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High-order-harmonic generation by Laguerre-Gaussian laser modes:
Control of the spectra by manipulating the spatial medium distribution
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We study high-order-harmonic generation (HHG) by the incident laser beam in the Laguerre-Gaussian mode
with a nonzero topological charge. We find that the harmonic signal in the central spot on the beam axis does not
always vanish and depends on the distribution of the medium in the focal region of the incident laser beam. The
HHG spectra on the beam axis can be controlled by changing the spatial medium distribution. General theoretical
results are confirmed by calculations of HHG in the medium of argon atoms, with the single-atom response
obtained by means of the time-dependent density functional theory.
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I. INTRODUCTION

Laser beams carrying orbital angular momentum (OAM)
[1] and their interaction with matter are currently of much
interest in both theory and experiment because of their unique
properties. Such beams are also termed optical vortices since
the local momentum distribution mimics the velocity pattern
of a tornado or a vortex fluid. Another name for the same
photon state is twisted light beam (or twisted photons) because
of the waterfront spiraling about the propagation direction
of the beam [2]. In the infrared and visible spectral regions,
optical vortices are readily produced using spiral phase plates
[3,4], computer-generated holograms [5,6], or combinations
of astigmatic optical elements [7]. Numerous applications
of twisted light beams are available or anticipated in the
near future in various areas such as quantum information
and communication [8,9], imaging and microscopy [10,11],
nanoparticles and nanostructures control and manipulation
[12–14], and others.

A widely used example of the electromagnetic radiation
with OAM is the Laguerre-Gaussian (LG) laser mode. This
mode is a solution of the wave equation in the paraxial
regime where the wave propagation is limited to directions
within a small angle of the beam axis. It should be noted that
disentanglement of the photon spin and the OAM is possible
in the paraxial approximation only. In the general case, the
total angular momentum must be considered (see, for example,
Ref. [15], where different solutions of the wave equation
[Bessel beams] valid beyond the paraxial approximation are
studied). For the monochromatic linearly polarized LG wave
propagating along the z axis, the electric field strength E can
be expressed as follows:

E(r,ϕ,z,t) = E0 x̂Re{u(r,ϕ,z) exp[−i(kz − ωt)]}, (1)

where E0 is the electric field amplitude, x̂ is a unit vector
along the polarization direction (x axis), ω is the frequency,
and k = ω/c is the wave number (c being the speed of light).
Cylindrical coordinates r , ϕ, and z are used in Eq. (1) with r
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being the distance from the z axis in the transverse plane x-y,
ϕ being the azimuthal angle about the z axis, and z being the
distance in the propagation direction. The function u(r,ϕ,z)
has an analytic form:

u = w0

w(z)

(
r
√

2

w(z)

)|l|
exp(−ilϕ)L|l|
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where the notation L
|l|
p stands for the generalized Laguerre

polynomial. Integer numbers l and p define the mode; l is
called the topological charge (in the photon picture, it is equal
to the projection of the orbital angular momentum of the
photon onto its momentum). In Eq. (2), w0 is the waist radius
of the beam; the beam width w(z) depends on the distance
along the z axis:

w(z) = w0

√
1 +

(
z
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)2

, (3)

where

zR = πw2
0

λ
(4)

is called the Rayleigh range (λ being the wavelength). Other
quantities in Eq. (2) are the radius of the curvature of the wave
front R(z),

R(z) = z

[
1 +

(
zR

z

)2]
, (5)

and the Gouy phase ψ(z),

ψ(z) = (|l| + 2p + 1) arctan

(
z

zR

)
. (6)

The signatures of the LG mode with a nonzero topological
charge are the dependence of the phase on the azimuthal angle
ϕ and a donut-shaped intensity profile in the transverse x-y
plane with the dark spot in the vicinity of the beam axis.

Generation of twisted beams in the extreme-ultraviolet
(XUV) spectral range and their interaction with atoms and
molecules have recently attracted increasing attention. It
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was shown theoretically that OAM could be transferred
to the electronic degrees of freedom [15–17] and induce
charge current loops in fullerenes with an associated orbital
magnetic moment [18]. Intense XUV beams carrying OAM
can be possibly produced by free-electron lasers; the technical
schemes have been proposed [19,20]. High-order-harmonic
generation (HHG) is a tabletop alternative to free-electron
lasers, where optical vortices originally generated in the
near-infrared wavelength range can be converted to the XUV
range by means of a nonlinear interaction with matter. Several
experimental observations of twisted high-order harmonics in
gases have been reported [21–24]. While the first experiment
[21] detected all the harmonics with the topological charge 1
(equal to that of the incident LG beam), subsequent studies
[22,23] showed that the topological charge is a multiple
of the harmonic order, in accordance with the theoretical
considerations about angular momentum conservation [25].
In Ref. [23], experimental synthesis of attosecond XUV “light
springs” (ultrashort spatiotemporal light pulses where both
the phase and the intensity profiles have helical structures
[26]) was reported. Very recently, an experimental scheme has
been proposed that allows generation of harmonics carrying
arbitrary topological charge for any harmonic order [24].

In this communication, we report on a specific aspect
of HHG by LG beams, power spectra of the harmonics
propagating in the central spot of the beam. For the incident
LG mode, this spot is dark, and the intensity totally vanishes
on the beam axis. Normally, the same property is preserved
for the generated harmonics. However, as we show, harmonic
radiation still can be observed in the central spot, depending
on the distribution of the medium atoms in the focal region
of the incident beam. Manipulating this distribution, one can
control the shape of the HHG spectra, switching on and off
regions with the specific harmonic orders.

II. THEORETICAL DESCRIPTION

Since HHG is a highly nonlinear process, the harmonic
radiation power has a sharp dependence on the intensity of
the incident laser field. That is why it would be a reasonable
approximation if we restricted our treatment to the spatial
region where the electric field (or intensity) of the incident
beam reaches its maximum. For the LG laser mode with p = 0,
this is a circle in the transverse plane z = 0 with the radius
r0 = w0

√
l/2 [see Eq. (2)]. The beam waist w0 measured in

the experiments is about 40 μm [21,23] for the driving field
wavelength of 800 nm. That means the radius of the circle with
the peak intensity is much larger than the laser wavelength and
by far exceeds the atomic size. Therefore individual atoms
distributed along this circle may not “see” the global geometric
structure of the LG mode (both intensity and phase), and their
interaction with the “local” field (in the vicinity of each atom)
can be described within the traditional dipole approximation.
Then each atom would generate usual harmonics with plane
wave fronts. Generation of LG harmonics is thus a collective
coherent response of a large number of medium atoms in the
interaction region.

For the monochromatic driving field of frequency ω0, the
spatial and temporal dependence of the electric field on the

circle with the peak intensity can be expressed as follows:

E(ϕ,t) = E0 sin(ω0t − lϕ). (7)

For the pulsed field, a temporal envelope must be also included
in Eq. (7). Each atom on the circle (or group of atoms since we
are talking about the distribution on the circle of a macroscopic
radius) can be assigned a specific value of the azimuthal angle
ϕ. The electric field at an arbitrary ϕ position is phase-shifted
with respect to the field at ϕ = 0. According to Eq. (7), the
same phase shift can be achieved by an appropriate time delay,
and the following relation holds:

E(ϕ,t) = E(0,t − lϕ/ω0). (8)

We note that Eq. (8) is exact for the monochromatic field only
and can be regarded as an approximation for the pulsed field
with the temporal envelope. According to the widely used
semiclassical theory of HHG, the electric vector of the emitted
radiation is proportional to the induced dipole acceleration a(t)
[27], and the latter is calculated as an expectation value of the
corresponding quantum operator:

a(t) = −〈�(t)|∇V (t)|�(t)〉, (9)

where �(t) is the wave function of the atom in the external
field and V (t) is the total time-dependent potential. For the
atom with the coordinate ϕ on the circle, the wave function
�(t) is a solution of the time-dependent Schrödinger equation
with the external field given by Eq. (8). That is why the dipole
acceleration a(ϕ,t) of the atom calculated according to Eq. (9)
satisfies the relation similar to that in Eq. (8):

a(ϕ,t) = a(0,t − lϕ/ω0). (10)

Performing the Fourier transformation of Eq. (10), one
immediately obtains

ã(ϕ,ω) = exp

(
i
lϕω

ω0

)
ã(0,ω). (11)

Once the harmonic radiation is emitted, the wave equation
must be solved to propagate it through the medium to the
far-field region. The propagation may insert additional phase
differences between the contributions of different atoms to the
total signal at the position of the observer. However, if the
detector is placed in the central spot on the beam axis, such
phase differences do not arise, and the total harmonic signal
can be calculated with the total dipole acceleration, which is a
coherent sum of the dipole accelerations of individual groups
of atoms:

ãtot(ω) = ã(0,ω)
∫ 2π

0
dϕρ(ϕ) exp

(
i
lϕω

ω0

)
. (12)

Here ρ(ϕ) is the distribution density function for the atoms
on the circle. One can easily see from Eq. (12) that for the
uniform distribution [ρ(ϕ) = ρ0] the total dipole acceleration
in the central spot vanishes for any nonzero topological charge
l and integer harmonic order ω/ω0, as it should be the case for
the LG mode. However, for specially crafted and nonuniform
distributions, the harmonic radiation can still be detected in
the central spot. Below we consider the cases of discrete and
continuous distributions.
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FIG. 1. Discrete (left panel) and continuous (right panel) medium
distribution on the circle in the transverse plane of the laser beam.

A. Discrete medium distribution

Suppose we have N groups of atoms uniformly distributed
on the circle where the laser field strength reaches its maximum
(Fig. 1, left panel). For the LG beam with the topological
charge l, the phase difference of the field between two adjacent
groups is equal to 2πl/N . Then the Fourier transform of the
dipole acceleration of the j th group reads as

ãj (ω) = exp

[
i
2πlj

Nω0

]
ã0(ω). (13)

To calculate the total dipole acceleration, we replace integra-
tion over ϕ in Eq. (12) with summation:

ãtot(ω) = ã0(ω)
N−1∑
j=0

exp

[
i
2πlj

Nω0

]

= ã0(ω) exp

[
i
πlω(N − 1)

ω0N

] sin
(

πlω
ω0

)
sin

(
πlω
Nω0

) . (14)

The power of harmonic radiation P (ω) is proportional to
the squared absolute value of the Fourier-transformed dipole
acceleration. Then we obtain that the total and single-group
power spectra are related to each other by a simple profile
function:

Ptot(ω) = fl,N (ω)P0(ω), (15)

fl,N (ω) =
sin2

(
πlω
ω0

)
sin2

(
πlω
Nω0

) . (16)

The numerator in Eq. (16) vanishes at any integer ω/ω0. Since
the harmonic order (ratio ω/ω0) must be an odd integer number
(for the atoms or molecules with inversion symmetry), the
whole function fl,N (ω) may vanish at some harmonic orders
2n + 1, depending on the behavior of the denominator. The
general rule is as follows: if l(2n + 1)/N is not an integer num-
ber, then generation of the (2n + 1)th harmonic is suppressed.
Otherwise the power of this harmonic is increased by the factor
N2 compared with the harmonic power of a single group of
atoms. Consequently, if l is odd and N is even, then HHG
is totally suppressed. Symmetric distribution with an even
number of groups on the circle does not generate harmonics
in the central spot when driven by the LG beam with the odd
topological charge. If both l and N are odd, and N/l is not inte-
ger, only harmonics with the orders (2n + 1)N are generated.

TABLE I. Nonvanishing harmonic orders in the central spot for
the topological charges 1 to 3 and discrete symmetric distribution on
the circle with the number of groups 2 to 6.

l N Nonvanishing harmonics

1 2 None
1 3 3, 9, 15, 21, 27, 33, ...
1 4 None
1 5 5, 15, 25, 35, 45, 55, ...
2 2 All
2 3 3, 9, 15, 21, 27, 33, ...
2 4 None
2 5 3, 9, 15, 21, 27, 33, ...
2 6 5, 15, 25, 35, 45, 55, ...
3 2 None
3 3 All
3 4 None
3 5 5, 15, 25, 35, 45, 55, ...

If both l and N are odd, and N/l = M is another odd integer,
only harmonics with the orders (2n + 1)M are generated.

Consider the lowest nonzero topological charge l = 1. For
the symmetric distribution on the circle, HHG in the central
spot is possible if N is odd. In this case, harmonics with
the orders (2n + 1)N are generated; spacing between two
adjacent nonvanishing harmonic peaks is equal to 2N . For
l = 2, HHG on the beam axis is suppressed if both N and
N/2 are even. Otherwise, HHG is possible in two different
cases. If N is even and N/2 is odd, harmonics with the orders
(2n + 1)N/2 are generated; spacing between two adjacent
nonvanishing harmonic peaks is equal to N . If N is odd,
harmonics with the orders (2n + 1)N are generated; spacing
between two adjacent nonvanishing harmonic peaks is equal
to 2N . The general rules are illustrated in Table I for the
topological charges 1 to 3 and number of groups 2 to 6.

B. Continuous medium distribution

For the continuous uniform medium distribution on the
circle, one can either use Eq. (12) with the constant distribution
function ρ(ϕ) = ρ0 or take a limit N → ∞ in Eq. (16). In
the latter case, the following relation between the total and
single-group power spectra is obtained:

Ptot(ω) = N2fl(ω)P0(ω), (17)

fl(ω) =
(

ω0

πlω

)2

sin2

(
πlω

ω0

)
. (18)

As one can see, the function fl(ω) turns zero at all integer
harmonic orders ω/ω0 unless l = 0. As it was stated above,
uniformly and continuously distributed medium on the whole
circle does not generate harmonics in the central spot under the
LG laser field with a nonzero topological charge. Harmonic
generation is possible, however, if the axial symmetry of the
distribution is somehow broken. For example, HHG in the
central spot does exist if the medium fills not the whole circle
but only an arc corresponding to the central angle 2πβ (0 <

β < 1, see Fig. 1, right panel). In the latter case, the profile
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function fl,β(ω) in Eq. (17) is calculated as

fl,β(ω) =
(

ω0

πlβω

)2

sin2

(
πlβω

ω0

)
. (19)

Depending on the β value, it does not turn zero at ev-
ery harmonic order. The HHG spectrum, however, has a
frequency-dependent attenuation, compared with the single-
group response. When the frequency ω is increasing, the
harmonic signal is decreasing as 1/ω2.

III. HHG SPECTRA OF ARGON

We have performed calculations of HHG in argon atoms
subject to the laser pulses in the LG mode with l = 1 and p =
0. The carrier wavelength of the incident beam is 800 nm. The
temporal pulse envelope has a sin2 shape with a peak intensity
of 2×1014 W/cm2; several pulse durations have been used in
the calculations. For the laser pulse (rather than continuous
wave), we define the spectral density of the radiation energy
emitted for the whole pulse duration [27]:

S(ω) = 2

3πc3
|ãtot(ω)|2, (20)

and the total dipole acceleration is a sum of the individual atom
contributions:

ãtot(ω) =
N−1∑
j=0

ãj (ω). (21)

We use Eq. (21) instead of Eq. (14) for the monochromatic
field. However, as our results show, the approximation (14)
appears quite good for long enough laser pulses.

The single-atom responses ãj (ω) are obtained within the
framework of the time-dependent density functional theory
(TDDFT). We use the LB94 [28] exchange-correlation po-
tential which has proper long-range asymptotics and proved
quite accurate in the electron structure and time-dependent
calculations of Ar atoms [29–31]. The time-dependent Kohn-
Sham equations are solved by the generalized pseudospectral
(GPS) method in spherical polar coordinates, and the time-
dependent GPS split-operator method [32] is used for the time
propagation. Exterior complex scaling technique [33,34] is
applied to impose the correct boundary conditions on the wave
functions and prevent spurious reflections from the boundaries
of the spatial box where the problem is solved. In the present
calculations, we use 256 radial and 24 angular grid points
and 4096 time steps per optical cycle of the driving field.
The exterior complex scaling region begins at 25 atomic
units (a.u.) from the nucleus, and the total linear dimension
of the spatial box is 200 a.u. When calculating the dipole
acceleration with the Kohn-Sham orbitals according to Eq. (9),
only the nuclear and external field potentials are used for
evaluation of the expectation values since the Hartree and
exact exchange-correlation potentials do not contribute to the
total dipole acceleration (zero-force theorem [35]). A detailed
description of our implementation of the TDDFT approach
and numerical procedure can be found in Ref. [30].

As an example of discrete medium distribution on the circle,
we take three equally spaced argon atoms. The field strengths
of the linearly polarized driving laser at each atom position
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FIG. 2. HHG spectra of Ar atoms by LG laser pulse with the sin2

temporal envelope, a carrier wavelength of 800 nm, a peak intensity of
2×1014 W/cm2, and a total duration of 20 optical cycles. (a) Single-
atom spectrum. (b) Normalized spectrum produced by symmetric
distribution of three atoms on the circle. The blue solid line shows
the results obtained by Eq. (21), and the red dashed line corresponds
to the approximation (14).

differ by the carrier-envelope phase:

E(j,t) = E0 sin2 πt

T
sin

(
ω0t − 2πlj

N

)
, j = 0, . . . ,N − 1,

(22)
where T is the pulse duration; l = 1 and N = 3 for this
set of the calculations. The single-atom dipole accelerations
are computed by solving a system of the time-dependent
Kohn-Sham equations for each carrier-envelope phase, and
the total response is calculated according to Eq. (21). In Fig. 2,
the HHG spectra for the total pulse duration of 20 optical cycle
cycles [full width at half maximum (FWHM) is about 27 fs]
are presented (for the comparison with the single-atom data on
the same scale, here and below all N -atom spectra are divided
by N2). While the single-atom spectrum contains all odd
harmonics at full strength (a minimum at the 33rd harmonic
is a manifestation of the famous Cooper minimum [36] in
HHG, see discussion in Ref. [30] and references therein), the
collective three-atom response exhibits well-shaped harmonics
of the orders 3, 9, 15, 21, etc. only, in agreement with the
theoretical predictions in Table I. Along with the results
based on Eq. (21), we also show the spectrum obtained
with the help of the approximate equation (14). As one can
see, for this long enough laser pulse, performance of the
approximation (14) is quite good, especially in the low-energy
part of the spectrum where the single-atom harmonics are
narrow (note that in the monochromatic field approximation
harmonics must be infinitely narrow). In the above-threshold
higher-energy region with broad single-atom harmonic peaks,
a simple multiplication of the single-atom spectrum by the
profile function (16) results in the appearance of spurious peak
structures with amplitudes comparable with that of the true
harmonics in the three-atom spectrum.

In Fig. 3, the HHG spectra are presented for the same
symmetric three-atom distribution on the circle and much
shorter laser pulse (4 optical cycles or 5.3 fs FWHM). For
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FIG. 3. HHG spectra of Ar atoms by LG laser pulse with the sin2

temporal envelope, a carrier wavelength of 800 nm, a peak intensity
of 2×1014 W/cm2, and a total duration of 4 optical cycles. (a) Single-
atom spectrum. (b) Normalized spectrum produced by symmetric
distribution of three atoms on the circle. The blue solid line shows
the results obtained by Eq. (21), and the red dashed line corresponds
to the approximation (14).

such a short pulse, the single-atom HHG spectrum has a
high background and broad harmonic peaks. In this respect,
it is interesting to see that the three-atom spectrum exhibits
well-shaped harmonic peaks with the orders 3, 9, and 15
with deep minima between them. This is evidently a result
of interference of individual atom contributions to the total
harmonic signal, which appears constructive at the peak
positions and destructive between them. As expected, the
monochromatic field approximation for the HHG spectrum
based on Eq. (14) does not work well for this pulse duration.
Although the peaks at the harmonic orders 9 and 15 are
reproduced accurately, the whole spectrum differs very much
from that calculated according to Eq. (21).

To simulate a continuous medium distribution, we apply
the same approach as for a discrete distribution but use a
large number of atoms uniformly distributed on the arc of the
circle. For this set of the calculations, 128 argon atoms occupy
one-third of the circle (β = 1/3), the topological charge
l = 1, and the pulse duration T is equal to 8 optical cycles
(FWHM 10.7 fs). The profile function fl,β (ω) calculated in the
monochromatic approximation (19) predicts that for β = 1/3
harmonics with the orders divisible by 3 must vanish in the
central spot of the laser beam. In other words, nonvanishing
harmonics have the orders 5, 7, 11, 13, and so on. As one
can see from Fig. 4, this is indeed the case. Moreover, the
monochromatic approximation for the HHG spectrum appears
surprisingly accurate in the case of continuous medium distri-
bution, although the pulse duration is not very long in this cal-
culation. Not only are the heights and widths of the harmonic
peaks reproduced correctly but also the attenuation of the
spectrum with increasing frequency is reproduced correctly,
compared with the fully numerical results based on Eq. (21).

IV. CONCLUSION

In this paper, we have studied HHG in the central spot
on the incident laser beam axis when the driving field is in
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FIG. 4. HHG spectra of Ar atoms by LG laser pulse with the
sin2 temporal envelope, a carrier wavelength of 800 nm, a peak
intensity of 2×1014 W/cm2, and a total duration of 8 optical cycles.
(a) Single-atom spectrum. (b) Normalized spectrum produced by
uniform distribution of 128 atoms on one-third of the circle. The
blue solid line shows the results obtained by Eq. (21), and the red
dashed line corresponds to the monochromatic approximation with
the profile function (19).

the LG mode with the nonzero topological charge. It has
been experimentally confirmed [21–24] that normally the LG
incident beam generates harmonics in the LG modes as well.
Consequently, the intensity of the harmonic radiation vanishes
on the beam axis. We have shown that this is not always the
case, and depending on the medium distribution in the focal re-
gion of the driving laser, the harmonic signal can be detected in
the central spot on the beam axis. Moreover, by a special prepa-
ration of this distribution, it is possible to control the shape
of the HHG spectrum, switching on and off harmonics with
particular orders or changing their intensity. This additional
control of the HHG spectrum could be useful in generation of
attosecond pulses. Although a discussion of possible experi-
mental confirmation of our theoretical predictions is beyond
the scope of this paper, we can mention here that a simple way
to achieve a continuous distribution that does not possess the
axial symmetry on the circle in the transverse plane of the laser
focus could be using a setup geometry with incomplete overlap
between the laser beam and the gas jet. In this case, only a part
of the circle corresponding to the maximum intensity of the LG
mode would be filled with the medium atoms, thus providing
conditions for HHG in the central spot of the laser beam.
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