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Suppose we measure the time-dependent spectrum of a single photon. That is, we first send the photon through
a set of frequency filters (which we assume to have different filter frequencies but the same finite bandwidth I")
and then record at what time (with some finite precision At and some finite efficiency ) and after passing what
filter the photon is detected. What is the positive-operator-valued measure (POVM), the most general description
of a quantum measurement, corresponding to such a measurement? We show how to construct the POVM in
various cases, with special interest in the case 'Ar < 1 (time-frequency uncertainty still holds, even in that
limit). One application of the formalism is to heralding single photons. We also find a Hong-Ou-Mandel type of
interference effect with two photons entering a frequency filter.
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I. INTRODUCTION

The time-dependent physical spectrum of light [1] is an
operationally defined quantity that characterizes a specific
combination of spectral and temporal properties of any light
signal. The definition includes the use of a frequency filter
with a finite bandwidth before the measurement of the light
intensity at some time ¢.

The measurement can be performed on a quantum light
source as well, where instead of measuring intensity we count
photons. It turns out then that the frequency filtering operation
can play an active and nontrivial role in the detection of
two-photon correlations [2—4]. In particular, under certain
conditions it may reverse the time order of two photons in that
the photon that was emitted earlier may be detected later. In
such a case, destructive interference between two opposite time
orders of emitting a pair of photons may substantially reduce
the joint probability of detecting both photons at the same
time, in principle all the way down to zero [2,3]. Moreover,
the filtering process may change the photon statistics from
antibunched to bunched [4].

Even for a single photon its time-dependent spectrum
can reveal interesting information, e.g., about its history. For
example, when interacting with multiple different resonators,
a photon could remain trapped in those resonators for a little
while, but only when its frequency is close to one of the
resonances. Thus, the photon’s early time-dependent spectrum
may display dips at such resonance frequencies [5], with those
frequency components emerging in the spectrum only at later
times. For another example, consider a single photon emitted
from an optomechanical cavity that has one moving mirror.
The spectrum will contain red sidebands (below the cavity
resonance frequency) at early times, corresponding to the loss
of photon energy to phonons, but at later times it can contain
blue sidebands as well, as a result of the photon having gained
energy from the moving mirror [6,7].

We construct here the positive-operator-valued measure
(POVM) corresponding to the measurement of the single-
photon time-dependent spectrum. The POVM is the most
general sort of measurement allowed by quantum mechanics
[8,9]. One difference, in particular, compared to the usual
notion of a Hermitian operator as observable, is that different
outcomes of a measurement do not necessarily correspond to
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projectors onto pure orthogonal states. We will see here that
measuring the time-dependent spectrum of a single photon
indeed involves projecting onto nonorthogonal single-photon
states. Moreover, the less precise the time measurement, the
larger the effective Hilbert space dimension on which one
projects.

The operators thus obtained can be applied to the problem
of heralding single photons by spectrally filtering and sub-
sequently detecting one photon of a photon pair [10]. This
problem has recently gained interest, in particular because of
the trade-offs between the purity of the heralded photon and
the efficiency of the heralding process [11,12]. Here we will
see that high purity of the heralded photon can be obtained
with filtering and, at least in principle, without trading off
for efficiency, provided the measurement performed after the
filter is pure. We will also describe both single-photon and
two-photon measurements with two different frequency filters,
as well as a two-photon Hong-Ou-Mandel type of interference
effect [13] observable with one frequency filter.

II. SPECTRAL FILTERING

Spectral filtering by a passive (photon-number-preserving
and time-independent) device can be most conveniently de-
scribed as a unitary transformation on two sets of input modes
(see Fig. 1) described by annihilation operators d(w) and l;(a))
and their Hermitian conjugates, the creation operators, with
o > 0 the frequency of the modes [14],

d'(®) = T(0)a() + R(w)b(w),
b (@) = R(@)a(w) + T(w)b(w). (1)

These creation and annihilation operators satisfy bosonic com-
mutation relations and in particular [4(w'),af ()] = 8(0' — w).
Operators acting on different modes commute. Here one set
comprises the input modes of interest a(w), which contain the
light we are filtering, while the other set consists of auxiliary
modes 13(0)) that are assumed initially to be in the vacuum state.
The two sets of modes &' (w) and b’ (w) are output modes. The
functions T (w) and R(w) are complex transmission (through
the spectral filter) and reflection (off the filter) coefficients that
satisfy

IT(@)* + [R)]* = 1,
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FIG. 1. Modes used to describe spectral filtering. There is one set
of input modes of interest, which contains the light we are filtering,
described by annihilation operators d(w). There is a second set of
auxiliary input modes, which are assumed to be in the vacuum state,
described by b(w). There are two sets of output modes: The operators
a'(w) describe light transmitted through the filter, and that is the light
we are going to perform measurements on with the aim to learn
about the light in the input modes a(w). The other “reflected” modes,
described by b'(w), are available for further filtering operations
(at different frequencies).

T(®)R*(w) + T*(w)R(w) = 0. )

The filter function T'(w) is peaked around a particular fre-
quency of interest wy and has a bandwidth I', which we may
define as

= I /ooda)|T(a))|2. 3)
7T Jo

We will always assume here that wy/T" > 1.

The modes on which we perform photodetection measure-
ments are the transmitted output modes a'(w), but the aim
is to obtain information about the state of the input modes
a(w). Suppose we start with a pure single-photon input state

p = |¢)(¢| with
l¢) = f dw ¢p(w)a'(w)|vac), 4)

0
with |vac) the vacuum state with no photons. In order to
describe how this state is transformed by the filter we need
the inverse transformation of the creation operators, which we
can obtain by making use of (2):

a'(w) = T(@)d" () + R(@)h (o),
b'(w) = R(w)a' (w) + T ()b (w), )

which actually has the same form as the forward transforma-
tion (1) of annihilation operators. The output state can therefore
be written as

¢') = /0 do T(@)$(@)a" (w)|vac)

+ / ” do R(0)p(w)b (w)|vac), (6)
0

where the first term describes a single photon in the transmitted
output modes and zero photons in the reflected modes, whereas
for the second term the one single photon is in the reflected
modes.

Further information about the same input state can be
obtained by having a second filter, with a different filter
frequency w; (for convenience we assume all filters to have
the same bandwidth I'). That filter should be applied to the
reflected modes l;’(a)) and the second measurement will then
be done on the modes @”(w) transmitted through that second
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filter. The output state (of three different sets of output modes)
will in this case be

") = /0 do T(w)(w)d' (w)|vac)
+ f ” do Ty(0) R(@)p(w)a" (w)|vac)
0

+ f do Ri(@R@)$@b" (@)vac).  (7)
0

With N > 2 filters, photodetection measurements are to be
performed on N transmitted output modes, with one reflected
set of modes available for yet another filter. The generalization
of (7) to more than two filters should be obvious.

Finally, a simple model expression for 7'(w) (valid only for
frequencies close to wy) is [14]

r

T@) = I —i(w—awy)

(®)
We will sometimes use this expression for illustrative purposes.
In that case we can take the corresponding reflection coefficient
to be

—i(® — @)

R(w) = =1-T(w). 9)

I' —i(w — wp)

III. IDEAL MEASUREMENT

As a warm-up exercise imagine first we perform an
idealized single-photon measurement on just the output of
the first filter, described by one-dimensional (1D) projectors
|k ) (@r |, for k =1, ...,00. Here |¢) is a pure single-photon
state defined as

| i) =/0 do ¢r(@)a" () |vac) (10)

in terms of an orthonormal set of mode functions satisfying

fo do ¢ () (@) = S (11

The probability to detect the photon in the output and get
outcome k is
2

P = 'fo do ()T ()()| . 12)

This probability can be rewritten in terms of a POVM element
[1; as P, = Tr(pI1;), provided we choose

I = we|T o) (T Prel. (13)

Here wy is a weight (non-negative and less than or equal to 1)

wy = / do|T(o)*|pr (@) (14)
0

and |T¢y) is a pure and properly normalized input single-
photon state

IT¢r) = do T*(@)p(@)d' (w)|vac).  (15)

1 oo
)
Note the appearance of 7* here, rather than 7 . Indeed, the state
|T ¢1) does not describe a photon that initially is in the state
|¢x) and is then frequency filtered, but rather a state the photon
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could have been in before the filter, if it is later detected in the
state |¢y).

In fact, the state (15) can also be obtained by starting with
the state |¢y) at the output and propagating it back in time
[using the inverse of (5)]. This yields a (normalized) state
containing one photon spread out over both input modes a(w)
and b(w). Subsequently projecting onto the vacuum state of
the input modes b(w) leaves one with the subnormalized state
JWi|T ¢y) for just the input modes d(w). This procedure of
propagating backward in time from the final signal to the input
may give the clearest explanation of what a POVM actually is.

The physical meaning of wy is as follows: Even if the input
photon is in the state |T ¢;), outcome k is not guaranteed.
The probability of getting that measurement outcome is wy.
There are two reasons for not getting outcome k with 100%
probability. The first is that the projectors for different values
of k are nonorthogonal because of the presence of the filter
function:

(Tl T i) = deT(w)IzqﬁZ‘(w)qﬁkf(w)- (16)

\/_

Thus we may obtain outcome k' # k for input state |T¢y).
Second, we may not actually detect the photon at all, because
the input photon may have been reflected off of the frequency
filter. One way to express the probability of a null detection on
the transmitted mode is by equating it with the probability we
would detect the reflected photon. Imagining we perform the
same measurement |¢y ) (¢x| on the reflected mode b (), we
would get outcome k with probability

00 2
= ‘ /0 do ¢f(@)R(w)p(®)| , (17)

where we just replaced T with R in (12). Just as before, this
probability Oy can be rewritten in terms of a POVM element
Ry as QO = Tr(pRy), provided we pick

Ri = ug|Rew) (Rl (18)

where the weight uy is

uy = f doR@OPIp@P =1 —w, (19
0

and the single-photon state | R¢y) is
1 * ,
Royp) = — dw R* a' . 20
| Rr) NG /0 o R™(w)pr(w)a'(w)|vac) (20)

We can now write the POVM element for not detecting a
photon in the output modes of interest &’(w) as

Plan = ) ue| Rei) (Rehe. 1)

k

The complete POVM corresponding to the ideal single-photon
measurement on @'(w) is then

(152, T}, (22)

which indeed obeys the relation

Mo + Y T =14, (23)
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where 1, is the identity on the single-photon subspace of the
input modes a(w). If we define the Dirac-normalized ket |w) =
a'(w)|vac), then we have

Pl = / do| R@)Plo)ol, (24)
0
= [ " dolT @) o], 5)
k=1
1, :/Ooda)|w)(a)|. (26)
0

Even though the actual photodetection measurement is per-
formed on the output modes a'(w), the POVM refers to the
input modes a(w).

Heralding a single photon

It is not straightforward to create a single photon. One
technique involves down-conversion, a nonlinear optical pro-
cess in which one photon of high frequency is [with some
(very) small probability] converted into two photons of lower
frequency. The state produced consists of a large vacuum
component plus a small two-photon component (as well as
an even smaller four-photon component, etc.). By detecting
one of the two photons we project out the vacuum component,
so the remaining state has a large single-photon component.

The two-photon part of the state is to a good approximation
pure and we may write

/ dw / do ®(w,0)dl (w)él(@)|vac), (27)
where we normahze
/ da)f do|®(w,0))* =1 (28)

such that (®|®) = 1. We assume that we detect the (heralding)
photon in modes @f(w) and then infer the presence of the
heralded photon in modes &f('). We would prefer the heralded
photon to be pure. High purity of the heralded photon can be
achieved without filtering by engineering the function ®(w,«’)
[15,16] or with filtering [10]. In the latter case, however, there
will in practice be a trade-off between purity and the efficiency
of the heralding process, i.e., the probability to detect the
heralding photon [11,12].

Here, where we assume that an ideal measurement is
performed after filtering, the heralded photon is actually
always pure. We detect the heralding photon and obtain
outcome k with probability

Pk = / da)’
0

The density matrix of the heralded photon conditioned on
outcome k may be written as

1 N N
por = T </H7|c1>><d>|ﬁ) (30)

where the trace is taken over the a(w) modes. With f[k
projecting onto a pure state, p(k) corresponds to a pure state

2

/ do T(0)¢; (0)P(w,0)| . (29)
0
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too:

fwda)/ooda)'T(w)aﬁ,’:(a))CD(w,a)’)éT(w/)|vac)
0 0

V) = 77

€2y

On the other hand, if we ignore the information about
which outcome we obtained or if our measurement does not
distinguish between different outcomes k, we get a mixed state

1 .
pe =25 D Tra(|®)(@IL), (32)
k

where

P=) P (33)

k

Here we made use of the cyclical property of the trace to move

one «/ﬁAfactor next to the other. We may now substitute (25)
for ), Il into (32) to get an expression equivalent to that
obtained in Ref. [12]:

1 oo
po=7 / do|T(@)P(@||0)(®llw).  (34)
0

This expression is useful because it provides a lower bound
on the purity of the heralded photon (the more information we
have about which outcome occurred, the higher the purity). In
fact, it is this lower bound that displays the trade-off between
purity and efficiency: By making the filter narrower we would
increase the purity of the heralded photon but at the cost of
decreasing the probability P of detecting the heralding photon
in the first place.

IV. MEASURING THE TIME-DEPENDENT SPECTRUM

Suppose we do not perform an ideal single-photon mea-
surement but instead merely detect the presence of the photon
(in the frequency-filtered output modes) within a finite-time
interval I between 7y and fy + A¢. Whereas measuring the
frequency of light has been relatively straightforward since
Newton’s days, measuring the time of arrival (on, say, a
picosecond time scale) tends to be much harder. One nice
way to achieve a high-resolution time measurement is to
measure the frequency after first sending the photon through
a time-to-frequency converter [17-22]. Here one first lets the
photon propagate through a dispersive element that multiplies
the spectral amplitude of the photon with a phase factor
exp(—iaw?/2), with a a constant, and subsequently one
applies a time-dependent phase modulation that multiplies the
temporal amplitude with a similar phase shift exp(—ifBt2/2)
in the time domain. For the special choice f = 1/a the
combined transformation applied to the photon is actually
the Fourier transform, transforming time to frequency (the
mathematics involved is exactly analogous to that describing
spatial light propagation through a cylindrical lens, hence the
name time lens). The time resolution thus obtainable extends
down to hundreds of femtoseconds [20,22].
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A. One photon and a single frequency filter

Consider a photon in a pure input state p = |¢)(¢|. The
probability to detect that photon in the filtered output modes
between times fy and ty + At would be

2
, (35)

1 to+At

P =—
"~ o o

dt

/ - do T(0)p(w)e
0

if we had a perfectly efficient photodetector. If the detector has
a frequency-dependent efficiency n(w), we have

to+At 00
P = % / dt / do/ ()T (w)p(w)e !
) 0

In the following we assume for simplicity that n(w) does not
depend on w over the relevant frequency range(s) and so we
can always take it out of integrals over w. We will denote the
constant efficiency by 7.

We can write the probability (36) as P; = Tr(ﬁf[ 1), with
I1; an integral over 7-dependent POVM elements

2
(36)

. fo+ AL
i, =/ dt wl W)W, @37)

fo

with the normalized single-photon state |\W,) defined as

V1 / oodwT*(a))ei“”&'r(w)lvac) (38)
2w Jo

W) =
and the weight density (per unit of time) w as

w=— /OO do|T (@) = T2, (39)
2 0

where the second equality follows from our definition (3) of
the bandwidth. Note that the time parameter in |¥;) refers to
the time of detection, not the evolution in time of the input
state.

The POVM elements corresponding to detecting the photon
at different times are not orthogonal and we have

1 ad S
(W ¥y) = — f do|T(w)>e"" ™"
JTF 0

~ e—r|t/—t|eia)0(t/—t)’ (40)

where the approximate equality is valid for the model expres-
sion (8) for T(w), under the assumption that woI" > 1. The
latter assumption allows one to extend the integral over w to
negative frequencies, after which the integral can be performed
by contour integration in the complex plane.

If we add up all POVM elements corresponding to detecting
the photon in a complete set of nonoverlapping time intervals
we obtain the same result (25). To see this, we could take the
limits fp - —oo and At — oo for the single POVM element
(37).

The POVM element I1; is not simply one projector onto a
pure state but a mixture of such projectors. That is, [1; is not
pure. We can define the purity of an arbitrary POVM element
IT in analogy to the definition of purity of a quantum state 4,
namely, Tr(,éz), as

Tr(I12)

Pur(ll) = ———,
D = e

(41)
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where the denominator accounts for the fact that Tr(f[) does
not have to equal 1, whereas Tr(p) = 1 for any physical state.
The definition is such that

0 < Pur(IT) < 1, (42)

with Pur(IT) = 1 only for IT proportional to a 1D projector
when IT can be written as [T = w|y)(|. The lower limit of
the purity is actually 1/d, with d the dimension of the Hilbert
space on which I1 acts, but here d is infinite. Given a value
for the purity, we can conversely define an effective Hilbert
subspace dimension on which IT projects by

der = 1/Pur(IT). (43)

This effective dimension has the meaning of the number
of different (orthogonal) input states that lead to the same
measurement outcome. For I1; we have

. nl At
Tr(f1;) =
R 7]21—~2 At At
(1) = = / dr/ dr'| (¥ |W,) P
0 0
nz
~ §[e—m’ +2I At — 1], (44)

with the last approximate equality following from the last line
of (40). For that case, the purity of I1; is approximately (note
the efficiency n drops out)

e T2 LT Ar — 1
2(C At)?

Pur(I1;) ~ (45)

In the limit of large I"A¢ the purity goes to zero as 1/ I"At,
which signifies loss of information, from having performed a
timing measurement that is less precise than was in principle
possible. The effective Hilbert space dimension is deg =
['At 4 1/2 in this case.

Measurements with 'Ar < 1, on the other hand, are the
most interesting. In that case the POVM element I1; becomes
pure, i.e., Pur(f[ 1) — 1, and we can approximate

__ nl'At
)

1, Wi 2) {Wirar2l- (46)
This means that when At is short (compared to I'"!), the
measurement projects onto a pure single-photon state with a
central frequency of w( and a width in time not determined by
the short detection time interval A¢, but by the much longer
filtering time I'~!. This explains why two photons that are
less than a distance I'~! apart in time may well be detected
in the opposite time order when they pass through a narrow
bandwidth filter first (see also Sec. IV C).

In the limit ' At — 0 the POVM would be pure and so such
a POVM used for heralding a single photon would yield a pure
heralded photon, just as in Sec. III. In the opposite limit one
reaches the result (32). For any finite value of I" At the result
lies somewhere between these two extreme results. It is an
open question to what extent the purity vs efficiency trade-off
relation can be softened in this case [12,23].
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B. One photon and two frequency filters

It is straightforward now to take into account the possibility
of filtering multiple different colors (but still assuming a single
photon in the input). With a second filter in place, described
by a resonance frequency w; and a bandwidth I", we need
the corresponding transmission coefficient 7j(w). Since that
filter should be placed in the beam that is reflected off of the
first filter, we also need the reflection coefficient R(w) of the
first filter [cf. Eq. (7)]. The probability of detecting the photon
during the time interval / after the second filter therefore is

2

/ Ooda) Ty (@) R(@)p(w)e ™| . (47)
0

to+At

1 dt

Pl =—
L™ g t

Thus this measurement is described by the POVM element

o ¥

to+At

= arwew 48)
4]

where the form of the normalized single-photon state is now

slightly different from that corresponding to just one filter

because of the presence of an additional factor R* (and, of

course, with T replacing T'):

;) = \/% /0 " do R* ()T} (w)e' a'(w)|vac). (49)

The weight density w’ is likewise a bit more complicated than
with just one filter:

w = - /oodw|R(a))T1(a))|2. (50)
2 0

We may note that w’ < w. In the case of two very different
filters, with |w; — wp| > I', we can replace R(w) by 1 in all the
above integrals and obtain results that have the same form as
for one filter, with 7; replacing 7 and hence with w; replacing
. (In that limit, w’ — w.)

Two POVM elements |;) (¥/] and |, ) (¥, | corresponding
to detecting at two different frequencies (but at the same time )
are nonorthogonal and become orthogonal only in the limit
I'/|w; — wo| — 0. For two different measurement outcomes
corresponding to different photo detection times and different
filter frequencies, we have

/ do T*(w)R(w) Ty (w)e ")
0

(W W) =
n 2/ ww’'/n

(51

C. Two photons and two frequency filters

In the experiments reported in Ref. [3], rwo photons of
different color are detected with the help of two different
frequency filters. We can describe that situation with the help
of a POVM too. Detection at time ¢ of a photon after the
second filter and a photon at time ¢ after the first filter projects
back onto a two-photon state of the input modes a(w) [again
making use of the fact that the modes b(w) start off in the
vacuum state] of the form

7] o0 o0
W, ) = —— da)/ do' T*(w) T (@)
W) = /0 0 @T;
x R*(@)e'” " &t (w)al ()| vac). (52)
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We can write W as a sum of two contributions here,

772 (o) o)
W= —/ dw/ do |T(w)*|R() T ()
47T2 0 0

nz 00 ) , 2
+— / dow T*(®)Ti(w)R(w)e' =] .
4]'[2 0
(53)
In fact, we can write this sum also in the form
W = ww'(1 + (¥ [¥)]%), (54)

thus making a connection between the one two-photon mea-
surement and two single-photon measurements (on separate
single-photon input states).

The two terms in W [either in (53) or in (54)] can be
interpreted as follows. If the input state is actually |, ,), then
we obtain the measurement outcome with probability W. The
first term of W is a product of two probabilities: the probability
that a photon in the input state

IT,) / do T*(w)e'” a' (w)|vac) (55)
0
|
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is detected after the first filter at time ¢ and the probability that
a photon in the input state

o0
ITiR,) f do' T (@) R*(@')e'”" al (@) |vac)  (56)
0

is detected after the second filter at time ¢'.

The second term is also a product of two probabilities: the
probability that the photon in state (55) is detected after the
second filter at time ¢’ and the (surprisingly equal) probability
that the photon in state (56) is detected after the first filter at
time 7. This second combination of two detection events is
likely only if both detection times are close to each other
(within ~I'~") and if both filter frequencies are close too
(within ~T7).

D. Two-photon interference with a frequency filter

So far we have assumed that the input modes b(w) are in
the vacuum state. However, if we allow an input state that has
one photon in each of the two input modes such that

lin) = / Ooda) / DOda)/qﬁl(w)¢2(a)/)&T(a))ET(a/)|Vac) (57)
0 0

(so that the two photons are independent, i.e., neither correlated
nor entangled), interference effects of the Hong-Ou-Mandel
type [13] become possible. In particular, with the help of (5),
the output state after the frequency filter can be written as

lout) = / dw / da ¢1(0)pa ()T (@) (@) + R(@)bT(0)][R(@)d (@) + T ()b (@')]|vac)
0 0

_ [ / do / 4 $1(@)2() T (@)R(@)a (@) (@) + / do / 40 $1(@)$2(0))R@)T (@) (@) ()
0 0 0 0

+ /0 do /0 dw'[(ﬁl(w)(ﬁz(w/)T(w)T(w')+¢1(w')sz(w)R(w’)R(w)]&/T(w)ﬁ/T(w')]IVaC)~ (58)

It is the last line that contains interference effects. Namely, the
two terms in the last line both describe an output state with
one photon in the @’ modes and one photon in the 5" modes,
but the terms cancel each other for every pair of frequencies w
and o’ such that

P(OT(@) _ $1@)R@)
9@R) G @)

That is, when this condition is fulfilled we cannot detect a
photon with frequency w in output modes &’ if we detect one
with frequency o’ in modes &'. This type of interference is
insensitive to phase shifts in the initial state, in that multiplying
¢1.2(w) by any frequency-independent phase factors does not
impact the condition (59) for destructive interference. For v =
o’ we get destructive interference if and only if

IT(w)* = |R()|* = 1/2, (60)

(59)

the derivation of which makes use of both unitarity conditions
(2). That is, at those frequencies w for which the transmission
probability is exactly 1/2, we can only detect both photons
in the same output mode: either both in the & (w) modes
or (with the same probability 1/2) both in the b''(w) modes.

(

This destructive interference is very similar to the original
Hong-Ou-Mandel effect, but Eq. (59) describes a more general
form (involving two colors [24]) of the effect.

V. CONCLUSION

We showed how to construct the POVM corresponding
to various measurements on single photons or on pairs of
photons that involve one or more frequency filters. Whereas the
measurements are performed on light that exits the frequency
filter(s), the POVM describes on what states of the input
modes that enter the filter(s) the measurement projects. These
states in general are not orthogonal for different measurement
outcomes.

The POVM element describing the time-dependent spec-
trum of a single photon projects onto single-photon states with
awidth in time set by the filtering time ' !, not by the accuracy
At of the time of detection after the frequency filter. This is
such that the standard time-frequency uncertainty relation is
automatically satisfied, even in the limit ' Az <« 1. In that limit
the POVM becomes pure (each element involving a projection
onto a single pure state). In the opposite limit of large I" Az
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each POVM element projects onto a Hilbert subspace with
effective dimension dess =~ ' At + 1/2. All these conclusions
are independent of the finite efficiency of the photodetector(s)
used.

As an application of the formalism we considered the
process of heralding one photon by detecting another photon
after a frequency filter [10-12]. The approach used here
leads to identifying best-case (I'Atr — 0) and worst-case

PHYSICAL REVIEW A 96, 033834 (2017)

("' At — 00) scenarios for the purity of the heralded photon
and all cases in between. It is an open question how this exactly
affects the purity-efficiency trade-off relation [11,12] for the
heralding process.

Finally, we also found a Hong-Ou-Mandel type of interfer-
ence effect between two photons (which could have different
colors) entering the two different input ports of a frequency
filter.
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