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The computation of light scattering by the superposition T-matrix scheme has been restricted thus far to
systems made of particles that are either sparsely distributed or of near-spherical shape. In this work, we extend
the range of applicability of the T-matrix method by accounting for the coupling of scattered fields between highly
nonspherical particles in close vicinity. This is achieved using an alternative formulation of the translation operator
for spherical vector wave functions, based on a plane-wave expansion of the particle’s scattered electromagnetic
field. The accuracy and versatility of the present approach is demonstrated by simulating arbitrarily oriented and
densely packed spheroids, for both dielectric and metallic particles.
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I. INTRODUCTION

The quantitative description of light scattering by
wavelength-scale particle systems is of paramount impor-
tance for a wealth of disciplines. Examples span from the
characterization and sensing of atmospheric particulates [1],
the performance of astrophysical studies [2], investigations in
biology [3] and biomedicine [4], to the optimization of light
scattering for plasmonic devices [5], light-emitting diodes [6],
and solar cells [7].

Strictly numerical simulation techniques, such as the finite-
element method (FEM) and the finite-difference time-domain
(FDTD) method, provide comfortable solutions for small or
periodic systems. However, for larger disordered photonic
systems, they require enormous computational resources, ren-
dering the treatment of larger complex systems impossible. An
efficient alternative to these numerical tools can be provided by
the T-matrix method [8–10] in conjunction with the translation
addition theorem of the spherical vector wave functions [11]
to account for multiple scattering. However, the applicability
of this approach is limited thus far to ensembles that are
either sparsely distributed or that consist of particles with
nearly spherical shape, whereas it breaks down for systems of
nonspherical particles when the particle interdistance is low.
In fact, the well-established superposition T-matrix scheme
[12–14] for multiparticle systems requires that any particle’s
circumscribing sphere does not intersect adjacent particles.
One attempt to overcome this limitation is to decompose a
single scatterer into multiple subunits, which are then treated
as a multiple scattering problem [15]. This way, the downsized
subunits’ circumscribing spheres exhibit less overlap.

In this contribution, we develop an alternative formalism
to accurately describe the multiple scattering between close-
by nonspherical particles. The basic idea is to transform
the scattered field’s spherical-wave expansion (SWE) into a
plane-wave expansion (PWE), allowing the use of the much
simpler plane-wave translation addition theorem instead of the
spherical-wave translation addition theorem. In this way, the
nonoverlap restriction of the particles’ circumscribing spheres
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can be avoided, provided that for each pair of particles a
separating plane can be found. This is always the case for
convex particles. The concept extends our recent work for the
case of an oblate particle near a planar interface [16].

We briefly summarize in Sec. II the procedure of the
superposition T-matrix scheme and highlight its range of
applicability. In Sec. III, we give a comprehensive description
of the plane-wave coupling formalism for arbitrary orientation
of the involved scattering particles.

Finally, in Sec. IV, we study light scattering at two exem-
plary configurations, both for dielectric and metallic spheroids.
We compare results computed with both the conventional
procedure based on the SWE translation addition theorem and
our plane-wave coupling formalism to reference simulations
using the FEM. The first example is given by a two-spheroid
configuration and the second example shows a dense cluster
of 20 nanorods, which are utilized, e.g., for light management
in photovoltaics [17].

II. SCATTERING BY MULTIPLE PARTICLES: GENERAL
T -MATRIX FORMALISM

One of the most powerful tools to study light scattering
by nanoparticles is the T-matrix method [8]. For clarity, we
briefly summarize its procedure. Comprehensive descriptions
can be found, e.g., in Refs. [9,10].

We consider a single particle in a homogeneous, isotropic,
linear, and nonabsorbing medium. The electric field E(r) can
be expressed as a superposition of an incoming electric field
Ein(r) and a scattered electric field Esc(r),

E(r) = Ein(r) + Esc(r). (1)

In the T-matrix formalism, the incoming electric field is written
as a sum of regular spherical vector wave functions (SVWFs)
M(1)

n (r),

Ein(r) =
∑

n

anM(1)
n (r). (2)

The scattered field is written in outgoing SVWFs M(3)
n (r),

Esc(r) =
∑

n

bnM(3)
n (r). (3)
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Here, the summation index n subsumes the degree l and order
m of the multipole, as well as the polarization p of the spherical
wave, n = (l,m,p).

The T-matrix of a scattering particle S is defined as the
linear operator that maps the amplitudes of incoming wave
functions aS

n to the amplitudes of outgoing wave functions bS
n ,

bS
n =

∑
n′

Tnn′aS
n′ . (4)

T contains the complete information about the scattering
properties of a particle. Accurate and time-efficient methods
for the computation of the T matrix are available for a broad
variety of scattering particles (for a collection of computer
codes, see, for example, the information portal described in
Ref. [18]). In the following, we assume that the T matrix of
each particle is precisely known.

Increasing the particle number to at least two results in a
system where multiple scattering has to be taken into account.
Such systems have been well studied in the framework of the
superposition T-matrix scheme [19–23]. Multiple scattering
denotes that each particle’s scattered field ES ′

sc(r) contributes
to the incoming field ES

in(r) of particle S. Since the incoming
field at a particle S is no longer known, (4) is not sufficient
to describe the entire system. A second equation is needed to
determine the incoming field for each particle,

aS
n = aS,in

n +
∑
S �=S ′

∑
n′

WSS ′
nn′ b

S ′
n′ . (5)

Here, aS,in
n denotes the amplitudes of the initial incoming

spherical waves at particle S, which are generated by the
initial field excitation, e.g., a plane wave or a dipole field.
The coupling matrix WSS ′

describes how the scattered field of
particle S ′ contributes to the incoming field of particle S. It
corresponds to the transpose of the translation operator A,

WSS ′
nn′ = An′n(rS − rS ′ ). (6)

For the translation addition theorem of SVWFs [see (A4)],
the translation operator can be expressed either in a closed-
form expression involving the Wigner-3j symbols [10] or be
constructed from an iterative scheme, which can be found in
Ref. [9].

Inserting (5) into (4) results in a self-consistent set of
equations to account for light scattering by a system of multiple
particles. Written in a matrix-vector notation, we obtain

b = (1 − TW)−1Tain. (7)

Any particle system built by spheres can be described by
Eq. (7). However, for different particle shapes, we have
to restrict ourselves to configurations where the distance
between particles is large enough to ensure that a particle’s
circumscribing sphere does not overlap with any other particle.
The scattered field’s SWE is only valid outside the particle’s
smallest circumscribing sphere (see Fig. 1). Inside the cir-
cumscribing sphere, the field expansion may not converge
towards its true value [24]. This restriction can be slightly
relaxed towards a sphere, circumscribing the singularities of
the scattered field expansion [25]. The question arises of how
a correct field representation in the dashed white region can
be achieved.

FIG. 1. Oblate scattering particle S in a homogeneous medium.
The SWE of the particle’s scattered field ES

sc(r) is only valid outside
the particle’s smallest circumscribing sphere (r > rmax). A correct
PWE can be obtained everywhere below the particle (z < zmin).

III. NEAR-FIELD COUPLING OF NONSPHERICAL
PARTICLES VIA PLANE WAVES

Utilizing an example of light scattering at a particle near
a finite cylinder, Boström et al. [26] suggested the idea of
transforming between spherical-, cylindrical-, and plane-wave
representations whenever one of them is not suitable for the
configuration considered. Following this idea, we propose to
make use of a plane-wave representation of the scattered fields
to overcome the separation restriction of the superposition
T-matrix formalism.

The benefit of transforming the outgoing SWE into a PWE
has been recently shown for nonspherical particles close to a
layer interface [16]. In short, the intermediate transformation
of the SWE into a truncated PWE acts as a regularization of
the divergent part of the SWE in the near-field region. In fact,
the domain of validity for a downgoing PWE is limited by a
plane that is tangential to the particle from below and oriented
such that its normal coincides with the z direction (see dashed
region in Fig. 1), thereby allowing a correct representation of
the scattered field nearby the particle, where the SWE would
diverge. This holds, even if the PWE is constructed starting
from a divergent SWE.

For simplicity, we consider a system of two nonspherical
particles at a close distance (see Fig. 2). Each particle
intersects with the other’s circumscribing sphere. Therefore,
the conventional T-matrix formalism based on the translation
addition theorem is, in general, not suitable to model such
configurations. Note that for the depicted configuration, the
lower particle does not intersect the upper particle’s bounding
plane, such that it is entirely located in the domain where the
PWE of the scattered field from the upper particle is valid.

To circumvent the limitation of the conventional approach
based on the translation addition theorem, we thus introduce
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FIG. 2. Two oblate scattering particles at a close distance: particle
S intersects the circumscribing sphere of particle S ′, but it is entirely
below the bounding plane.

a formalism to couple ES ′
sc to ES

in in terms of a PWE, including
three main steps:

(i) a transformation of the (outgoing) SWE of ES ′
sc into

a PWE,
(ii) a translation of the PWE of ES ′

sc to the center of
particle S,

(iii) a retransformation of the PWE of ES ′
sc into a (regular)

SWE of ES
in.

As pointed out in the previous section, the incoming field
of a single particle is not explicitly known in a multiparticle
system, preventing direct field transformations. Instead, we
aim for a PWE formulation of the translation operator A.

We start with an outgoing SVWF M(3)
n (r − rS ′ ) with its

center at position rS ′ . Expanding it in terms of a downgoing
plane wave (A6) and translating it to a position rS results in

M(3)
n (r − rS ′ ) = 1

2π

∫
R2

d2k‖
1

kzk

2∑
j=1

Bnj

(−kz

k

)

× eimαek·(rS−rS′ )E−
j (κ,α; r − rS). (8)

In our notation, E− refers to a plane wave propagating
in a negative z direction [see (A1)] and B denotes the
transformation operator between spherical waves and plane
waves [see (A8)].

Utilizing (A7), we retransform the plane wave into a regular
spherical wave,

M(3)
n (r − rS ′ ) = 2

π

∫
R2

d2k‖
1

kzk

×
2∑

j=1

Bnj

(−kz

k

)
eimαek·(rS−rS′ )

×
∑
n′

B
†
n′j

(−kz

k

)
e−im′αM(1)

n′ (r − rS). (9)

By comparing (9) with the translation addition theorem for
SVWFs (A4), we obtain a formulation of the translation
operator An′n(rS − rS ′ ), based on a plane-wave expansion.

Writing out
∫

d2k‖ = ∫
dκκ

∫
dα and utilizing k · (rS −

rS ′ ) = κρSS ′ cos(α − ϕSS ′ ) + kzzSS ′ with (ρSS ′ ,ϕSS ′ ,zSS ′ ) be-
ing the cylindrical coordinates of (rS − rS ′ ), we obtain

WSS ′
nn′ = An′n(rS − rS ′ )

= 2

π

2∑
j=1

∫
dκ

κ

kzk
Bnj

(−kz

k

)
B

†
n′j

(−kz

k

)

× ei(−kzzSS′ )
∫

dαei[κρSS′ cos(α−ϕSS′ )]eiα(m−m′). (10)

To get rid of the double integral, one can compare the second
integral in (10) with the integral formulation of the Bessel
function J reported in Ref. [27],

Ja(�) = i−a

2π

∫ π

−π

ei� cos φ+iaφdφ. (11)

Finally, we end up with

WSS ′
nn′ = 4im−m′

2∑
j=1

∫
dκ

κ

kzk
Bnj

(−kz

k

)
B

†
n′j

(−kz

k

)

× ei(−kzzSS′ )eiϕSS′ (m−m′)Jm−m′ (κρSS ′ ). (12)

Note that a transformation-translation-transformation
scheme to utilize the simple plane-wave addition theorem
for SVWF translations has previously been suggested in
Ref. [26]. However, here we use this method in order to
regularize divergent near-field SWE in the context of multiple
scattering by means of a truncation of the involved plane vector
wave-function (PVWF) wave numbers.

So far, we have introduced a formalism to couple the scat-
tered electric field of one particle to another by transforming
the outgoing SWE into a PWE at a plane that is parallel to the
xy plane (z = 0) of our laboratory coordinate system (L). In
a more general case, a plane separating two adjacent particles
will not be parallel to the xy plane, but arbitrarily aligned
in space. Then, one can perform the plane-wave coupling
formalism in a rotated coordinate system (R), in which the
separation plane is parallel to the xy plane.

Let D be a matrix notation of the rotation addition theorem
[Eq. (A5)] with

Dlmpl′m′p′ (α,β,γ ) = Dl
mm′(α,β,γ )δll′ .

Then we obtain the coupling matrix in the laboratory coor-
dinate system of particles S and S ′ in terms of the coupling
matrix in the rotated coordinate system,

WSS ′
(L) = DT (−γ,−β,−α)WSS ′

(R)DT (α,β,γ ). (13)

To determine the angles of rotation, one needs to find a plane
separating the two particles. It is assured that such a plane
exists if two particles, with a convex surface shape, do not
touch or overlap. One way to obtain such a plane is to find
the two surface points p and p′ on particles S and S ′ that
are closest to each other. Then, the separation plane is simply
perpendicular to the vector pp′, as illustrated in Fig. 3. Since
we want the separation plane to be parallel to the xy plane
in our rotated coordinate system, the angles (α,β,γ ) have to
transform pp′ into |pp′|êz in the laboratory coordinate system.
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FIG. 3. A plane separating the particles S and S ′ is normal to
the vector pp′, connecting the two surface points p and p′ that are
closest to each other. A rotation of pp′ towards the z vector êz of
the laboratory coordinate system (L) by the Euler angles (α,β,γ )
ensures that the separation plane is parallel to the xy plane of the
rotated coordinate system (R).

To conclude, we have introduced a formalism that couples
the scattered electric field of a particle to another by making
use of a plane-wave representation. An accurate near-field
representation of the scattered field can thereby be achieved
in a region where the SWE of the scattered field is not valid.
Performing the plane-wave coupling in a rotated coordinate
system allows accounting for light scattering by any pair of
arbitrarily oriented, nonspherical particles.

IV. APPLICATION EXAMPLES

In this section, we evaluate the accuracy of T-matrix
simulations relying on the plane-wave coupling formalism,
as introduced in Sec. III. To this end, we compare them
with simulations performed with the well-established FEM
(available in the COMSOL MULTIPHYSICS software) used as
a benchmark. The suitability of the present approach is
also emphasized by introducing results obtained with the
conventional superposition T-matrix scheme (see Sec. II).
To demonstrate the generality of the plane-wave coupling
formalism, we consider both (lossless) dielectric and (lossy)
metallic nanoparticles, and scattering systems either based
on two particles or on a cluster made of 20 particles. In
the following, all configurations are excited by a plane wave
(λ = 500 nm), which is polarized along the y direction and
propagating in the negative z direction. The ambient medium
is chosen to be air, na = 1.

A. Two arbitrarily oriented particles

In a first step, we study light scattering by a system
consisting of two particles, which are either made of a
dielectric (TiO2) or a metallic (Ag) material. The scattering
particles considered are oblate spheroids, with semimajor axes
of a = b = 200 nm and a semiminor axis of c = 50 nm,
corresponding to dimensionless size parameters of ka = kb =
2.51 and kc = 0.63. The refractive index of TiO2 (np = 2.5)
corresponds to the bulk value of titania in the anatase phase
and at a vacuum wavelength of λ = 500 nm [28]. We note that
the refractive index of nanoparticles can strongly deviate from
its material’s bulk value. However, the relatively large particle
diameter used here justifies the use of TiO2’s bulk property. The
first particle’s center is placed at (x1 = −80, y1 = 25, z1 =
120 nm), while the second particle’s center is located at (x2 =
120, y2 = −20, z2 = −60 nm). The particles’ orientations
are obtained by rotation of (α1 = 8

9π, β1 = 1
3π ) and (α2 =

14
9 π, β2 = 5

18π ) with respect to a spheroid with its semiminor
axis directed along the z axis. In this case, the minimal
interparticle distance measures 18 nm. A visualization of the
configuration can be found as an inset in Fig. 4(a).

Figure 4 shows the comparison between the conventional
superposition T-matrix scheme, for which the translation
operator A [see (A4)] has been computed by making use of the
Wigner-3j symbols, and the T-matrix scheme relying on the
plane-wave coupling formalism (Sec. III). For the computation
of all T matrices, a FORTRAN code based on the null-field
method with discrete sources (NFM-DS) [9] has been used.
For reference, we compare our results to FEM simulations. In
Fig. 4(a), the differential scattering cross section (DSCS) in
the yz plane is shown. In this example, the SWE has been
performed up to a maximal multipole order of lmax = 15.
A substantial deviation of the blue-dotted line from the
FEM solution (black dots) indicates that the exact scattering
behavior of the spheroid ensemble is not correctly reproduced
by the conventional T-matrix formalism. Such a mismatch
is to be expected since one particle’s circumscribing sphere
intersects the second particle. For the T-matrix simulation
utilizing the PVWF coupling (orange line), we obtain a very
good agreement with the FEM simulation. For the PWE, the
integral over all in-plane wave numbers κ [compare (12)] has
been considered up to the truncation value κtrunc = 3k. For
applicability reasons, the infinite integral has to be truncated
at some finite value. As stated in our previous work [16], one
has to ensure that for a fixed maximal multipole order lmax,
only values of the in-plane wave vector k‖ are considered, for
which the angular power spectrum has converged against its
true value. Very recently, a phenomenological formula for the
estimation of κtrunc has been proposed [29].

For a quantification of the accuracy of our simulation
results, the relative deviation of both T-matrix formalisms
from FEM-based solutions can be found in Fig. 4(c). The
relative deviation refers to the L2 norm of the differential
scattering cross sections and is shown for maximal multipole
orders lmax = 1 up to lmax = 20, while the truncation of κ is
kept constant at κtrunc = 3k. For low values of the maximal
multipole order, a convergence of the angular power spectrum
is not achieved for the fixed value of κtrunc = 3k. By increasing
the maximal multipole order above lmax = 7, the relative

033822-4



PLANE-WAVE COUPLING FORMALISM FOR T -MATRIX . . . PHYSICAL REVIEW A 96, 033822 (2017)

FIG. 4. Light scattering at two oblate spheroids with semiaxes (a = b = 200, c = 50 nm). The particles are excited by a plane wave
(λ = 500 nm), polarized in the y direction and propagating in the negative z direction. The ambient medium is air (na = 1). (a) DSCS of two
TiO2 particles (np = 2.5). For the SWE, multipole orders up to lmax = 15 are considered. The PWE is truncated at κtrunc = 3k. (b) DSCS of two
oblate Ag particles (np = 0.13 + 2.918i). The relative deviation of the DSCS for the conventional T-matrix formalism and the PVWF coupling
procedure with respect to the FEM simulations is shown for (c) TiO2 and (d) Ag. The maximal multipole order is varied from lmax = 1 up to
lmax = 20, while the PWE truncation is kept constant at κtrunc = 3k.

deviation of the PVWF coupling formalism (orange dots)
converges towards a minimal relative deviation of 1%.

For the conventional superposition T-matrix formalism
(blue circles), no convergence of the relative deviation can be
obtained. Moreover, the relative deviation fluctuates around
10% and strongly increases for large multipole orders (lmax �
19). Such divergent behavior in the near-field coupling has to
be expected, as it reflects the divergence of the SWE in the
near field with growing multipole order.

In a second example, we consider the two spheroids illus-
trated in Fig. 4(a) to be made of silver with a refractive index of
np = 0.13 + 2.918i at λ = 500 nm [30]. Figure 4(b) shows the
DSCS for the silver spheroids at a maximal multipole order of
lmax = 15 and κtrunc = 3k. Again, the coupling via plane waves
enables a good agreement with the FEM simulations, unlike the
conventional superposition T-matrix formalism results, which
strongly differ from the FEM reference. As shown in Fig. 4(d),
relative deviations, comparable to the TiO2 case, are obtained
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FIG. 5. Light scattering by 20 prolate spheroids (a = b = 30, c = 120 nm). TiO2 particles (np = 2.5) are excited by a plane wave
(λ = 500 nm), polarized in the y direction and propagating in the negative z direction. The ambient medium is air (na = 1). (a) Differential
scattering cross section of the spheroid cluster. For the SWE, multipole orders up to lmax = 10 are considered. The PWE is truncated at
κtrunc = 5k. (b) The relative deviation of the DSCS for the conventional T-matrix formalism and the PVWF coupling procedure with respect
to the FEM simulations. The maximal multipole order is varied from lmax = 1 up to lmax = 20, while the PWE truncation is kept constant at
κtrunc = 5k.

for the metallic nanoparticles. Thus, above a multipole order
of lmax = 10, the relative deviation starts converging towards
1.3% for the plane-wave coupling, while it varies between
10% and 20% for the conventional formalism based on the
spherical-wave translation addition theorem.

B. Cluster of spheroids

In this example, we extend the validation of our approach
to a more complex scattering system. The latter consists of
a cluster made of 20 prolate TiO2 spheroids (na = 2.5) with
semiminor axes of a = b = 30 nm and a semimajor axis of c =
120 nm. The cluster is formed by arbitrarily oriented particles
[for visualization, see Fig. 5(a)]. Such scattering clusters find
applications in dye-sensitized solar cells, where the TiO2

rods are exploited as a scattering layer for improving light
harvesting [17,31]. Smaller, very dense clusters consisting of a
few TiO2 particles can also be found in white paint, which can
be used as light-trapping back reflectors in photovoltaics [32].

The cluster considered herein functions as an extreme
challenge for the plane-wave coupling formalism. The prolate
shape of the scattering particles and an aspect ratio of 4 allows
for very low distances between particle centers, in comparison
to the particle diameters. In some cases, the high packing factor
leads to a minimal distance between adjacent particles below
1 nm and to overlapping of the circumscribing sphere of one
particle with multiple neighboring particles.

Figure 5(a) compares the calculated DSCS of the spheroid
cluster for the conventional superposition T-matrix scheme in
conjunction with the translation addition theorem (blue-dotted
line), the PVWF coupling formalism (orange line), and FEM
simulations (black dots). The spherical-wave expansion has
been taken into account up to a multipole order of lmax = 10,
while the plane-wave expansion has been truncated at κtrunc =
5k. A good agreement between the T-matrix simulations
relying on the PVWF coupling formalism and the FEM
can be observed, while the conventional T-matrix scheme’s
results do not match the FEM simulation. For κtrunc = 5k and
large multipole orders (lmax > 16), the relative deviation [see
Fig. 5(b)] between both T-matrix and FEM simulations show
divergent behavior. In this configuration, very low distances
below 1 nm lead to large values for the spherical Hankel
function of the first kind h

(1)
l [see definition of the outgoing

SVWFs (A2)]. This can lead to an ill-conditioning of the
linear system (5), when too large multipole orders lmax are
considered. Such divergence has been reported for decreasing
distances between a spheroid and an interface [25]. Doicu et al.
state that for each fixed distance, a domain of the maximal
multipole order lmax exists for which small deviations in the
computed scattering response are obtained.

Such a plateau can be observed for the relative deviation
between the PVWF coupling formalism and FEM. For maxi-
mal multipole orders of lmax = 7, . . . ,16, the relative deviation

033822-6



PLANE-WAVE COUPLING FORMALISM FOR T -MATRIX . . . PHYSICAL REVIEW A 96, 033822 (2017)

does not exceed a value of 4%, with a minimal deviation of
1.3% at lmax = 10. In comparison, the conventional superposi-
tion T-matrix approach using the translation addition theorem
for SVWFs shows a minimal deviation of 13.7% at lmax = 14
and typically exceeds 25%.

V. DISCUSSION AND CONCLUSIONS

We have shown that the T-matrix approach can be suitable
to evaluate light scattering by dense systems of highly
nonspherical particles, even if the circumscribing spheres
intersect adjacent particles. To account for multiple scattering
of neighboring particles, the SVWF translation operator can
be expressed in a plane-wave expansion. In practice, one has
to ensure that for a given maximal multipole order of the SWE,
the in-plane wave number of the PWE is truncated in a regime
where the angular spectrum converges [16]. For low values of
the maximal multipole order lmax, the accuracy is limited by
the multipole truncation error, whereas for large lmax, the poor
condition number of the linear system becomes prohibitive;
compare [16,25].

In this contribution, we have applied the plane-wave
coupling formalism to the case of spheroids. In general, our
approach works for any nonspherical particle with a convex
surface shape (or arbitrary particles, as long as the convex hulls
do not overlap).

Regarding the computation time, the presented formalism
cannot compete with the conventional superposition T-matrix
scheme using the SVWF translation addition theorem, but
exceeds it by a factor of 10 in terms of accuracy for the shown
examples. The additional effort of the plane-wave coupling
can be reduced to a minimum by utilizing the conventional
scheme for coupling between particles that are not within a
very low distance. This way, the additional effort brought by
the plane-wave coupling scheme scales only linearly with the
number of involved particles, and thereby becomes negligible
with growing particle numbers.

We conclude that the range of applicability of the T-matrix
approach is much larger than typically expected. It has the
potential to solve light-scattering problems in large disordered
systems, where strictly numerical approaches such as the
FEM or the FDTD method struggle in terms of hardware
requirements.
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APPENDIX: WAVE FUNCTIONS AND
TRANSFORMATIONS

The plane vector wave functions are defined as

E±
j (κ,α,r) = exp(ik± · r)êj . (A1)

Here, (κ,α, ± kz) define the cylindrical coordinates of the wave
vector k±, with kz = √

k2 − κ2 and the wave number k = n0ω.
The plus sign corresponds to waves propagating in the positive

z direction; the minus sign refers to waves propagating in the
negative z direction. Index j of Ej denotes the polarization (1
= TE and 2 = TM) realized by the unit vectors ê1 = êα and
ê2 = êβ , which belong to the azimuthal and polar angle of k±.

Besides plane-wave functions, we make use of spherical
vector wave functions, which read [9]

M(ν)
lm1(r) = 1√

2l(l − 1)
∇ × [

rz(ν)
l (kr)P |m|

l (cos θ )eimφ
]
,

(A2)

M(ν)
lm2(r) = 1

k
∇ × M(ν)

lm1(r), (A3)

where (r,θ,φ) are the spherical coordinates of the position
vector r. Index (ν) indicates whether the wave function is of
a regular kind (ν = 1) or if it represents an outgoing wave
(ν = 3). In the case of regular spherical waves, the radial
wave function z

(ν)
l stands for the spherical Bessel function

of the order of l, z
(1)
l = jl . Outgoing spherical waves involve

the spherical Hankel function of the first kind, z(3)
l = h

(1)
l . P |m|

l

denotes the normalized associated Legendre functions. The
spherical-wave functions M(ν)

lmp are specified by the following
indices: l = 1,2, . . . describes the angular index with respect to
θ , m = −l, . . . ,l describes the angular index with respect to φ,
and p describes the spherical polarization (1 = TE,2 = TM).
For a more condensed notation, the indices are subsumed into
a multi-index (lmp) → n.

A translation of SVWFs can be accounted for by making
use of the translation addition theorem [11],

M(3)
n (r + d) =

∑
n′

Ann′ (d)M(1)
n′ (r) for r < d. (A4)

The translation operator A(d) can be obtained by making use of
recurrence formulas given in [9,33]. Alternatively, one can use
expressions involving the so-called Wigner-3j symbols found,
e.g., in Refs. [10,11,34].

Transforming SVWFs from a laboratory coordinate system
(L) to a rotated coordinate system (R) can be achieved,
utilizing the rotation addition theorem for SVWFs [34],

M(1,3)
lmp (R) =

l∑
m′=−l

Dl
mm′(α,β,γ )M(1,3)

lm′p(L). (A5)

Function D refers to the so-called Wigner D functions.
Recurrence formulations for D can be found, e.g., in Ref. [9]
or Ref. [10]. The rotation between the two coordinate systems
is defined by the Euler angles (α,β,γ ) in zy ′z′ convention.

Spherical vector wave functions can be expanded in plane
vector wave functions, and vice versa [26],

M(3)
n (r) = 1

2π

∫
R2

d2k‖
1

kzk

2∑
j=1

Bnj

(±kz

k

)

× E±
j (κ,α; r)eimα for z ≷ 0. (A6)

The integral is performed over the in-plane components of the
wave vector k‖ with its polar coordinates κ,α.
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A plane-wave representation in terms of regular spherical vector wave functions reads

E±
j (κ,α; r) = 4

∑
n

e−imαB
†
nj

(±kz

k

)
M(1)

n (r). (A7)

The transformation operator B is given by

Bnj (x) = − 1

il+1

1√
2l(l + 1)

(iδj1 + δj2)
[
δpj τ

|m|
l (x) + (1 − δpj )mπ

|m|
l (x)

]
, (A8)

where the spherical functions π and τ are defined as

πm
l (cos θ ) = P m

l (cos θ )

sin θ
, τm

l (cos θ ) = ∂θP
m
l (cos θ ).

In the “daggered” version of the transformation operator B†, all explicit i are set to −i.
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