may not be the most useful way
of viewing the result. Instead, we insert the explicit expression
of the polarization. In this Sec. III B only, we find it expedient
not to scale the detuning to the linewidth γ , and write

E(r±) =
{

1 + 3γ ei�(1 − i�)/�3

−�(�) − iγ (�)

}
E0 êx ; (49)

�(�) = � + 3

[
cos(�)

�3
+ sin(�)

�2

]
γ,

γ (�) =
[

1 + 3 sin(�)

�3
− 3 cos(�)

�2

]
γ. (50)
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FIG. 2. Normalized radiation patterns P (θ ; �) sin θ for two
dipoles for the distances between the dipoles � = 0, π, 2π,3 π,4 π ,
and 20π (left to right). These are polar plots for θ ∈ [0,π ], with
the common direction of the dipoles and the separation between the
dipoles denoted by the arrow in the � = 0 graph.

This shows our first instance of cooperative shift and
broadening of the resonance of the atoms as a result of the
radiation from one dipole falling on the other. The sines
and cosines originate from retardation, propagation delay
of light between the atoms. In the limit � → 0 we have the
expansions, keeping the leading terms,

�(�) − � � 3γ

�3
, γ (�) � 2γ. (51)

The shift �(�) − � diverges as �−3, which clearly reflects the
dipole-dipole interactions between the atoms. It is this shift
that leads to the decoupling of two closely spaced atoms from
the light. On the other hand, the linewidth doubles.

Moving on to the energy flux in the far field and to the
radiated power, we find after some tedious mathematics the
expressions

SS = 9γ 2|E0|2 cos2
[

1
2� cos(θ )

]
sin2(θ )

8π [�(�)2 + γ (�)2]r2
, (52)

PS = 3γ γ (�)|E0|2
2[�2(�) + γ 2(�)]

. (53)

The angular distribution of the radiation, normalized in such a
way that

∫ π

0 dθ sin θ P (θ ) = 1, reads

P (θ ; �) = 3γ

2γ (�)
cos2

[
1

2
� cos(θ )

]
sin2(θ ). (54)

This shows the dipole radiation pattern modulated by the
interference of the radiation from the two dipoles; see the
demonstration in Fig. 2. For � = 0 we have the usual dipole
radiation. With increasing � the interference first concentrates
the radiation more to the θ = π plane perpendicular to the
dipoles. With increasing � the side lobes grow numerous, and
the overall angular distribution pattern rounds out.

As to the radiated power, the difference of the laser fre-
quency from the atomic resonance shifted by the cooperative
effects is the true gauge of the detuning. We momentarily
assume that this shift of reference point is implicit in the
expression of the power in the two-atom radiation PS , and
simply replace �(�) → �. On the other hand, if there were
no cooperative effects or interference between the radiations
from the two dipoles, the total power would be twice the
power radiated by one dipole under the same driving field.
The ratio of the actual two-atom power and the power from

two independent dipoles

C = PS(N = 2)

2PS(N = 1)
= γ (�)[�2 + γ 2]

γ [�2 + γ 2(�)]
(55)

is a quantitative measure for the effects of the presence of two
dipoles. In the limit � → ∞, γ (�) → γ , and we have C → 1,
as expected; the radiated powers from the two dipoles simply
add.

The situation is more intriguing in the opposite case � → 0
with γ (�) → 2γ , and the nature of the result depends in an
interesting manner on the detuning. With |�| � γ , we have
C � 2, and the two-atom sample radiates twice as much power
as two separate atoms would. If |�| � γ , we have C � 1

2 .
This means that on resonance the two atoms together emit the
same power as one atom would. In fact, in the limit � → 0 the
radiated power can be expressed at all detunings as

PS = 3|E0|2
4{[�/2γ ]2 + 1} , (56)

as if we had a single dipole with the dipole moment matrix
element equal to

√
2 times the original dipole moment matrix

element, hence the linewidth 2γ . Now, if the two dipoles were
at the same place but completely independent, the total induced
dipole moment would be twice the dipole moment induced
on one atom. But the induced dipole moment is proportional
to the square of the dipole moment matrix element, hence
the multiplier

√
2 in the dipole moment matrix element is

consistent with the notion of independently radiating atoms.
There is a similar

√
2 in the quantum mechanics of the Dicke

states. From the present angle, this factor is classical physics
in disguise.

Sufficiently far off resonance the dipoles, even if close
to one another, are independent, and each radiates the same
amplitude as one dipole would. This means twice the amplitude
and four times the power, which is the result we already noted.
This is again an interference effect, and has nothing to do with
cooperativity. Cooperativity is clearly responsible for the shift
of the resonance.

Regarding the modifications of the linewidth, there is
some ambiguity. As is well known, on resonance the power
radiated from a two-level atom is independent of the dipole
matrix element. This may be thought of as a consequence
of energy conservation: With increasing dipole moment the
atom tends to radiate more, but at the same time the increased
radiation damps the resonant response more and these effects
exactly balance. Viewed in this way, on resonance even
two independent atoms should radiate the same power as
one atom, and we might call this an interference effect;
four times as much radiation, but also four times as much
damping. Nonetheless, we may regard the resonance behavior
as cooperative as well. Light from both atoms falls back on
both of them, and we have a cooperative radiation reaction
that determines the altered damping rate and linewidth. For
one thing, the variation of the linewidth γ (�) with � shows that
the propagation of light from one atom to the other is involved.
The limit γ (�) = 2γ for � → 0 appears to allow one to
think of the resonance linewidth both as an independent-atom
phenomenon and as a cooperative phenomenon. This is a
remarkable coincidence, if a coincidence it is.
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C. What’s missing?

There are several obvious pieces of physics missing from
our picture that may figure in the interpretation of the
experiments and simulations alike. We mention a few most
notable items here, and amplify as we go along. An extended
and somewhat complementary account is given in Ref. [40].

First, there is the interference of the scattered light with
the incoming light. This is behind the “absorption” of light.
Atomic samples that scatter light elastically return all of the
light energy back to the light field, and there is no genuine
absorption. Instead, the light from the incident driving field,
say, a laser beam, and the forward-scattered light interfere
destructively. The energy that gets removed from the incident
beam is directed elsewhere.

Second, suppose we actually did have a continuous and
nonfluctuating distribution of polarization P(r). A typical
microscopic model would state that for a continuous density
ρ(r) the polarization is P(r) = ρ(r)d(r) if the dipole moment
of an atom at r were d(r). The standard method to analyze this
situation is to use the EDPM. It is not an independent-atom
theory, but takes into account the effects of the radiation from
the atoms on each other in some averaged way. In fact, EDPM
is a MFT. Whether one can solve it accurately is another matter,
but one can apply general intuition. For instance, a Gaussian
cloud might act like a (poor-quality) converging or diverging
lens depending on the sign of the dielectric constant, which
in turn depends on the sign of the detuning. EDPM is not an
exact and possibly not even a quantitatively useful description
of the response of an atomic sample to light, but optics-like
effects should be expected to be present in the results of both
experiments and simulations.

Ordinarily, when one thinks of light propagation through a
sample as a standard optics problem, the initial and scattered
field are dealt with at the same time. There is the remarkable
Ewald-Oseen extinction theorem [43], which roughly says that
inside a dielectric medium the electric field has a component
that cancels the incoming field. That is why the light inside a
dielectric medium has the wavelength λ/n appropriate for the
dielectric constant of the medium n, even if from a microscopic
standpoint one also concludes that the field inside is the sum
of the incoming field and the field scattered from the atoms.

Finally, suppose one solves the light propagation prob-
lem numerically using classical-electrodynamics simulations.
Since the positions of the atoms are random, there are
fluctuations in the scattered radiation, and perforce, in the
interference of the scattered and incoming radiation. Smooth
radiation patterns as in Fig. 1 are averages over a large number
of atomic distributions, but at least over time scales such that
the atoms may be regarded as being at standstill there is no
such averaging. An individual sample of atomic positions may
give a radiation pattern that looks quite ragged. Eventually one
has to confront the possibilities of spatial fluctuations in the
scattered light, incoherent scattering, and generalizations of
incoherent scattering beyond the single-scattering framework.

IV. THE SLAB

In this paper we study mostly a slab of matter, with the light
coming in to a face of the slab at normal incidence. In this case

E0

ER

Er

El

ET

1 n 1

h

eihEreiKh

Ele–iKh

FIG. 3. Schematic representation of light propagation through a
slab of thickness h and refractive index n.

EDPM may be solved exactly in what amounts to a student
exercise. The idea is to compare these exact solutions of the
MFT with ab initio numerical simulations.

A. Elementary optics

Figure 3 illustrates the standard-optics problem. The light
is coming in from vacuum with the refractive index 1. We
denote the refractive index of the medium by n, so the wave
number inside is K = n (nk in SI units). The incoming light
with the reference electric field amplitude at the entrance
E0 gets either reflected or transmitted at the entrance face,
with the corresponding amplitude reflection and transmission
coefficients being (1 − n)/(1 + n) and 2/(1 + n) [42,43].
Inside the medium we have two amplitudes, Er corresponding
to the right-going wave with the propagation factor eiKz,
and the left-going amplitude El . By matching the incoming,
reflected, and transmitted waves at the front face we have

Er = 2

1 + n
E0 + 1 − n

1 + n
El. (57)

Similar matching can be made at the exit face, which leads to
the relation between the incoming and transmitted amplitudes

ET

E0
= 2ne−ih

2n cos nh − i(n2 + 1) sin nh
. (58)

To complete the exercise we note that, according to the
local-field corrections the effective electric field inside the
sample is Ee = E + 4π

3 P [42,43], the polarization is P =
4πχE, where χ is the susceptibility, and also P = ραEe,
where ρ is the atom density and α the polarizability (27) of an
atom. We then have

χ = n2 − 1 = − 6πρ

(δ − δL) + i
, (59)

where δL = −2πρ is the Lorentz-Lorenz (LL) shift of the
resonance. Simple algebra gives the power transmission coef-
ficient, optical thickness (depth, density), and the conventional
absorption coefficient defined as

T =
∣∣∣∣ET

E0

∣∣∣∣
2

, D = − ln T , A = 1 − T . (60)

Standard scattering theory says that if light propagates in a
medium with density ρ for a distance h, for the scattering cross
section σ the fraction of light energy that makes it through and
the corresponding optical thickness are

T = e−σρh, D = hρσ. (61)

This is Beer’s law, and the reason why we usually state our
results in terms of optical thickness: If Beer’s law were valid,
the line shape of the optical thickness, i.e., its variation with
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the tuning of the driving light, would be independent of the
thickness of the sample. The physical thickness would simply
be a multiplicative factor.

Clearly, the EDPM solution (58)–(60) cannot agree with
Beer’s law exactly. There are interesting lessons to be learned
from this discrepancy. Suppose we have an electric field
propagating in the z direction, of the form E(z) = E(z)eiz,
where E(z) varies little with z over the scale length 1—
basically, over the scale of the wavelength. The so-called
slowly varying envelope approximation would then basically
effect the replacement

∂2

∂z2
E(z) → ieiz ∂

∂z
E(z). (62)

By assuming a dominant propagation direction and a slowly
varying electric field amplitude, the wave equation for the
electric field gets converted to a first-order differential equa-
tion, and Beer’s law follows. What gives in a slab is that
the dielectric medium is taken to have an abrupt edge, so
the electric field cannot be expected to vary slowly over the
length scale of a wavelength everywhere. Indeed, there is a
counterpropagating reflected wave inside the slab, and not just
a single direction of propagation. In physical terms, in standard
EDPM the problems with Beer’s law can be attributed to etalon
effects, reflections of light from the faces of the dielectric slab.

When we deal with samples that have relevant features of
the size of a wavelength like the slab [11], or that are of a size
comparable to a wavelength [7,8], the usual approximations
of optics such as slowly varying envelope approximation and
paraxial approximation tend to break down, not to mention
ray optics. One then has to solve the full Maxwell equations,
an onerous requirement even numerically [8,63–65]. For the
slab the standard optics gives an exact solution to Maxwell’s
equations. The standard-optics result for a slab may also be
derived straightforwardly [46] from Eq. (10).

It should be noted that we have inserted the local-field
correction [42,43] by hand. Given the specific form of the
polarizability, the result is then exactly the LL redshift of
the resonance as a function of the density of the sample,
δL = −2πρ. In the standard SI units it would read �L =
−2π (ρ/k3)γ .

What is the shift of the resonance is a difficult question
operationally. Beer’s law (61) says that the line shape of optical
thickness is a Lorentzian and the position of the resonance can
be easily determined. However, in general we find a line shape
that is not Lorentzian, and worse, not symmetric about any
particular tuning of the driving light. Keeping this in mind, we
next discuss the line shift for the EDPM solution of the slab
(58)–(60).

Let us assume that the line shape is of the form D =
ρ/(K0 + K1ρ), where K0 and K1 are independent of the den-
sity ρ. This functional form can represent any density-shifted
and broadened optical thickness to second-order accuracy in
density. We expand the ansatz in density ρ, also expand the
EDPM optical thickness from Eqs. (58)–(60) in ρ, and choose
the coefficients K0 and K1 in such a way that up to second
order in ρ we have the same expansions. We find that, up to
this order in ρ, the line shape is Lorentzian, and is shifted from

FIG. 4. Shift of the peak of the resonance line s as a function of
the thickness of the sample from MFT. The solid red lines are for
the densities ρ = 10, 1, 0.1, and 0.01, from bottom to top, while the
dashed line is the analytical result for an asymptotically low density,
Eq. (63), corresponding to the “cooperative Lamb shift.” The optical
thickness of the sample increases with an increasing density of the
atoms, resulting in the deviations of the shift from Eq. (63), even when
the light-induced correlations are not incorporated in the calculation.
At high atom densities the MFT resonance shift tends to the LL shift.

the one-atom resonance by

s = δL + 3

4
|δL|

(
1 − sin 2h

2h

)
. (63)

This is the “cooperative Lamb shift” of Friedberg, Hartmann,
and Manassah [44]. Here the first term is the LL shift that we
put in by hand, and the second, oscillatory, part comes from the
etalon effects. The theoretical result (63) was recently tested
experimentally, albeit in a hot gas with moving atoms [11],
and found to work quite well, apart from a shift between the
theory and the observations proportional to the density of the
gas. In a cold and dense trapped cloud of atoms an analogous
expression was shown to fail [8], but in a very dilute gas
analogous expressions, derived from the standard optics, are
expected to provide qualitative estimates for the shift even for
cold atoms [9].

For an arbitrary density we use the maximum of the
resonance line as a proxy of the position of the resonance,
hence as the shift from the one-atom resonance. The results
obtained numerically from Eqs. (58)–(60) are plotted in Fig. 4.
We show the shift in units of the (absolute value) of the LL
shift as a function of sample thickness for various densities as
solid red lines, and the low-density limit (63) as the dashed
black line. At low atom densities the oscillatory etalon effect of
the “cooperative Lamb shift” is clearly observable. However,
as the density increases, the sample becomes optically thicker
and the fraction of the light that propagates from one face to
the other decreases. Etalon effects are reduced, and the MFT
resonance shift tends to the LL shift.

B. Numerical simulations

A slab extending to infinity in the transverse directions
would correspond to an infinite number of atoms, an impossi-
bility for numerical analysis. In our simulations we attempt to
do the next best thing: We study an atomic sample confined to
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FIG. 5. Transmitted light intensity at a distance 10π downstream
from (the center of) the disk with thickness h = 1 and area A = 1024,
and with N = 2048 atoms inside in fixed random positions.

a circular disk of radius R and thickness h, and make the radius
as large as practicable. The area of the disk is then A = πR2.
We put some given number N atoms evenly distributed inside
the disk, which gives the number density ρ = N/(hA). We
again assume a plane wave of light propagating along the
axis of the disk, and denote the direction of propagation by
z. In keeping with the symmetry of the disk, we take the
incoming light to be circularly polarized, so that it again reads
E0(r) = E0 eiz ê+.

Simulating the scattered field for an individual sample of
atoms and averaging over the samples is straightforward per
se. In contrast to the standard-optics solution of Sec. IV A, we
do not put in any ad hoc local field corrections or LL shifts.
As far as the microscopic model of the dipolar medium is
concerned, they simply do not belong there.

Here we mostly discuss the transmission of light through
the sample. Unfortunately, for the reasons we already touched
upon in Sec. III C, the general simulation scheme we have
described previously would not work satisfactorily in the
analysis of transmission through an infinite slab. The problem
is the finite size of the disk, which inevitably leads to diffraction
effects. The issue is graphically illustrated in Fig. 5. Here we
have a disk with thickness h = 1 and area A = 1024, and
with N = 2048 atoms inside in random positions. The figure
shows the ratio of the transmitted intensity I = 1

8π
|ET |2 to the

incoming intensity I0 in a plane parallel to the disk and at the
distance 10π (five wavelengths) downstream from the center
of the disk. One can see the depression at the center, the shadow
cast by the disk, but also diffraction rings and fluctuations of the
intensity as a function of position. Except for very low atom
densities, we cannot handle numerically large enough disks
to materially eliminate the diffraction, which would have a
large effect on the computed transmission. Besides, the spatial
fluctuations of intensity will be present regardless.

There is, however, a shortcut [14] that appears to expedite
the approach to the limit of large area of the disk enormously.
We compute the transmitted intensity outside of the disk as
if the atoms only scattered light in the forward direction, and
hence call this the forward-scattering approximation. To begin

with, let us take a dipole in the xy plane in a disk with radius
R centered at the origin, and an observation point in the far
field with x = 0, y = 0, z = ξ , and ξ � 1. We also assume
that R � ξ . In the argument we take the dipole to be polarized
in the x direction, d = d êx , and have it reside somewhere in
the disk with the coordinates {� cos φ,� sin φ,0}.

In fact, we take the position of the dipole to be random and
evenly distributed inside the disk, so that the average of the
field at the observation point is

Ē(ξ êz) = d

πR2

∫ R

0
� d�

∫ π

−π

dφGF (−� cos φ êx

− � sin φ êy + ξ êz) êx. (64)

Here GF retains only the far-field contribution ∝1/r to
the dipole field propagator G of Eq. (20). We first carry out the
angular integral, and in the remaining integral over � make the
substitution x =

√
ξ 2 + �2. This results in the electric field

Ē(ξ êz) = d

R2
êx

∫ √
ξ 2+R2

ξ

dx eix

(
1 + ξ 2

x2

)
. (65)

This boils down to two integrals. We first have

∫ √
ξ 2+R2

ξ

dx eix = i eiξ − i ei
√

ξ 2+R2 � ieiξ . (66)

This estimate says that for R � ξ the value of the second term
oscillates rapidly with a large R, and we use its average value
0. The other integral we approximate as

∫ √
ξ 2+R2

ξ

dx eix ξ 2

x2
�

∫ ∞

ξ

dx eix ξ 2

x2
→ ieiξ , (67)

where the second form is found numerically for the limit
ξ � 1. The same argument could just as well be made for
the y polarization of the dipole, so for a dipole d in the xy

plane we simply have

ET (ξ êz) = 2i
d
R2

eiξ . (68)

Here eiξ is a phase factor as dictated by the driving plane wave
of light.

Average over the circle with the radius R eliminates the
longitudinal component of the dipolar field, but it may be
present in the field of a dipole that is not on the axis of the
circle. In that case we remove the longitudinal component
by hand. Given the incoming plane wave of light E0e

iz, we
therefore write the total transmitted light as a sum over the
dipoles at their positions rk as

ET (r) = E0e
iξ + 2i

R2

∑
k

[d(rk) − êz · d(rk) êz]e
i(ξ−zk ). (69)

This is the same prescription as given in Ref. [14], albeit in
our system of units.

We have compared the transmission coefficient calculated
from Eq. (69) with the analytically known result for one
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atom in the disk obtained from scattering theory. Suppose
the light is on resonance so that the scattering cross section
is 6π , then to the leading order the analytical approximation
of the absorption coefficient is A = 1 − 6π/A. For a disk
with the area A = 256, the difference between this prediction
and the forward-scattering approximation is about 2%, and the
difference decreases inversely proportionally to the area of the
disk. In the limit of a dilute sample the forward-scattering
approximation also reproduces the MFT results, the main
difference being in the shift of the resonance. We see this
even if the disk is so thick that most of the light is absorbed.
Given Fig. 5 and the ugly approximations in the derivation,
Eq. (69) reproduces the MFT results amazingly well when
MFT is expected to be valid.

We have interspersed test cases among our simulations
where we have increased the area of the disk and looked
for convergence of the transmission coefficient. To verify
the convergence has proven to be exceedingly expensive in
computer time, but we obtain order-of-magnitude estimates
of the simulation error due to the finite size of the disk. We
occasionally quote them with our results. These truncation
errors are usually the largest known numerical errors in our
computations, surpassing the statistical fluctuations that result
from the necessarily finite number of samples used in the
averaging over the atomic positions.

The forward-scattering approximation together with the
increasing size of the disk can evidently be used to mitigate
the complications due to the optics of the finite-size disk.
However, the forward-scattering approximation also removes
the spatial fluctuations from the transmitted light. To quantify
the fluctuations we momentarily discuss the reradiated dipolar
field only, the sum on the right-hand side of Eq. (17). We
imagine placing a probe disk of the same radius R as the
simulation sample, at the distance R2/2 downstream from the
atomic sample. This distance is analogous to the Rayleigh
range, where the light radiated by the atomic sample starts to
transition from the near-field form of a beam of light to the
far-field form of a cone with a constant opening angle, and as
such gives a natural place where to observe the scattered field.
We integrate the component of the electric field with the same
polarization ê+ as the incoming beam over the probe disk,
and study fluctuations of the integrated field over the atomic
samples. For a disk with h = 1, A = 1024, N = 1024, and on
resonance, the fluctuations are about 6%.

For an infinitely large disk absorption would correspond
to the interference of the incoming and scattered light.
In the case when the optics of the disk has a significant
effect, the interference between the scattered field and a
field with the wave front matched to the diffraction pattern
of a disk-shape aperture might lead to a more meaningful
measure of absorption, but the diffraction pattern is difficult to
calculate accurately as this would require solving full vectorial
Maxwell’s equations. Instead, our studies of fluctuations give
us an indirect estimate of the limitations of the calculations
of the absorption coefficient as we have done them in this
paper: No matter what wave front, in our particular example
a random residual field of about 6/100 of the original field
amplitude must remain after the incoming and scattered fields
have canceled each other to the maximum extent allowed by
optics. A fraction of the intensity of about (6/100)2 invariably
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FIG. 6. Optical thickness D as a function of detuning δ for a slab
of gas with stationary atoms for varying sample thicknesses h = 0.25,
0.5, 1.0, and 2.0, from bottom to top. The fixed sample density was
ρ = 2. The dashed vertical line marks the position of the resonance
if the Lorentz-Lorenz shift were valid.

gets through as a result of the fluctuations. Such fluctuations
are not present in EDPM (here we always assume that EDPM
refers to a static, continuous medium). We might conceivably
think of the transmission of the random component of the field
as diffusion of light through a sample of randomly spaced
scatterers [36,37,39]. In our example a meaningful comparison
with the MFT would only be possibly at optical thicknesses of
less than D ∼ − ln(6/100)2 ∼ 6. This is how we surmise that
diffusion of light does not materially affect the conclusions of
the present paper.

V. RESULTS FOR THE SLAB

Our first main result [17] is that in the numerical simulations
the line shifts for a dense gas, if any, are at most a small fraction
of the LL shift. This is demonstrated in Fig. 6. This calls
into question the validity of the standard picture of local-field
corrections.

There is also a more foundational result writ large in
Ref. [17], but only in Ref. [18] did we fully manage to spell
it out: The standard EDPM fails. This is not hard to fathom.
EDPM is a MFT for the light-mediated interactions between
the dipoles, and as garden variety MFTs do, it goes bad when
the interactions between the atoms increase, for instance as
a result of increasing density. This is demonstrated in Fig. 7
that compares the optical thickness from the MFT and from
numerical simulations for a dense (ρ = 1) slab. Even if one
discounts the LL shift that was put in by hand to the MFT
anyway, there is a large difference between the curves.

Our next question is, what kind of densities are needed for
notable discrepancies between the MFT and the simulations?
For a demonstration, we have developed the following scheme.
We first fix the thickness of the slab at h = π . For various
values of density ρ we then find from the MFT exactly,
numerically, the corresponding positive detuning δ(ρ) for
which the absorption coefficient is AM = 0.01. There is a
corresponding negative detuning such that the absorption is
the same, not precisely the negative of the positive detuning
because the line shape is not symmetric about δ = 0, but we
arbitrarily pick the positive detunings. We also compute the
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D

δ

FIG. 7. Optical thickness of a slab of matter as a function of
light-atom detuning from both standard optics (solid black line) and
from numerical simulations (red dashed line). The results are for the
sample density ρ = 1 and slab thickness h = 1. The truncation error
in the numerical computations due to the finite area A = 1024 of the
disk-shape sample, about 5%, is irrelevant to this comparison.

absorption coefficients AC from the simulations for the same
densities ρ and detunings δ(ρ). In Fig. 8 we plot the ratio
AC/AM , the cooperative enhancement of absorption, for a
number of sample densities. The enhancement exceeds two
already for a sample as dilute as ρ = 0.1, with δ(ρ) = 24.2 .
The message here is that, depending on what the experiment
might be, significant deviations from MFT may be found at
unexpectedly low densities even for the off-resonance case.

The results of Fig. 8 also tally with the simulation results in
Fig. 7. The detunings are large in Fig. 8, about δ ∼ 80 for the
case of ρ = 1, and it is evident from Fig. 7 that this far in the
wings the MFT understates optical thickness and absorption.

There are aspects in Fig. 8 that also bear on the interpretation
of our simulations. The overall absorption in the figure

0.01 0.1 1ρ

A
C

/
M

A

FIG. 8. Ratio of the absorption coefficient from numerical com-
putations, AC , and from MFT, AM , as a function of the density of
the slab with the thickness h = π . The positive detunings are chosen
in such a way that the MFT gives AM = 0.01 for each density, an
optically thin sample. The numbers of atoms, evidently integers, are
chosen so that for a given density the area of the disk is as close to
A = 2000 as possible.

varies between 0.01 and 0.1 depending on density, so that
between 90% and 99% of the light gets through. The sample
is optically thin, the thickness being at most 1/10 of the
“mean-free path” of a photon. The deviations from MFT
evidently cannot be attributed to diffuse scattering or radiation
trapping [36,37,39,40,66]. The area of the disk was also large,
approximately A = 2000, and we looked at the convergence
of the results with the disk area extensively. Even at its worst,
at the highest density ρ = 1 in the figure, the relative error in
the results should be no more than on the order of 5%. The
finite size of the disk should not be a major contributor to the
deviations of the simulations from MFT either.

The sample in Fig. 8 is optically thin because of the large
detuning. For the MFT, Eqs. (58)–(60), an expansion in 1/δ

appropriate to the limit of a large detuning δ gives

AM = 6πρh

δ2

[
1 + 3|δL|

8h
(1 − cos 2h)

]
+ O

(
1

δ3

)
. (70)

The factor in front is the absorption coefficient of independent
atoms far off resonance when the cross section for photon
scattering �6π/δ2 is asymptotically small. However, even in
MFT and far off resonance, the sample does not behave like
a collection of independent radiators. The reason is etalon
effects, reflections of light from the faces of the slab: For a
large detuning the refractive index n is close to 1 and deviations
from unity scale like ρ/δ. A fraction of light �1 − n ∝ ρ/δ

that made it through the slab, almost all of it for a large δ,
is reflected from the back face, almost all of the reflected
light propagates to the front face, gets reflected again with a
reflection coefficient ∝ρ/δ, and finally interferes with the light
that goes straight through. That is the reason for the two terms
in Eq. (70) proportional to (ρh/δ2) (light straight through) and
(ρ/δ)2 (interference).

Aside from pointing out that run-of-the-mill optics can pop
up in quite unexpected places, we use Fig. 8 and Eq. (70) as
a springboard for dimensional analysis. Our hypothesis is that
there are two in principle independent dimensionless density
parameters in the light-propagation problem, the on-resonance
optical thickness 6πρh (6πρhk−2 in terms of full dimensional
quantities) that is a MFT parameter, and the plain ρ (ρk−3) that
governs the role of dipole-dipole interactions beyond MFT. In
several recent experiments [3–5,10] the on-resonance optical
thickness has proven to be the dimensionless parameter that
governs the density dependence of the results. In contrast,
our interpretation is that the nontrivial results in Fig. 8 are
attributed to the beyond-MFT parameter ρ.

Figure 8 does not separate the two dimensionless quantities
cleanly as we kept the MFT absorption coefficient constant, not
the on-resonance optical thickness. It also seems that optics, in
this case due to the reflection of light from the surfaces of the
slab, inevitably imposes some ambiguity in the interpretation
of the results. Here we attempted to minimize the effects of
the optics by choosing the sample thickness h = π , whereupon
the etalon-effect term in Eq. (70) vanishes. One could imagine
softening the edges with a continuous density distribution to
control the reflections. This would be easy to implement in the
simulations, but then we would run into the problem of how
the soft edges modify EDPM.

We next describe a numerical experiment in which we
literally keep the on-resonance optical thickness constant and
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FIG. 9. Optical thickness D as a function of detuning δ for
varying sample thicknesses h = 0.25, 0.5, 1, 2, 4, 8, and 16 (red
curves from bottom to top). In these figures the area density is kept
constant at N/A = 0.125, so that the density correspondingly varies
from ρ = 0.5 to ρ = 0.0078125 by factors of 0.5. The dashed black
line is the prediction from Beer’s law, which only depends on area
density.

vary the density. The basic idea is to keep the area of the
disk (A = 4096) and atom number (N = 512) constant while
varying the thickness h. The resulting optical thickness as
a function of detuning from the independent-atom scattering
theory (30) would be

D = 6πN

A(1 + δ)2
; (71)

D = 2.4 on resonance with δ = 0, which means less than
10% power transmission. In practice we had to deviate from
this ideal to keep the error due to the finite area of the disk
somewhat under control, so that at the high end of the thickness
range we finished with N = 2048, A = 16 384, and h = 16,
but of course without altering the preset optical thickness.
The resulting absorption line shapes, optical thickness versus
detuning, are shown in Fig. 9 for a range of thicknesses varying
from h = 0.25 to h = 16 in multiples of two (solid red lines
from bottom to top), corresponding to the densities ranging
from ρ = 0.25 to ρ = 0.0078125 decreasing by factors of 0.5.
Also shown is the corresponding independent-atom prediction
(71) (dashed black line), which basically differs from the
lowest-density simulation graph by a very small shift of the
resonance frequency.

As before, there are etalon effects that affect the results,
although the optical thickness should depress them some as the
light reflected from the back face of the slab should complete
a back-and-forth trip before interfering with the light that gets
through on the first try. This caveat notwithstanding, we see
substantial effects of the varying density on the absorption
line shapes. The dipole-dipole interactions make a noticeable
difference already at the density ρ = 0.015625, the second red
curve from the top.

There are two other observations to be made here. First,
at higher densities the resonance shifts as large as in Fig. 4
should be plain visible to the eye in Fig. 9, and the resonances
should move to the red. There are visible density shifts of the
resonance alright, but much smaller than one would surmise
from Fig. 4 and with the opposite sign. The line shifts large
enough that one can plainly see them are not compatible with
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FIG. 10. Shift of the resonance s as a function of the sample
thickness h, for two densities ρ = 0.01 (circles) and ρ = 0.005
(crosses). Also shown is the prediction (63), shifted up by |δL| for
easier comparison (solid line).

the MFT, especially not so when the LL shift is included in
the MFT. Second, one should note that the graphs for the
thicknesses h = 0.25, h = 0.5, and h = 1 are close to one
another; the first two are hard to distinguish at all. This holds
true even though the density increases by a factor of 2 for each
curve. Our interpretation is that at decreasing thicknesses, here
evidently below h = 1, the physics must eventually become
two-dimensional and then it is the area density N/A instead
of the volume density ρ = N/(Ah) that governs the scaling.
The area density, of course, is the same for all curves in this
figure. We have yet another complication to take into account
when interpreting the numerical simulations [14].

Even though the “cooperative Lamb shift” (63) was seen
in experiments with dense hot gases [11], our simulations for
dense cold gases have produced no comparable shifts, and
no sign of the LL shift either [17]. The line shifts from our
simulations simply do not agree with the standard expectations.
We next discuss two of our quantitative studies of the line shift
from Refs. [17,18] in added detail.

The “cooperative Lamb shift” (63), in our view, is an etalon
effect calculated analytically for the limit of asymptotically
low atom density. We therefore study the line shifts as a
function of sample thickness h at low atom densities, ρ = 0.01
and ρ = 0.005. For the latter the LL shift is 3% of the natural
linewidth, so the position of the resonance has to be found
accurately. Fortunately, for such low densities the resonance
lines D(δ) are well approximated by Lorentzians, so we can fit
them with a Lorentzian with an adjustable center (and width).
We did the fits over the detuning range δ ∈ [−2,2], and in a few
explicit tests found that the resonance positions for data from
different simulation runs were reproducible on a few-percent
level. The results are shown in Fig. 10. Also shown is the
prediction (63), albeit shifted up by the absolute value of the
LL shift. The maximum optical thickness in these simulations
was D � 1.

The oscillatory dependence of the line position on the
thickness of the sample is evident, but with two caveats.
First, the numerical results track the oscillations in the theory
fairly well, but only at thicknesses comparable to or larger
than h = 1. Below that, the approximately constant difference
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between numerical results and the shifted analytical results
shrinks to zero, as the numerically computed shifts clearly
tend to 0 for h → 0. We attribute the thin-sample behavior to
transition from 3D physics to 2D physics, as already discussed
in conjunction with Fig. 9. For a fixed density ρ, the area
density hρ tends to zero as h → 0, and since in 2D physics
it is the area density that counts, the density shift of the line
tends to zero as well. Second, there is a large additive constant
in the shifts compared to the MFT prediction; recall that we
have already removed the LL shift from the theory curve in
Fig. 10. It appears that even in the limit of low atom density
there is little quantitative validity to the LL shift.

On the other hand, the experiments that found a variation of
the line shift in accordance with the “cooperative Lamb shift”
and/or the LL shift [11,67] were carried out in hot atomic
vapors in which the atoms move at thermal speeds, and also
collide. We have coded classical-electrodynamics simulations
of moving atoms, but the convergence of the results is not
yet adequately under control. We therefore adopt a shortcut.
Namely, to the lowest order of approximation the motion of
the atoms causes Doppler shifts, and as a result the resonance
frequencies of the atoms appear to have a corresponding
random distribution. We simply add such inhomogeneous
broadening to our simulations: While generating a random
position for each atom, we also add a random shift to the
resonance frequency drawn from a Gaussian distribution with
zero average and the rms width � = 100. This in fact is a
reasonable estimate for the D lines in near-room-temperature
alkali vapors.

The result is a spectrum D(δ) that under a casual inspection
looks like a Gaussian with the rms width �. The assignment
is to find the center of the resonance line. We resort to a
standard method in experimental spectroscopy: We define
what is known as the Voigt profile, convolution of a Lorentzian
(width �, unit height) and Gaussian with a width �,

V (δ,�,�) = 1√
2π �

∫
dζ e

− ζ2

2�2
�2

(δ + ζ )2 + �2
(72)

=
√

π

2

�

�
Re

[
e

(�−iδ)2

2�2 erfc

(
� − iδ√

2 �

)]
, (73)

where erfc is the complement of the error function as defined,
say, in Mathematica, and fit the observed line shape D(δ) to
a Voigt profile H V (δ − s,�,�). Here we regard the overall
height H , the shift s, and the widths characterizing the
Lorentzian � and the Gaussian � all as adjustable parameters.

Figure 11 presents the shift of resonance line s as a function
of the sample thickness for a disk with the density ρ = 1,
given inhomogeneous broadening with the rms value � =
100. The dots are from numerical simulations, the sizes being
comparable to our estimate of the statistical errors. The solid
line is the “cooperative Lamb shift” as from Eq. (63), and the
dashed line is a vertically translated version of Eq. (63) that
gives the best fit to the numerical data points with h � 1. The
fits of the simulated line shapes to the Voigt profile turn out
to be excellent, and in our examples we obtain reproducible
results for the shifts s that are on the order 1% of the width
of the Gaussian �. However, practical constraints forced us
to a rather small disk area of A = 256, which contributes
an unknown truncation error. Again, the maximum optical
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FIG. 11. The shift of the absorption line s plotted as a function
of the thickness of the sample h as solid circles for the gas density
ρ = 1 and inhomogeneous broadening of � = 100. Also shown as a
solid line is the “cooperative Lamb shift,” Eq. (63), and as a dashed
line a vertically translated version of Eq. (63) fitted to the numerical
data points with h � 1.

thickness in the samples used to prepare the figure was on the
order of D � 1.

We once more attribute the exceptional behavior of thin
samples, h � 1, to the transition from 3D to 2D physics.
Other than this, the simulation results are quite close to the
prediction Eq. (63), the deviation being about 0.4 |δL|. There
was a similar “collision shift” in the recent experiments [11]
that verified the prediction (63), so the agreements of our
numerical experiments and real laboratory experiments with
the theory (63) are on a similar footing.

The effect of inhomogeneous broadening is to modify
the optical response by emphasizing the mean-field phe-
nomenology via the suppression of light-induced correlations
between the atoms. The basic principle is simple to understand:
with increasing inhomogeneous broadening the atoms are
farther away from resonance with the light that mediates the
interactions between the atoms. We can illustrate the interplay
between the inhomogeneous broadening and light-mediated
interactions by a simple two-atom example [17]. The atoms
1 and 2 are assumed to have different resonance frequencies,
hence different polarizabilities α1 and α2. The field amplitude
at the atom 2 is then the sum of the incident field amplitude
and the field scattered by the atom 1. Formally, we can write
it as

E(r2) = E0(r2) + α1GE0(r1)

1 − α1α2GG

= E0(r2) + α1GE0(r1) + α1α2GGE0(r2) + · · · . (74)

The operator expression in the denominator in the first line is
expanded in a power series, as illustrated in Fig. 12. The first
term is the free field on atom 2; in the second term the free
field excites atom 1, which sends its dipolar field back on atom
2; in the third term the free field excites atom 2, which sends a
dipolar field to excite atom 1, which sends a dipolar field back
on atom 2. Further terms in the expansion come out the same
way reflecting repeated photon exchanges between the atoms.
The last term shown is also the first example of a recurrent
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FIG. 12. Schematic illustration for the excitation of two coupled
atomic dipoles by light. In the first term an incident light drives the left
atom. The second term represents the excitation of the left atom by
light scattered from the right atom that is excited by the incident field.
In the third term the left atom is excited by light that is then scattered
back to the left atom via the other atom. Each subsequent term in the
series includes an increasing number of scattering processes between
the atoms.

scattering process in which a light wave interacts more than
once with the same atom.

Let us now regard atom 2 as the spectator and imagine
averaging over the position of atom 1. This operation faces
major mathematical obstacles because of the divergence of
G(r1,r2), but we do not attempt to sort them out because
these problems are evidently similar for homogeneously and
inhomogeneously broadened samples. Next add the inhomo-
geneous broadening �. To the order of magnitude, averaging
over the resonant frequencies suppresses the polarizability
by a factor of γ /�. Thus, the first nontrivial term in the
expansion corresponding the mean-field polarization gets
suppressed by this small factor, and the higher terms by
higher powers of the small quantity γ /�. Qualitatively,
repeated photon exchanges are deemphasized because in
such processes both the emitter and the absorber are off
resonance.

Our numerical simulations confirm analogous behavior
in many-atom ensembles. In fact, when the inhomogeneous
broadening � exceeds the resonance linewidth γ of the atoms,
the results begin to approach the mean-field phenomenology
of standard optics, indicating that macroscopic EDPM is
an emergent theory, resulting from the suppression of light-
induced correlations. The same effect was demonstrated
experimentally in the case of fluorescence where the resonance
shifts of a cold, dense gas of atoms substantially differed
from those predicted for thermal atomic ensembles [7]. Both
experimental observations and numerical simulations revealed
the absence of any notable shift in cold trapped atomic
gases. However, introducing inhomogeneous broadening in
the simulations restored a large value for the shift.

The suppression of light-mediated interactions by inhomo-
geneous broadening is a generic effect in coupled resonant
emitter systems. For instance, electromagnetic interactions
between solid-state radiators, such as plasmonic circuit res-
onators, may be described by analogous coupled-dipole model
simulations [28]. Inhomogeneous broadening in such a system
can result, e.g., from fabrication imperfections, and have
been shown to notably suppress strong radiative interactions
between the resonators [68].

We conclude with an after-the-fact test that reinforces
our interpretations. We take the same simulation data we
used to demonstrate the qualitative failure of the MFT
in Fig. 7, optical thickness D for the sample density
ρ = 1 and thickness h = 1 as a function of the tuning of
the driving light δ, and plot on the same figure also the
optical thickness divided by two for a disk that is twice
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FIG. 13. Optical thickness as a function of detuning for the
sample thickness h = 1 (solid red line), and half of the optical
thickness for a sample twice as thick, h = 2 (dashed black line).
The density ρ = 1 and the disk area A = 1024 are the same for both
curves.

as thick. The result is shown in Fig. 13. The curve with
h = 2 is beset with visible numerical noise since with these
atom numbers, N = 2048, the runs are getting expensive
and we have used a reduced number of samples for the
atomic positions. Nevertheless, the obvious conclusion is
that doubling the thickness from h = 1 to h = 2 to a good
approximation doubles the optical thickness.

This first means that two slabs of thickness h = 1 back
to back would basically behave like one slab with thickness
h = 2. In other words, h = 1 already represents bulk, 3D,
behavior, as we have concluded three times already under
different conditions.

Second, within our shortcut to compute the transmission
of light, for these parameters the transmission still decreases
exponentially with sample thickness. Now, in such a sample the
excitation of the dipoles obviously decreases approximately
exponentially downstream in the sample as well. If there were a
transition to diffuse optics or if the optics of the finite-size sam-
ple (A = 1024) drastically changed with the increasing thick-
ness, there would be changes in the functional dependence
of the dipole moments on the distance downstream, which
even our approximate way of calculating the transmission
would presumably have picked up. MFT fails when diffuse
optics sets in, and the forward-scattering approximation does
not fully include the optics of the finite-size disk, but neither
of these complications apparently is substantial even for the
thicker sample with the maximum optical thickness of D � 5.
We again surmise that our simulations are in the regime when
our comparisons with MFT are meaningful.

VI. CONCLUDING REMARKS

Our basic observation is that textbook EDPM and the
ensuing usual optics may fail qualitatively as dipole-dipole
interactions between the atoms get stronger with increasing
density of the atoms [18]. An effective-medium MFT that
spreads out the neighboring atoms into a continuous polariza-
tion no longer suffices to describe the influence of the other
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atoms on each “spectator” atom. Instead, the effect of the other
atoms depends on where exactly they are.

In several examples we have studied the question of when
the MFT starts showing strain. The scaling of the whole
problem we have employed throughout this paper suggests
that the relevant density scale should be on the order ρ � 1,
or ρ � k3 when expressed in the original unscaled units. This
is the kind of a density one would see in experiments with
Bose-Einstein condensates, or with tightly trapped cold atoms.
The observation from our simulations is that MFT may be off
by quite a lot already at ρ ∼ 0.01.

Now, dimensional analysis in itself does not give any
particular numerical criterion. One might argue that the proper
dimensionless density parameter should be ρλ3, the number
of atoms in a cube of the size of a wavelength, which is
(2π )3 ∼ 250 times larger than our ρk−3 = ρ −λ3. One way to
characterize our observations would be that ρλ3 indeed is the
more appropriate density parameter, in that qualitative effects
of increasing density tend to set on at ρλ3 ∼ 1 not ρk−3 ∼ 1.
We continue to use the dimensionless quantity ρk−3 simply
because it is part of a consistent scaling of the problem that
does not leave obscure powers of 2π in the formulas.

Here we would like to force the issue of (on-resonance)
optical thickness versus density [18], 6πρh versus ρ in our
examples. Optical thickness is a characteristic dimensionless
parameter of MFT, and while MFT remains valid, optical
thickness may be expected to be the dimensionless parameter.
Numerous theoretical analyses are phrased in terms of optical
thickness, and a scaling with optical thickness has been demon-
strated in recent experiments, e.g., [3–5,10]. It is not a surprise
that one can observe superradiance even in standard optics,
and that it scales with optical thickness; optical thickness
makes optical resonances broader, whereupon the conventional
wisdom about Fourier transformations automatically predicts
shortening time scales. However, from our perspective the
more interesting case would be when MFT fails, whereupon,
we hypothesize, the density becomes an independent param-
eter governing the deviations from the MFT. We demonstrate
such behavior in Fig. 9 obtained from our simulations, but
at present there apparently are no real experiments showing
this type of ρ scaling. On the contrary, the scaling of
subradiance with optical thickness in a dilute sample as
observed experimentally [5] severely challenges our picture,
as it is unclear whether subradiance can exist in MFT in the
first place. At the moment we have no resolution to this issue.

There are phenomena for which EDPM and standard optics
with their continuous polarization field do not apply as a
matter of principle. Incoherent scattering sideways, as in the
two bands at the base of the angular distribution of forward
scattering on the right panel of Fig. 1, is an example. In this
case, though, we could amend standard optics and still make
predictions for sideways scattering: In the single-scattering
approximation we would simply add the intensities (not
amplitudes) of the light scattered from different atoms. On the
other hand, if one studies resonance fluorescence from a few
ions, EDPM is a meaningless as a starting point. One can easily
imagine intermediate scenarios. What are the predictions from
standard optics may also be very difficult to determine per
se: If the atomic sample is comparable to the wavelength
in size, EDPM boils down to solving the full Maxwell

equations, which remains a challenge even numerically. All
of these caveats notwithstanding, we propose the criterion that
a phenomenon should not be called cooperative if standard
optics cannot reasonably be excluded as the cause. To give an
example, we would object to the notion that the functioning
of eyeglasses reflects cooperative response to light of the
molecules that make the lenses.

As we have already noted, our recent interest in this
research area was triggered by our observation that we did
not see the predicted LL shift in numerical simulations of
disks of dense, cold gas. The absence of the LL shift has
since been demonstrated in light scattering experiments from
a small and dense trapped cloud of atoms [2,7,53]. These
experiments were about sideways scattering, however, which
does not directly belong to the MFT framework. From our
present viewpoint it is particularly relevant that experiments
have also been carried out with forward scattered light under
similar conditions that could be directly compared with optics
solved numerically from Maxwell’s equations [8]. The general
result was that at higher atom numbers (∼180) ab initio
simulations analogous to the ones we have described here
came closer to the experimental results than the predictions
from optics. However, “[t]he remaining difference with the
microscopic model shows that a quantitative understanding
of the light-induced interactions even in a relatively simple
situation is still a challenge” [8].

The line shifts still present a puzzle. We found the oscilla-
tory dependence of the line shift in accordance with the etalon
effects in our simulations of both dilute and inhomogeneously
broadened samples, but the LL shift is a more delicate affair.
Dimensional analysis and the experience in spectroscopy
suggest that at asymptotically low densities there should be a
line shift proportional to sample density ρ (∝ρk−3 in terms of
full dimensional quantities). The LL shift amounts to a specific
prediction for the numerical factor that cannot be deduced
from dimensional analysis alone. In dilute homogeneously
broadened samples we found a LL type shift that is on the order
of ρ, but even has the opposite sign than the LL shift. Now, if
we expand susceptibility of the gas as a power series in density,
the LL shift produces a term proportional to ρ2. In the usual
way of MFTs, EDPM apparently is not a systematic expansion
in density [45]. However, there are indications that going
beyond MFT in an ensemble of randomly distributed atoms
could produce corrections proportional to ρ2 in quantities
such as susceptibility [45,69,70] as well, and corresponding
density-dependent line shifts. Our tentative conclusion is that,
if there is any validity to the usual concept of local-field
corrections in homogeneously broadened samples to begin
with, beyond-MFT effects probably overwhelm them.

The case of inhomogeneously broadened samples is also
intriguing. The low-density phenomenology persisted in our
examples at least up to ρ = 1, which in and of itself is
not a surprise as inhomogeneous broadening reduces the
dipole-dipole interactions. Qualitatively, only a fraction on the
order of the ratio of the homogeneously and inhomogeneously
broadened linewidths of the atoms has a frequency that can
be on resonance with the light propagating in the sample.
This reduces the dipole-dipole interactions and extends the
range of validity of the MFT [7,17]. On the other hand, when
we fitted the Voigt profile to inhomogeneously broadened
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absorption lines, we found that the etalon-effect oscillations
reside on top of a base line shift that is about 60% of the LL
shift.

The local-field corrections, of which the LL shift is a
particular example, have been an enormously successful
concept in the physics of electricity and magnetism for well
over a century. The best we could do was to get to within
60% of the LL shift. If we posit that the notion of local-field
corrections is quantitatively sound, the question is, why did we
never do better than 60%? We think that there is a significant

piece of physics missing here, but so far it has eluded
us.
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