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Nonadiabaticity of cavity-free neutral nitrogen lasing
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We report on a theoretical study of cavity-free lasing of neutral nitrogen molecules in femtosecond laser
filaments with a nonadiabatic Maxwell-Bloch model, compared with recent pump-seed experiments. The
nonadiabaticity of the lasing process is revealed and it is found that electron-neutral collisions dominate the
dipole dephasing rate. Moreover, we show that the asymmetry between forward and backward lasing not only
depends on the different amplification lengths but also on the temporal dynamics of electron-neutral collisions.
The comparison of the nonadiabatic model with simulations based on the adiabatic approximation (such as
radiative transfer equations) explicitly sets a bound on the validity of the latter model for cavity-free nitrogen
lasing phenomenon, which holds a unique potential in optical remote sensing applications.
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I. INTRODUCTION

The interest in coherent emission from atmospheric con-
stituents pumped by ultrafast lasers has been rising in re-
cent years, mainly because of its huge potential in remote
sensing applications [1–9]. While nowadays remote sensing
techniques rely on detecting backward-scattered light from
targets in the atmosphere, backward lasing from a certain
point in the sky towards ground-based detectors is expected
to improve tremendously the efficiency and precision of these
techniques [10]. It has been recently demonstrated that intense,
circularly polarized, infrared pulses (λ = 800 nm) can create
a filamentary plasma in air that amplifies the spontaneous
emission of neutral nitrogen molecules (λ = 337.1 nm)
in the backward direction [11]. Forward (i.e., propagating
with the IR pulse) and backward (i.e., counterpropagating with
the IR pulse) amplified emissions of both injected UV and
spontaneous emission have been achieved in pure nitrogen
[9,11–14] or mixed with argon [6]. In air, only forward
amplified emission has been observed [12,13]. The absence of
backward amplification in air is explained by the pronounced
asymmetry of the lasing intensity between backward and
forward geometries in favor of the latter and the quenching
effect of oxygen molecules [11,13]. Thus, it is of capital
importance to study the origin of this asymmetry in order
to envision strategies allowing backward lasing in air.

Plasma amplifiers can be probed with the use of an UV,
XUV, or soft x-ray seed pulse tuned to the lasing wavelength.
The comparison of experimental results with proper modeling
allows one to benchmark the codes and to quantify parameters
such as collisional rates, populations, electron density, etc.,
that are very difficult to measure experimentally. For example,
the gain lifetime and the gain recovery time of plasma-based
soft x-ray lasers were successfully measured using amplified
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spontaneous emission (ASE) [15] and high-order harmonics
[16] as seed pulses. This pump-seed technique has been widely
used to study the superradiance of excited N2

+ molecules
[17], the dependence of the optical gain in N2

+ molecules
with pressure [18], and the local gain coefficient of excited
nitrogen molecules in air [19]. Amplification curves of N2

and N2
+, pure, mixed with Ar, and in air were measured in

Refs. [12,13,20,21]. More recently, amplification curves along
with the temporal profile of forward and backward lasing from
neutral nitrogen molecules at λ = 337.1 nm, for both amplified
seed and amplified spontaneous emission, were measured [9].

Different models are available to study the amplification
of UV radiation in filaments. Radiative-transfer-based models
have been used to study pure molecular nitrogen emission [14]
or in air [3,7,22]. Maxwell-Bloch models have been used to
study the emission of atomic oxygen in air [4], superlumi-
nescence and superradiance of atmospheric contaminants [1],
and the emission and amplification in pure molecular nitrogen
filaments [9]. The accuracy of these models depends on the
approximations needed to deduce them, among other factors.
For example, the use of a radiative transfer equation assumes
implicitly the adiabatic approximation for the polarization and
a constant dipole dephasing rate, as it will be explained.
Several Maxwell-Bloch models also neglect the temporal
dynamics of the dipole dephasing rate and most of them
assume a Maxwellian electron energy distribution function.
Some improvements over these approximations are reported
in Refs. [14,22], where the electron energy distribution
function is computed explicitly, and in Ref. [9], where we
use our fully time-dependent, one-dimensional, nonadiabatic
Maxwell-Bloch code DEEPONE [16,23].

In this paper, we analyze the range of validity of the
adiabatic approximation, widely used to model cavity-free
nitrogen lasing. In Sec. II, we describe our plasma and
Maxwell-Bloch models. Since the collisional dephasing rate
plays a fundamental role in the temporal dynamics of the
amplification and, thus, on the validity of the adiabatic
approximation, we dedicate Sec. III to the study of this
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rate. We will show that a constant dephasing rate (as the
one induced by neutral-neutral collisions) cannot explain
the experimental results. We will thus conclude that the
dephasing rate is dominated by electron-neutral collisions,
inducing a decreasing dipole dephasing rate that explains
the different amplifications and durations of forward and
backward emission. In Sec. IV, we will show with both a
toy model for the polarization density and full Maxwell-Bloch
simulations that the adiabatic approximation cannot reproduce
the temporal dynamics of amplification, finding a dramatic
divergence with experimental results in the case of backward
amplification. Nevertheless, our study reveals that the adiabatic
approximation performs quite well when modeling quantities
integrated in time, such as the total emitted energy. Finally, we
will conclude in Sec. V with a brief summary of the article, the
enumeration of other laser systems where the conclusions of
this paper hold, and future improvements of the present model.

II. MAXWELL-BLOCH MODELLING

Our one-dimensional, time-dependent, nonadiabatic
Maxwell-Bloch code DEEPONE [16,23] solves the paraxial
wave equation for the electric field in the slowly varying
envelope approximation

∂E±
∂t

± c
∂E±
∂z

= iω0

2

[
P±
ε0

−
(

ωp

ω0

)2

E±

]
, (1)

where E+,E− are respectively the forward and backward prop-
agating electric fields, P+,P− the corresponding polarization
densities, c is the light velocity in vacuum, ω0 is the frequency
of the electric field, ωp is the free-electron plasma frequency,
and ε0 is the vacuum permittivity. The polarization density
is computed using a constitutive relation derived from Bloch
equations,

∂P±
∂t

= � − γP± − iz2
ul

h̄
E±(Nu − Nl), (2)

where � is a stochastic source term with a vanishing correlation
time that takes into account the spontaneous emission [24,25],
γ is the dipole dephasing rate due to collisions, zul is the
nondiagonal dipole matrix element which is obtained from

Einstein’s Aul coefficient, zul =
√

3πAulh̄c3ε0ω
−3
0 , and Nu,Nl

are respectively the population of the upper and lower levels
of the lasing transition (levels C 3	+

u and B 3	+
g in the triplet

manifold of the neutral nitrogen molecule). The populations
of the levels are computed using rate equations,

∂Ni

∂t
=

∑
k

CkiNk ± Im(E∗P )
1

2h̄
, (3)

where the summation is extended to all levels taken into
account, three in our case (X 1
g , B 3	+

g , C 3	+
u ); i = u,l and

Cki are the collisional (de)excitation and radiative deexcitation
rates. These rates are computed using the cross sections
reported in Ref. [26]. The product of the cross section and
velocity is integrated using the energy distribution function
of the free electrons. In our computations, we have assumed
a Maxwell distribution corresponding to the temperature
computed as stated below. However, in Ref. [14] it is reported
that the electron energy distribution function departs from

a Maxwellian distribution function during several tens of
picoseconds, resulting in an enhanced pumping of the lower
level of the transition during the first 20–25 ps. Thus, this
departure from equilibrium strongly reduces the population
inversion. In order to take into account this effect, we have
artificially enhanced the lower level pumping rate by flooring
the corresponding collisional rate during the first 20 ps of
the simulation. The resulting population inversion is in good
agreement with that reported in Ref. [14]. More importantly,
our model reproduces quite well the experimental amplifi-
cation curve [9] which is directly related to the population
inversion when the laser is not saturated, as it is the case in
this work.

Due to the employment of the slowly varying envelope
approximation, we are treating the field envelope, not the laser
field. As a result, the beating effect observed experimentally
[9] cannot directly appear in our Maxwell-Bloch simulations.
Thus, we postprocessed our electric field data assuming an
interference effect between sublevels. When the arbitrary
phases between the three fields are correct, the positions of
the experimental maxima and minima are retrieved.

The evolutions of the electron density and temperature of
the plasma are computed following the lines described in
Refs. [3,7,9]. The electron temperature Te and the vibrational
temperature Tν are computed from the following equations,

3

2

∂NeTe

∂t
= −QcNaNe

(
1 − Tν

Te

)
,

3

2
Na

∂Tν

∂t
= QcNaNe

(
1 − Tν

Te

)
,

where Ne and Na are respectively the electron and neutral
density, and Qc is the cooling rate, given by

Qc ≈ 3.5 × 10−8 exp

(
− 5

3Te

)
+ 6.2 × 10−11 exp

(
− 1

3Te

)
,

valid for Te < 2 eV. For higher temperatures the value of Qc

is extrapolated. The fast cooling of the filament (the initial
temperature of 16 eV [27] cools in less than 6 ps to a value
lower than 2 eV) ensures that extrapolation errors are low
enough to not affect the simulation.

The electron, positive, and negative ion densities Ne, Np,
and Nn are given by

∂Ne

∂t
= νionNe − βNpNe − ηNe,

∂Nn

∂t
= ηNe − βnpNnNp,

Np = Ne + Nn,

where νion is the collisional ionization rate, β is the electron-ion
recombination rate, βnp is the ion recombination rate, and η

the attachment coefficient. In Ref. [3] the following analytical
expressions are given for those coefficients:

νion = νN2

(
Te

UN2

)3/2(
UN2

Te

+ 2

)
exp

(
−UN2

Te

)
,

UN2 = 15.6 eV, νN2 = 7.6 × 1011 s−1,

β(cm3/s) ≈ 1.5 × 10−8T −0.7
e , for Te < 0.1 eV,
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β(cm3/s) ≈ 2.0 × 10−8T −0.56
e , for Te > 0.1 eV,

η(s−1) = α2Na + α3N
2
a ,

α2(cm3/s) ≈ 2.75 × 10−10T −0.5
e exp

(
− 5

Te

)
,

α3(cm3/s) ≈ 1.5 × 10−32T −1
e exp

(
−0.052

Te

)
.

It is important to mention that the above expressions were
reported in studies of nitrogen lasing in air (i.e., mixed with
oxygen). However, the agreement between modeling and
experimental results [9] allows us to conclude the validity
of the model for pure nitrogen lasing.

III. MODELIZATION OF THE COLLLISIONAL
DEPHASING RATE

The collisional dipole dephasing rate γ is a key parameter
that controls the temporal dynamics of the amplification of
UV radiation. Depending on the physical mechanism that
causes the dephasing, this rate will take greater or lower values
and, more importantly, it will evolve in time differently. For
example, in plasma-based soft x-ray lasers the radiation is
amplified by ions. Thus, the dipole dephasing rate is taken

as the electron-ion collision frequency [24] γ ∝ NeT
− 3

2
e .

Previous works on atmospheric lasing assume explicitly a
constant dipole dephasing rate [1,4,14,22], or implicitly using
a constant stimulated emission cross section [3,7] [which
implies assuming a Lorentzian line shape of constant width
�ω and thus a constant collisional rate; see Eq. (6)]. When
the depolarization is dominated by collisions with neutral
molecules, the collision rate can be approximated by a constant
value, since it takes the form [28] γ ≈ 〈σvn〉Nn. All three
parameters, the neutral density Nn, the cross section σ , and

the velocity v ∝ T
1
2

n , are almost constant during the emission
time, since the temperature of the neutrals Tn varies in a slower
time scale. However, a constant dipole dephasing rate cannot
explain the huge difference between the temporal profile and
amplification of the forward and backward amplified pulses.
As shown in Fig. 1(a), the forward seeded emission can
be modeled using a constant value for the dipole dephasing
rate, γ = 8.3 × 1011 s−1 [14,29]. Since the delay between the
IR pulse and the UV emission is fixed in the forward regime,
we can assume that the UV pulse will find the same plasma
conditions all along the amplifier. However, the temporal
profile of the ASE and backward seeded emission, depicted
in Figs. 1(a) and 1(b), differ from the experimental one, as
shown in Figs. 1(e) and 1(f). Using a lower value for the
dipole dephasing rate, γ = 1011 s−1, widens the backward
amplified pulse (although its duration is still shorter than
the experimentally measured) and strongly overestimates the
intensity of forward pulses, as represented in Figs. 1(c) and
1(d).

These negative results can be explained as follows. Ex-
perimentally, the ASE emission, spanning 30–40 ps, interacts
with a decreasing profile of the dipole dephasing rate, strongly
increasing the cross section, since it is inversely proportional
to the dipole dephasing rate [as shown later in Eq. (6)]. When
the dipole dephasing rate is taken as a constant, the cross
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FIG. 1. (a), (c) Forward and (b), (d) backward amplified seed
(red dotted line/black continuous line) and ASE (blue continuous
line) modeled using constant values for the dipole dephasing rate,
γ = 8.3 × 1011 s−1 (upper panel) and γ = 1011 s−1 (lower panel).
Comparison with experiments [9] (e), (f) shows that a constant dipole
dephasing rate cannot explain the experimental results.

section and thus the amplification of ASE is too low, as shown
in Fig. 1(a) for γ = 8.3 × 1011 s−1, or too high, as shown
in Fig. 1(c) for γ = 1011 s−1. The backward regime is more
complex. Due to its counterpropagating nature, the amplified
UV pulse will sweep all the temporal dynamics of the plasma
from the moment when it encounters the IR pulse at half
the length of the amplifier. In conclusion, a constant dipole
dephasing rate cannot explain the experimental results. These
differences in the temporal profile are a clear signature of a
strong variation of the dipole dephasing rate, diminishing with
time and thus increasing the duration of the pulse.

This decrease on the collisional dipole dephasing rate can
be explained if we assume that this rate is dominated mainly
by electron-neutral collisions, taking the form γ = 〈σv〉Ne ∝
NeT

1
2

e . Figure 2 shows the temporal dynamics of the electron-
neutral collision dipole dephasing rate. This rate has been
computed using cross sections obtained from Ref. [26] and
assuming a Maxwellian electron energy distribution function.
The absolute value of the dephasing rate is normalized to
a value of γ0 = 8.3 × 1011 s−1 at t = 4–5 ps, as reported
experimentally [9,14,29]. The fast cooling of free electrons
[9,14,22] along with the diminishing electron density, due to
recombination, explains the one order of magnitude variation
of the collisional dipole dephasing rate, from γ ≈ 1012 s−1 at
the very first moments to γ < 1.5 × 1011 s−1 after 100 ps.

Figure 3 shows good agreement between experiment and
our model when using the time-dependent dipole dephasing
rate of Fig. 2. However, our model gives higher intensities
for ASE (two times higher) and the backward amplified
seed (five times higher). In addition to this, the backward
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FIG. 2. Temporal evolution of the dipole dephasing rate induced
by electron-neutral collisions (solid blue line). The two constant
dipole dephasing rates used in Fig. 1 are depicted (dashed-dotted
blue line) for comparison.

amplified seed seems longer in the experiment. The fact that
we used a Maxwellian electron energy distribution function
to compute γ could explain this slight mismatch. In addition
to this, plasma hydrodynamics may play a role in backward
amplification, further reducing the electron density. This
reduction implies a lower γ and thus a longer pulse. In
spite of this, our Maxwell-Bloch model, enhanced with a
time-dependent dipole dephasing rate, explains the asymmetry
between forward and backward lasing quite well.

It is worth mentioning that the need for time-dependent
dipole dephasing rates is directly applicable to schemes that
rely on the emission of excited molecular nitrogen ions
[17,18,20,30,31]. In these schemes, electron-ion collisions
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FIG. 3. (a) Forward and (b) backward amplified seed (red dotted
line/black continuous line) and ASE (blue continuous line) modeled
using a time-dependent dipole dephasing rate, induced by electron-
neutral collisions (depicted in Fig. 2). The experimental results [9] for
(c) forward and (d) backward emission of neutral molecular nitrogen
are shown below.

will dominate the dipole dephasing rate, taking the form γ ∝
NeT

− 3
2

e . Thus, the dipole dephasing rate will vary inversely and
faster with the electron temperature than the case of neutral
molecular nitrogen.

IV. ADIABATIC VERSUS TIME-DEPENDENT MODEL

The set of equations (1)–(3) can be simplified using
the so-called adiabatic approximation. In this approximation
we assume that the medium perturbed by the electric field
reacts immediately. In this way, the polarization density is
proportional to the electric field and it can be written as
P = ε0χE, where χ is the electric susceptibility. The steady-
state solution of Eqs. (2) and (3), neglecting the spontaneous
emission contribution, allows one to find an expression for the
imaginary part of the susceptibility χ = χ ′ − iχ ′′ [32],

χ ′′ = z2
ul

h̄γ ε0
(Nu − Nl). (4)

Within the adiabatic approximation, a radiative transfer
equation can be deduced, obtaining the following equation,

∂I

∂z
= σstim(Nu − Nl)I − �dI, (5)

where �d is a damping term depending on the ratio ωp/ω0.
The stimulated emission cross section (assuming a Lorentzian
line shape) σstim(ω0) is given by

σstim(ω0) = ω0z
2
ul

2h̄ε0c

4

�ω
= ω0z

2
ul

h̄γ ε0c
, (6)

where the full width at half maximum (FWHM) of the
Lorentzian line shape is �ω = 2γ , deduced within the
Maxwell-Bloch formalism [24,33].

The validity of this approximation, extensively used to
model nitrogen lasing [3,7,14,22], and thus its predictive
capacity, must be examined in order to model cavity-free
nitrogen lasers. A straightforward way would be by comparing
its results with pump-seed experiments. However, before this
comparison is done, deducing an estimation of the range of
validity of the adiabatic approximation or, conversely, the
radiative transfer equation, will prove useful to understand
the role of the temporal dynamics of the plasma in the
amplification of UV radiation. This estimation can be done
as follows.

An exact solution for Eq. (2) can be obtained provided some
assumptions are made. When the polarization is excited by an
external electric field (i.e., an UV seed pulse), the spontaneous
emission term can be neglected. Assuming that the electric
field is switched on at t = 0, and that both the dipole dephasing
rate and the population inversion remain constant all along the
pulse duration (i.e., far from the saturation regime), the solution
of Eq. (2) is

PNA(t) = − iz2
ul

h̄
(Nu − Nl)e

−γ t

∫ t

0
E(τ )eγ τ dτ. (7)

The above-mentioned assumptions are valid at the entrance
of the plasma and for seed pulses of several picoseconds of
duration or shorter, as the ones used in the experiments studied
here.
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Assuming that the intensity of the seed pulse has a
Gaussian temporal shape, the electric field takes the form

E(t) = E0e
− (t−tcent)2

2σ2 , where tcent is the time when the maximum
of the pulse arrives and σ is its standard deviation.

After some algebra, we can write Eq. (7) as

PNA(t) = − iz2
ul

h̄
(Nu − Nl)E0e

γ 2σ2

2 e−γ (t−tcent)
√

2πσ

× [F (t ; tcent + γ σ 2,σ ) − F (0; tcent + γ σ 2,σ )],

(8)

where F (t ; τ,σ ) is the distribution function of a Gaussian
probability density function centered at τ and with standard
deviation σ .

The adiabatic polarization for the same UV seed pulse takes
the form

Pad(t) = − iz2
ul

h̄
(Nu − Nl)

E0

γ
e
− (t−tcent)2

2σ2 . (9)

The maximum values can be compared immediately. The
adiabatic polarization attains its maximum value Pad(tad

max) =
− iz2

ul

h̄
(Nu − Nl)

E0
γ

at tad
max = tcent. For the time-dependent

polarization, it can be shown that at its maximum

F
(
tNA
max; τ,σ

) − F (0; τ,σ ) = 1√
2πσγ

e
− (tNA

max−τ )2

2σ2 , (10)

with τ = tcent + γ σ 2.
After some algebra we obtain a relation between the

maximum value of the nonadiabatic and adiabatic polarization,

PNA
(
tNA
max

)
Pad

(
tad
max

) = e
− (tNA

max−tad
max)2

2σ2 . (11)

Thus, the adiabatic approximation systematically overesti-
mates the maximum value of the polarization. While there is
no algebraic formula for tNA

max [it is computed from Eq. (10)]
it is worth noting that it depends on the duration of the seed
pulse, via σ , and the dipole dephasing rate γ . The greater the
dipole dephasing rate, the better is the adiabatic approximation.
Indeed, γ is the inverse of the characteristic time of the plasma
response to a probe electric field [23]. When this time is
significantly shorter than the pulse duration, the polarization
evolves fast enough to accommodate its value to that of the
electric field, i.e., its steady-state value. Thus, the adiabatic
approximation is valid. If this is not the case, the transient part
will evolve in a slower time scale than the steady-state part
(which is driven by a short duration force, the electric field),
increasing the duration of the pulse and even inducing the
formation and amplification of a wake [9,23,34]. It is worth
mentioning that, while not obvious, Eq. (8) tends to Eq. (9)

when σ 	 γ −1 [or, conversely, PNA(tNA
max)

Pad(tad
max) → 1; see Eq. (11)].

This is easily shown by plotting both equations for greater and
greater σ or γ .

In conclusion, the adiabatic approximation not only over-
estimates the maximum value of the polarization but also un-
derestimates its temporal duration. Equation (11) serves as an
estimation of how good is the adiabatic approximation. For ex-
ample, for γ = 8.3 × 1011 s−1 and an UV seed pulse of 1.5 ps
of FWHM (σ = 901 fs), which are typical values in nitrogen
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FIG. 4. Comparison of the adiabatic (upper panel) and nonadi-
abatic (lower panel) polarization for the (a), (c) forward and (b),
(d) backward cases. (a) and (c) depict in the red dotted line the
forward amplified seed and in the blue continuous line the ASE. The
adiabatic approximation cannot explain the temporal profiles of the
amplified pulses, with the disagreement in the backward case being
more dramatic.

lasing experiments [9,14], PNA(tNA
max)

Pad(tad
max) = 0.71 and the adiabatic

approximation is not valid. However, if the dipole dephasing
rate is increased one order of magnitude while maintaining the

duration of the pulse, Eq. (11) gives a ratio of PNA(tNA
max)

Pad(tad
max) = 0.99,

and thus the adiabatic approximation is valid. The same result
is obtained when, instead of the dipole dephasing rate, the
duration of the pulse is increased one order of magnitude.

Figure 4 compares the results of using adiabatic and nona-
diabatic polarization, both using the time-dependent electron-
neutral dephasing rate described in Sec. III. As expected,
the adiabatic approximation cannot explain the delay of the
peak (4.5 ps experimentally, 5.4 ps nonadiabatic model, 1.3 ps
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FIG. 5. Experimental amplification curve (black dots) and mod-
eled amplification curves using the adiabatic approximation (blue
concentric circles) and the nonadiabatic polarization (red circles).
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adiabatic model) and the pulse duration (3.3 ps experimentally,
4.5 ps nonadiabatic model, 1.1 ps adiabatic model) and
overestimates the intensity of the ASE. The disagreement
between experiment and the adiabatic model is more dramatic
in the backward case, where the adiabatic approximation does
not develop the longstanding wake observed experimentally.

Figure 5 shows the experimental amplification curve [9]
and its modelization with the nonadiabatic model and the
adiabatic approximation. The quantity measured is the total
emitted energy. Since the gain evolves on a scale of tens of
picoseconds, the energy, for an unsaturated amplifier as in this
case, depends only on the population inversion and not on the
temporal profile of the pulse (provided it is shorter than the
characteristic time of evolution of the gain). For this reason,
both models explain the curve quite well.

V. CONCLUSIONS

In conclusion, Maxwell-Bloch modeling combined with
recent pump-seed experiments have allowed us to unveil
the nonadiabatic nature of the amplification of UV radiation
in free-space molecular nitrogen amplifiers. Moreover, the
temporal profile of amplified UV pulses demonstrates that
electron-neutral collisions dominate the dipole dephasing rate,
thus probing the temporal variation of electron density and
temperature in the plasma along hundreds of picoseconds.
This nonadiabatic behavior, along with the strong influence
of the temporal evolution of electron-neutral collisions, is of
great importance for backward lasing emission, since it sweeps
the whole gain dynamics of the plasma during backward
propagation. The range of application of the radiative transfer
equation (i.e., the adiabatic approximation) has been stated.
It is expected that the application of the full Maxwell-Bloch
formalism to free-space lasing of N2 and N2

+ in air will prove
fruitful in the quest for atmospheric backward lasing.

Finally, it is worth mentioning that plasma hydrodynamics
may play a role mainly in backward amplification. While most
forward amplification takes place some tens of picoseconds
after the IR pulse (and thus no hydrodynamic effects are

expected), backward geometry implies that the wake of the am-
plified pulse (which lasts several tens of picoseconds) arrives
at the opposite end of the plasma, z = L, at a time t = L/c

after the IR pulse (for example, for a 3-cm plasma such as the
one described in this paper, the head of the backward amplified
pulse arrives 100 ps after the IR pulse). Plasma hydrodynamics
might affect the amplification by further lowering the electron
density. This reduction in density, and its consequent reduction
of the collisional dipole dephasing rate, could explain the
longer and weaker pulse observed experimentally [Fig. 3(d)]
compared with the one given by our model [Fig. 3(b)]. In
addition to this, radial gradients of electron density, induced
by hydrodynamic expansion or by the spatial profile of the
IR pulse, may also impact the one-dimensional (1D) results
shown in this paper. For this reason, the three-dimensional
(3D) time-dependent Maxwell-Bloch code DAGON [35], an
evolution of DEEPONE, will be used in the future to study
the impact of electron density inhomogeneities and temporal
evolution. The impact of taking advantage of picosecond
filamentation in air [36] will also be left for future studies.
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