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Exact non-Markovian dynamics of qubits coupled to two interacting environments
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As the memory effect may be helpful in quantum information processing, non-Markovian dynamics plays
an important role in the description of many-body open systems. Among these topics, the system consisting of
independent qubits interacting with several coupled environments is of particular interest. In this paper, we study
the exact non-Markovian dynamics of two independent qubits. Each of the qubits interacts individually with its
environment, and these two environments coupled with each other. We investigate the non-Markovianity measure
of the system for the whole parameter regime without the rotating-wave approximation (RWA) and compare the
results with that under the RWA. We find that the non-Markovianity measure for two qubits manifests a transition
from a non-Markovian to Markovian regime regardless of the coupling strength between the environments. The
physical origin of this transition is revealed, and a possible observation of the prediction in superconducting
quantum interference devices is discussed.
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I. INTRODUCTION

The dynamics of open quantum system is a long-standing
problem [1]. In recent years, with the rapid development of
quantum information technology [2,3], the role played by
open quantum system has become more and more interesting.
Generally speaking, all realistic quantum systems are open
due to the unavoidable couplings to environment (of memory
or memoryless) [4–7]. A memoryless environment leads to
Markovian dynamics, while another results in non-Markovian
dynamics. The non-Markovian dynamics proves to be useful
in quantum information processing including quantum state
engineering, quantum control, and quantum channel capacity
[7–11]. Non-Markovianity can be characterized by the infor-
mation flow between the system and its environment [12–17],
leading to different measures of non-Markovianity [18–23].
There are many factors that can influence the non-Markovian
dynamics, such as the strength of system-environment cou-
pling, the structure of the environment, temperature, system-
environment correlations in the initial state [24–28], etc.

In the traditional researches, people in general focus on
the quantum system coupled to a single environment, which
has been investigated theoretically [29–42] and experimentally
[43–49]. However, in the real world, there might be a situation
of many environments coupling to a system simultaneously
[50–52]. For example, in a quantum dot the electron spin
may be affected strongly by the surrounding nuclei [51,53].
The neighbor nitrogen impurities constitute the principal bath
for a nitrogen-vacancy center, while the carbon-13 nuclear
spins may also couple to them [50]. A similar situation also
occurs for a single-donor electron spin in silicon [52,54].
Motivated by these facts [50–54], some efforts have been
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devoted to studying the effects of multiple environments on
the dynamics of an open system [55–58]. In the treatments
of composite environments, the interaction between these
environments was not taken into account. This gives rise to a
question of how the environment-environment coupling affects
the non-Markovian feature of the open system. The answer to
this question would be useful for engineering and controlling
quantum memories for applications in theory [59–61] and in
experiments [62–64].

In this paper, we will study the exact non-Markovian
dynamics of two independent qubits induced by the cou-
pling between two environments, which can be realized
in superconducting quantum interference devices (SQUIDs)
[64,65]. We will show that non-Markovian dynamics can
be observed in the whole parameter regime of the system.
Because the rotating-wave approximation (RWA) holds only
in the weak system-environment coupling limit, the non-RWA
effects are necessarily taken into account in the studies of non-
Markovianity. Under the RWA, we analyze non-Markovianity
with different parameters. We discuss the transition from non-
Markovian to Markovian regime and compare the difference
between the results with RWA and without RWA in the
non-Markovianity [44]. The physical origin of transition from
non-Markovian to Markovian regime is also revealed. Finally,
we study how the parameters, such as the coupling strength
between the environments, influence the non-Markovianity in
the strong coupling regime.

The remainder of this paper is as follows. In Sec. II
we introduce the system and take the RWA to describe the
system. Then we analytically derive an exact dynamics for
the first qubit of two independent qubits coupled to two
coupled environments. In Sec. III we examine the situation of
the nonrotating wave approximation and compare the results
with that given by the RWA. Discussion and conclusions are
presented in Sec. IV.
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II. DYNAMICS

In this section, we first present a model to describe the
system under study, whose dynamics is believed to be non-
Markovian due to the coupling between the environments.
This system can be realized by circuit quantum electrodynam-
ics involving superconducting quantum interference devices
(SQUIDs), multimode cavities, and superconducting qubits.
We derive the interaction Hamiltonian in the interaction
picture, assuming the system and its environment are in the
initial density matrix being factorized into a direct product
of the system and the environment state. In this case, we
study the non-Markovianity measure in the rotating-wave
approximation (RWA) for the coupling between the composite
environments.

A. Model Hamiltonian

To begin, we consider the dephasing dynamics of the
coupling between the composite environments, in which two
decoupled-qubits are interacting with their own environment,
respectively,

Ĥ = Ĥ0 + ĤI ,Ĥ0 = ĤS + ĤJ + ĤE, (1)

where

ĤS = h̄ν1σ̂
z
1 + h̄ν2σ̂

z
2 ,ĤE =

∞∑
k=1

h̄ωkb̂
†
kb̂k +

∞∑
k=1

h̄�kâ
†
kâk,

ĤJ = h̄J (â1 + â
†
1)(b̂1 + b̂

†
1),

ĤI = σ̂ z
1

∞∑
k=1

h̄gk(b̂k + b̂
†
k) + σ̂ z

2

∞∑
k=1

h̄Gk(âk + â
†
k), (2)

where ĤS is free Hamiltonian of the decoupled qubits with
the frequencies ν1 and ν2, respectively. ĤE is the environ-
ments Hamiltonian with frequencies ωk and �k . ĤI is the
Hamiltonian of two qubits subjected to the two environments
with the coupling strength gk and Gk . âk (â†

k) and b̂k (b̂†k)
denote the annihilation (creation) operators of the kth mode
of the two environments, respectively. σ̂ z

1 and σ̂ z
2 denote the

Pauli operators for the qubits, respectively. J is the coupling
strength between the composite environments. The derivation
of the Hamiltonian (1) is given in Appendix A, which can be
realized by applying a circuit quantum electrodynamics via
SQUIDs.

Equation (1) is critical for the rest of the paper, which
describes the model of two qubits coupled to the composite
environments. Each of the two qubits interacts locally with
its own environment, and the coupling between the composite
environments is realized by the SQUIDs. This is comparable
to previous researches regarding the nonlocal memory effects
[60,66–69], in which the composite environments are decou-
pled under the initial environment-environment correlations.

B. Exact non-Markovian dynamics for the system
with RWA

The interaction Hamiltonian ĤJ of in Eq. (1) contains
the counter-rotating terms â1b̂1 and â

†
1b̂

†
1. A widely used

approximation in quantum optics and quantum information

communities is the rotating-wave approximation, which is
valid in the following conditions:

�1 + ω1 � J, (3)

|�1 − ω1| � �1 + ω1, (4)

where Eq. (3) holds true in the weak-coupling limit with re-
spect to the sum of eigenfrequencies of the two environments.
The second condition (4) requires two frequencies to be near
resonance. Derivation of Eqs. (3) and (4) can be found in
Appendix B. Then under this condition, ĤJ in Eq. (1) can be
written as

ĤRWA
J = h̄J (â1b̂

†
1 + b̂1â

†
1). (5)

The dynamics of the total system density matrix in the
interaction picture is obtained from the Schrödinger equation:

d

dt
ρT (t) = − i

h̄
[ĤI (t),ρT (t)]. (6)

The total density matrix of the total system at time t is formally
given by

ρT (t) = U (t)ρT (0)U †(t), (7)

where ρT (0) is the initial density matrix of the total system.
The time-evolution operator is

U (t) = T exp

[
− i

h̄

∫ t

0
dsĤI (s)

]
, (8)

where the notation T represents the time-ordered product,
which orders any product of superoperators such that the
time argument increases from right to left. The interaction
Hamiltonian in interaction picture can be defined as

ĤI (t) = e
i
h̄
Ĥ0t ĤI e

− i
h̄
Ĥ0t . (9)

Simple algebra yields

ĤI (t) =
{[

h̄g1D(t)σ̂ z
1 + G1A(t)σ̂ z

2

]
â1

+ [
h̄g1C(t)σ̂ z

1 + G1B(t)σ̂ z
2

]
b̂1

+ h̄

∞∑
k=2

gke
−iωkt σ̂ z

1 b̂k+Gke
−i�kt σ̂ z

2 âk

}
+ H.c.,

(10)

where H.c. stands for Hermitian conjugate. The time-
dependent coefficients A(t), B(t), C(t), and D(t) can be
found in Appendix C. Based on Eq. (10), we calculate the
commutation relation for the Hamiltonian at time t and t ′,

ĥ(t,t ′) ≡ [ĤI (t),ĤI (t ′)]

= h̄2φ1(t − t ′) + 2ih̄2σ̂ z
1 σ̂ z

2 S(t − t ′), (11)

where φ1(t − t ′) = |g1|2[D(t)D∗(t ′) − D(t ′)D∗(t) +
C(t)C∗(t ′) − C(t ′)C∗(t)] + |G1|2[A(t)A∗(t ′) − A(t ′)A∗(t) +
B(t)B∗(t ′) − B(t ′)B∗(t)] − 2i

∑
k=2[|gk|2 sin ωk(t − t ′) +

|Gk|2 sin �k(t − t ′)] and S(t − t ′) = g1G1Im[D∗(t ′)A(t) +
D(t)A∗(t ′) + B(t)C∗(t ′) + B∗(t ′)C(t)]. The commutation
relation is a function only dependent on the difference of time
t and t ′, and c.c. denotes complex conjugate. The second term
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in Eq. (11) describes the effective coupling induced by the
interaction between the composite environments. This means
that the Hamiltonian at any time τ , ĤI (τ ), commutes with
Eq. (11). In other words, we can obtain the identity

[ĤI (τ ),ĥ(t,t ′)] = 0. (12)

Resorting to the Magnus expansion [70,71] of the exponent of
U (t) = exp[�̂(t)] in Eq. (8), we write the three first terms of
that series:

�̂(t) = − i

h̄

∫ t

0
ĤI (t1) dt1 − 1

2h̄2

∫ t

0
dt1

∫ t1

0
dt2ĥ(t1,t2)

+ i

6h̄3

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3{[ĤI (t1),ĥ(t2,t3)]

+ [ĤI (t3),ĥ(t2,t1)]} + · · ·. (13)

Collecting all together, we can exactly calculate the time
evolution operator to be

U (t) = e− i
h̄

∫ t

0 dt1ĤI (t1)e
− 1

2h̄2

∫ t

0 dt1
∫ t1

0 dt2ĥ(t1,t2)
. (14)

Substituting Eq. (11) into the above equation, we can obtain

U (t) = χ (t)e−i
∫ t

0 dt1ĤI (t1)−iS1(t)σ̂ z
1 σ̂ z

2 , (15)

where

S1(t) =
∫ t

0
dt1

∫ t1

0
dt2S(t1 − t2),

χ (t) =e− 1
2

∫ t

0 dt1
∫ t1

0 dt2φ1(t1−t2).

(16)

We find that S1(t) and χ (t) are all the functions only dependent
on time t . Then Eq. (15) can be further rewritten as

U (t) = χ (t)e
1
2 (d1â1−d∗

1 â
†
1)σ̂ z

1 e
1
2

∑∞
k=1(αkâk−α∗

k â
†
k )σ̂ z

2

× e
1
2 (λ1b̂1−λ∗

1 b̂
†
1)σ̂ z

2 e
1
2

∑∞
k=1(ck b̂k−c∗

k b̂
†
k )σ̂ z

1 ei 1
2 �(t)σ̂ z

1 σ̂ z
2 ,

(17)

where �(t) = 2p1(t) + 2p2(t) − S1(t) with p1(t) =
Im[ 1

4α∗
1 (t)d1(t)] and p2(t) = Im[ 1

4c∗
1(t)λ1(t)], ck(t) =

gk(−i2
∫ t

0 dt1e
−iωkt1 ), αk(t) = Gk(−i2

∫ t

0 dt1e
−i�kt1 ) at

k � 2, and

α1(t) =G1[−i2
∫ t

0
dt1A(t1)],

d1(t) =g1[−i2
∫ t

0
dt1D(t1)],

c1(t) =g1[−i2
∫ t

0
dt1C(t1)],

λ1(t) =G1[−i2
∫ t

0
dt1B(t1)].

(18)

Note that the preexponential factor χ (t) in Eq. (17) can be
considered as the correction term due to the time-ordering
operation. The first and third exponential factors denote the
influence of the first mode of each environment on the
interaction Hamiltonian, the second and the fourth terms are
a dephasing effect induced by the composite environments.
The final term is that the coupling between the composite
environments leads to the indirect coupling of two qubits.

To proceed, we assume that the initial state of the composite
environments is a product of vacuums of the two environments.
This assumption is reasonable when the thermal relaxation
time scale ∼ h̄/kBT is very small compared with time scale
of the system, e.g., that characterized by the coupling strength
1/J . Further, in order to study the influence of the interaction
between the two environments on the non-Markovian dynam-
ics, we assume that the initial density matrix is a product of
the system and the environment state,

ρT (0) = ρ(0) ⊗ ρB, (19)

where ρS(0) = ρ1(0) ⊗ ρ2(0) with the states of the two
qubits σ̂z|0〉 = −|0〉, σ̂z|1〉 = |1〉. The initial states for two
qubits might take a general form ρ1(0) = ρ

(1)
11 (0)|1〉1〈1| +

ρ
(1)
10 (0)|1〉1〈0| + ρ

(1)
01 (0)|0〉1〈1| + ρ

(1)
00 (0)|0〉1〈0|, and ρ2(0) =

(1 − η)|1〉2〈1| + ρ10(0)|1〉2〈0| + ρ01|0〉2〈1| + η|0〉2〈0|, in
which ρ11(0)|1〉1〈1| denotes a state with the first qubit
being in the excited state |0〉1 with the probability ρ11(0).
The other states have similar notations. ρB = ρB1 ⊗ ρB2

is the initial vacuum with ρBj = |0〉j 〈0|, where j = 1,2,
i.e., the two environments are vacuum states, respectively.
Hence the reduced density matrix elements in the interaction
picture can be written as by tracing over the composite
environments:

ρmn,rs(t) = 〈mn|TrB[U (t)ρ(0) ⊗ ρBU †(t)]|rs〉, (20)

where ρmn,rs(t) ≡ 〈mn|ρ|rs〉 with (m,n,r,s = 1,0). Substitut-
ing Eq. (17) into Eq. (20), we can obtain

ρmn,rs(t) = amna
∗
rse

1
2 i�(t)(−1)m+n− 1

2 i�(t)(−1)r+s

× TrB2 (e
1
2 (λ1b̂1−λ∗

1 b̂
†
1)(−1)n+1

e
1
2

∑
k(ck b̂k−c∗

k b̂
†
k)(−1)m+1

× e− 1
2

∑
k(ck b̂k−c∗

k b̂
†
k )(−1)r+1

e− 1
2 (λ1b̂1−λ∗

1 b̂
†
1)(−1)s+1

ρB2 )

× TrB1 (e
1
2 (d1â1−d∗â†

1)(−1)m+1
e

1
2

∑
k(αkâk−α∗

k â
†
k )(−1)n+1

× e− 1
2

∑
k(αkâk−α∗

k â
†
k )(−1)s+1

e− 1
2 (d1â1−d∗

1 â
†
1)(−1)r+1

ρB1 ).

(21)

Then exact reduced density matrix of the first qubit with an
initial state ρ1(0) (in matrix form) can be evaluated as

ρ1(t) =
(

ρ
(1)
11 (0) ρ

(1)
10 (0)R(t)e−F (t)

ρ
(1)
01 (0)R∗(t)e−F (t) ρ

(1)
00 (0)

)
(22)

with

F (t) = [0.5|c1(t)|2 + 0.5|d1(t)|2 − 8g2
1sin2(ω1t/2)/ω2

1

+ 4
∫ ∞

0
dωG(ω)(1 − cos ωt)] (23)

and

R(t) = r(t)eiθ(t), (24)

where θ (t) = arctan[(1 − 2η) tan �(t)], r(t) =√
cos2�(t) + (2η − 1)2sin2�(t), and c1(t), λ1(t), d1(t),

and α1(t) are given by Eq. (18). From the point of view of the
first qubit, the rest of the Hamiltonian except the first qubit
(two environments, interaction between them, the second
qubit) is regarded as the external environments. Therefore the
intrinsic parameters of the environment as well as interaction
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between two environments all affect the non-Markovian
dynamics of the first qubit. The effective spectral function
reads

G(ω) = J (ω)

ω2
, (25)

with J (ω) = ∑
k |gk|2δ(ω − ωk) being the reservoir spectral

density. In particular, in the continuum limit, we have

J (ω) = γ�M2

2

∫ ∞

0
dk

ωksin2(�k)

ω2
k + (γ /2)2 δ(ω − ωk), (26)

where M = EJ
Sπμ0

2πrφ0

√
h̄
lL

sin(π�/φ0) is a parameter mea-
suring the qubit-environment coupling, and ωk = Xk,X =
π/l

√
LC,� = πx/l. We use the dephasing dynamics (22)

for the first qubit to study measure the degree of non-
Markovianity. The trace distance between two reduced states
evolved through Eq. (22) is given by

D(t,ρ1,2
S ) =

√
�2

p + |�c|2r2(t)e−2F (t),

where �p = ρ
(1)
11 (0) − ρ

(2)
11 (0) and �c = ρ

(1)
10 (0) − ρ

(2)
10 (0) are

the differences between, respectively, the populations and the
coherences of the two initial conditions ρ1

S and ρ2
S for the first

qubit. The couple of initial states that maximizes the growth
of the trace distance for the dephasing model (22) is given
by the pure orthogonal states ρ

1,2
S = |ψ±〉〈ψ±|, where |ψ±〉 =

1√
2
(|1〉1 ± |0〉1) (for more details, please see Refs. [12–15]).

This leads to �p = 0 and |�c| = 1, which corresponds to
trace distance D(t,ρ1,2

S ) = r(t)e−F (t). Therefore the measure
of non-Markovianity reads

N =
∫

F ′(t)<r ′(t)/r(t)
d[r(t)e−F (t)], (27)

where the integration is over all intervals in which F ′(t) <

r ′(t)/r(t). F ′(t) and r ′(t) denote derivative of functions F (t)
and r(t), respectively.

C. Non-Markovianity for the system in the
composite environments

In Fig. 1 we show decoherence factor as a function of
time for different �1. The blue dashed line corresponds to
J = 0, and the red line corresponds to J = 1. We can find
that there is a period compared to the case where only the first
qubit couples with the first environment (J = 0, corresponding
to blue dashed line). This means that memory effects are
present with these types of environments, and the decoherence
factors are nonmonotonic, allowing recoherence effects to
occur in the system of interest. In addition, in all cases, we
show decoherence factor possesses a “dip,” which makes
the behavior of the decoherence factor reach its minimum.
The strength and location of the dip is determined by the
environment parameters.

Solving integral equation (26), we can obtain the analytical
expression for the spectrum density

J (ω) = γ�M2

2X

ωsin2(�ω/X)

ω2 + (γ /2)2 . (28)

0 10 20 30

t

0.94

0.96

0.98

1

ex
p[
−

F
(t

)]

0 10 20 30

t

0.94

0.96

0.98

1

ex
p[
−

F
(t

)]

0 10 20 30

t

0.94

0.96

0.98

1

ex
p[
−

F
(t

)]

0 10 20 30

t

0.94

0.96

0.98

1

ex
p[
−

F
(t

)]

(b)

(c) (d)

(a)

p1 = 1 p2 = 3

p3 = 1 p4 = 3

FIG. 1. Decoherence factor as a function of the time for different
J . It can be seen that specially appointed areas (see points p1 − p4)
present an anomalous decoherence behavior in the decoherence factor
leading to recoherence effects. The blue dashed line corresponds to
J = 0, and the red line corresponds to J = 1. Here and hereafter, X,
M, g1, ω1, �1, and γ are rescaled in units of EJ , and t is then in units
of 1/EJ . For the sake of simplicity, in the posterior part of the paper
we take the second qubit to be in the ground state, i.e., η = 1, which
leads to r(t) ≡ 1 in Eq. (24), and R(t) = eiθ(t). Parameters chosen are
X = 0.4, M = 0.2, g1 = 0.2, ω1 = 10, γ = 10, � = 0.1, � = 0.2,
�1 = 15 for (a), � = 0.6, �1 = 15 for (b), � = 0.2, �1 = 12 for
(c), � = 0.6, �1 = 12 for (d).

Substituting Eq. (28) into Eq. (23), we can obtain the analytical
solution for the case of J = 0,

F (t) ≡ 4
∫ ∞

0
dωG(ω)(1 − cos ωt)]

= π�M2

16X
[σ (t) + e−0.5γ (t+2T) + e−0.5γ |t−2T |],

(29)

where = �/X,σ (t) = 2 − 2e−T γ − 2e−tγ /2. From Eq. (29),
we find the exponential factor in F (t) has an special point
at 2T , which determines the position of the collapse point
in Fig. 1 (i.e., point p1: 2T = 2�/X = 1; point p2: 2T = 3;
point p3: 2T = 1; point p4: 2T = 3]. In Fig. 2 we plot the
non-Markovianity N as a function of the coupling strength
J between the two environments in the RWA. As shown
in the figure, the system exhibits non-Markovian dynamics,
judged by N = 0, increase until the coupling strength is above
a certain threshold. In general, non-Markovianity increases
with qubit-environment interaction g1 for a fixed coupling
strength J . The non-Markovianity measure increases very fast
and approaches a maximum with a very small change in the
coupling strength J , and then it decays asymptotically to a
saturated value. This indicates that when coupling between
the composite environments reaches a critical value, the
non-Markovianity shows a large flow of information from
the environment to its system. In addition, we find that
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g1 = 0.12
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FIG. 2. Non-Markovianity measure N as a function of the
coupling strength J between two environments in the weak coupling
regime (RWA). Parameters chosen are X = 0.4, M = 0.2, η = 1,
ω1 = 5.1, �1 = 5, γ = 10, � = 0.1, � = 0.2.

non-Markovianity measure increases as the coupling of qubit
environemnt g1 increase for a fixed coupling between the
composite environments. This quantity gives a bound on the
maximum rate at which quantum information can be reliably
transmitted along a noisy quantum channel, and it is therefore
of key importance in the design of noise-robust quantum
advanced devices [72–75].

III. SITUATION WITHOUT ROTATING
WAVE APPROXIMATION

We start by showing that if the weak coupling between
the two environments is used, a good approximation for the
value of the non-Markovianity measure can be obtained. When
the RWA breaks down, we must consider the influence of the
counter-rotating terms between the two environments on the
non-Markovianity. In the strong coupling regime (regime A

and regime B in Fig. 8), Eq. (5) becomes

ĤJ = h̄J (â†
1 + â1)(b̂†1 + b̂1). (30)

In Eq. (30), the coupling between the composite environments
due to the overlapping for two modes of the composite
environments, is written in its full form without performing
the rotating wave approximation, which can be obtained with
SQUIDs [65,76]. In order to calculate Eq. (9), we need
to obtain the following analytical relation by means of the
Heisenberg picture method:

e
i
h̄
Ĥ0t â1e

− i
h̄
Ĥ0t = N (t)â1 + M(t)â†

1 + N1(t)b̂1 + M1(t)b̂†1,

(31)

where the time-dependent coefficients N (t) and
M(t) can be determined with the integro-differential

equation

d

dt
N (t) = −i�1N (t) −

∫ t

0
dτ [N (τ ) + M∗(τ )]κ(t − τ ),

d

dt
M(t) = −i�1M(t) −

∫ t

0
dτ [N∗(τ ) + M(τ )]κ(t − τ ),

(32)

where

κ(τ ) = −2iJ 2 sin(ω1τ ). (33)

By means of a Laplace transform to Eq. (32), we easily obtain
the analytical solution of N (t) and M(t) due to Eq. (32) being
two coupled linear integro-differential equations. After solving
N (t) and M(t), N1(t) and M1(t) can be given by

N1(t) = −iJ

∫ t

0
dτe−iω1τ [N (t − τ ) − M(t − τ )],

M1(t) = −iJ

∫ t

0
dτeiω1τ [N (t − τ ) − M(t − τ )]. (34)

Similarly, the result of eiH0t b̂1e
−iH0t can be given by

e
i
h̄
Ĥ0t b̂1e

− i
h̄
Ĥ0t = Q1(t)â1 + P1(t)â†

1 + Q(t)b̂1 + P (t)b̂†1,

(35)
where Q(t) and P (t) are given by

d

dt
Q(t) = − iω1Q(t) −

∫ t

0
dτ [Q(τ ) + P ∗(τ )]κ1(t − τ ),

d

dt
P (t) = − iω1P (t) −

∫ t

0
dτ [Q∗(τ ) + P (τ )]κ1(t − τ ),

(36)
where

κ1(τ ) = −2iJ 2 sin(�1τ ). (37)

Making a Laplace transform to Eq. (32), we analytically obtain
Q(t) and P (t) so that Q1(t) and P1(t) can be given by

Q1(t) = −iJ

∫ t

0
dτe−i�1τ [Q(t − τ ) − P (t − τ )],

P1(t) = −iJ

∫ t

0
dτei�1τ [Q(t − τ ) − P (t − τ )]. (38)

Therefore, substituting Eqs. (31) and (35) into Eq. (9), we can
obtain the same result as Eq. (10) in the non-RWA with the
replacement

A(t) →N (t) + M∗(t),

B(t) →N1(t) + M∗
1 (t),

C(t) →Q(t) + P ∗(t),

D(t) →Q1(t) + P ∗
1 (t).

(39)

In order to compare the results of the RWA process with that
of the non-RWA one, we plot decoherence factor for the system
as a function of time t with the change from the weak (RWA)
to strong coupling regime (non-RWA) in Fig. 3. From the
figure we find that the decoherence factors exp[−F (t)] given

033805-5



SHEN, LI, SU, ZHOU, AND YI PHYSICAL REVIEW A 96, 033805 (2017)

t t

t t

)b()a(

(c) (d)

10 302520155 10 302520155

10 302520155 10 302520155

1.00

0.96

0.97

0.98

0.99

ex
p[

()
]

F
t

−

1.00

0.96

0.97

0.98

0.99

ex
p[

()
]

F
t

−

1.00

0.20
0.40
0.60
0.80

ex
p[

()
]

F
t

−

1.00

0.92
0.94
0.96
0.98

0.88
0.90ex

p[
()

]
F
t

−

non-RWA
RWA

non-RWA
RWA

J  = 0.2
ω
Ω

= 8.0
= 8.01

J  = 0.2
ω
Ω

= 8.0
= 0.1

J  = 0.2
ω
Ω

= 10.0
= 10.01

J  = 0.2
ω
Ω

= 0.1
= 8.0

1.00

0.20
0.40
0.60
0.80

ex
p[

()
]

F
t

−

t
10 302520155

t
10 302520155

1.00

0.20
0.40
0.60
0.80

ex
p[

()
]

F
t

−

)f()e(

J  = 9.0
ω
Ω

= 8.0
= 0.1

J  = 9.0
ω
Ω

= 4.0
= 4.1

FIG. 3. Decoherence factor for two decoupled qubits interacting
with the composite environments as a function of time t with the
change from the weak (RWA; see regime C in Fig. 8) to a strong
coupling regime (non-RWA; see regimes A and B in Fig. 8). The
solid lines describe the situations in non-RWA [see Eq. (30)], and the
dashed lines describe the situations in the RWA [see Eq. (5)]. The
other parameters chosen are X = 0.4, M = 0.2, η = 1, g1 = 0.2,
ω1 = 10, γ = 10, � = 0.1, � = 0.2, �1 = 11.

by the RWA are in good agreement with those obtained by the
exact non-RWA when the conditions for RWA are satisfied [see
panels (a) and (b) in Fig. 3]. When the detuning tunes large
[see panels (c) and (d) in Fig. 3] or coupling strength becomes
strong [see panels (e) and (f) in Fig. 3], the curve obtained
by the RWA has large deviations from those obtained by the
exact non-RWA. This is due to that the counter-rotating terms
J â1b̂1e

−it(ω1+�1) + H.c. can be neglected when the conditions
J � ω1 + �1 and |�1 − ω1| � �1 + ω1 are simultaneously
satisfied in the interaction picture.

Thus, the surprising message is that a stronger memory
effect of the environment may be helpful in enhancing the
non-Markovianity measure of the system due to the presence
of the strong coupling between the composite environments. In
fact, because one environment is only a part of the composite
environments now, an integrated consideration including both
the qubits and the environments is needed to determine
the non-Markovian character of the qubits of interest. The
memory effect from the composite environments exhibits
several interesting features of non-Markovianity measure in
the strong coupling regime as demonstrated in the following.

To shed more light on the effect of the non-RWA between
the composite environments on the non-Markovianity measure
N as a function of J , we compare the results of non-RWA
with those in the case of RWA identified clearly in Fig. 4 in the
strong coupling regime between the composite environments.
The red lines and purple dashed lines correspond to the
non-RWA regime and RWA regime, respectively. When J

0 2 4
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RWA
non-RWA

(b)

(c) (d)

11

1.51.5
3 3

(a)

FIG. 4. Non-Markovianity measure N as a function of the
coupling strength J in a nonrotating wave regime. Here we set
ωe ≡ ω1 = �1. The parameters chosen are X=0.4, M=0.2, η=1,
γ = 10, � = 0.1, � = 0.2, g1 = 0.1, ωe = 2 for (a), g1 = 0.2,
ωe = 2 for (b), g1 = 0.1, ωe = 3 for (c), g1 = 0.2, ωe = 3 for (d). We
find the non-Markovianity for RWA drops to zero at point J = ωe and
later revives as the parameter J continues to grow. However, for the
case of non-RWA (the strong-coupling regime), non-Markovianity
measures are identically zero at J � 0.5ωe.

becomes finite and keeps increasing, the non-Markovianity
measure of the system increases, and one might expect the
memory effects of the environment to enhance the amount
of information backflow, and hence to increase the non-
Markovianity as well. We can see non-Markovianity measure
has a simple monotonic relation with J , in which the RWA
and non-RWA agree well with each other when J < Jc in
weak coupling regime (Jc � ωe). A common nonmonotonic
behavior of the non-Markovianity for the RWA and non-RWA
is presented when J > Jc; the non-Markovianity first increases
with increasing J , and after it reaches a maximum value, it
decreases with further increasing of J . The obviously distinct
phenomenon is that at J = ωe, the non-Markovianity for RWA
drops to zero and later revives as the parameter J continues to
grow. However, for the case of non-RWA (the strong-coupling
regime), non-Markovianity measures are identically zero at
J � 0.5ωe (see Fig. 4). In other words, the transition points
from Markovian dynamics to non-Markovian dynamics for
RWA and non-RWA are equal to the frequency ωe and 0.5ωe

of the first mode for the environments, respectively. The phe-
nomenon of transition can arise from the fact that the coupling
strength J between the composite environments becomes so
strong that the qubits have disturbed the environment, thereby
undermining the foundation of the Markovian approximation,
which eventually results in the appearance of information
backflow to the system.

To further demonstrate our results, we directly investigate
the trace distance D(t,ρ1,2

S ) = exp[−F (t)]. Figure 5 shows its
evolution when the coupling strength between the composite
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FIG. 5. The trace distanceD(t,ρ1,2
S ) as a function of time for three

different values of the coupling between the composite environments.
Parameters of Figs. 5(a) and 5(c) are the same as the purple dashed
and red line in Fig. 4(a), respectively. Parameters of Figs. 5(b) and
5(d) are the same as the purple dashed and red line in Fig. 4(c),
respectively.

environments takes interesting special points with fixed
coupling strength M = 0.2, which explains the interesting
phenomena of Fig. 4. Parameters of Figs. 5(a) and 5(c)
are the same as Fig. 4(a) with ωe = 2, while parameters of
Figs. 5(b) and 5(d) are the same as Fig. 4(c) with ωe = 3.
We now discuss (a) and (c) in Fig. 5. We choose three
discrete points from the continuous points of the coupling
strength in Fig. 4, for RWA: J = 1.5, J = 2.0, and J =
2.2, while for non-RWA: J = 0.5, J = 0.98, and J = 1.1,
respectively. These points pass through the regime transi-

tions non-Markovian (J < ωe)
J=ωe−−−→ Markovian

J>ωe−−−→ non-
Markovian as J increases, i.e., the trace distance D(t,ρ1,2

S ) is
not monotonic and exhibits oscillations, so that the evolution is
non-Markovian for J = 1.5 and J = 2.2 [see Fig. 5(a)],
while the trace distance D(t,ρ1,2

S ) becomes monotonic and
asymptotically decays to zero for J = 2.0 [see Fig. 5(a)];
therefore the evolution process becomes Markovian dynamics.
Similar to the RWA process, in the non-RWA one, a notable
point is that even in the non-Markovian regime, D(t,ρ1,2

S )
exhibits different patterns for different J . When J = 0.5ωe,
the curve of D(t,ρ1,2

S ) is oscillatory. However, for the case
J = 0.98ωe, D(t,ρ1,2

S ) keeps hitting the zero line, as seen
in Fig. 5(c). These zero points mean that the two states ρ1

and ρ2 are totally indistinguishable at those time points and
correspond to the points where D(t,ρ1,2

S ) = 0. The qubits
actually evolve into their ground state at these zero points
and hence lose all the information. The qubits are supposed
to stop evolving after this point without recapturing the lost
information under a typical Markovian evolution. Thus, the
bounce of D(t,ρ1,2

S ) serves as a remarkably non-Markovian
feature, meaning that the information could flow back into
the qubits even if it has been completely leaked into the
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FIG. 6. Non-Markovianity measure N as a function of J in
nonrotating wave regime with three different qubit-environment
strengths, M = 0, M = 0.005, and M = 0.01. Parameters chosen
are the same as Fig. 4(a); panels (a) and (b) correspond to the red
line (non-RWA) and the purple dashed line (RWA) in Fig. 4(a), re-
spectively. The physical origin of the transition of non-Markovianity
measure from Markovian to non-Markovian dynamics under the
non-RWA and RWA, respectively, is shown.

environment, which would never happen in a Markovian
evolution. The similar observations can be found in Figs. 5(b)
and 5(d).

In Fig. 6, we can further reveal the physical origin of the
transition of the non-Markovianity measure from Markovian
to non-Markovian dynamics under the non-RWA [Fig. 6(a)]
and RWA [Fig. 6(b)], which corresponds to Fig. 4(a). For the
case of non-RWA in Fig. 6(a), we find that non-Markovianity
measure has a finite value when we consider only the two
first modes of each environment, i.e., M = 0 be equivalent
to gk = Gk = 0 at k � 2 except g1 = 0,G1 = 0 (see the blue
line in Fig. 6). AsM increases, the non-Markovianity measure
decreases (see the red dashed and green dotted lines in Fig. 6).
When M crosses a critical value, the non-Markovian measure
decays to zero [see Fig. 4(a)], where M = 0.01. For the
case of RWA in Fig. 6(b), it has a similar observation to
non-RWA. This means that there are two mechanisms of
information backflow to work: (1) the excitation exchange
induced by the coupling between the composite environ-
ments and (2) the dephasing effects between the qubits
and the environments. The competition between the two ef-
fects determines the non-Markovianity. The non-Markovianity
measure will increase when the former plays the domi-
nating role, otherwise, the non-Markovianity measure will
decrease.

IV. CONCLUSION

In this paper, we have investigated the exact non-Markovian
dynamics of two independent qubits coupling with several
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coupled environments. The non-Markovianity is induced
by the coupling between environments that couple to the
two qubits simultaneously. We find that the non-Markovian
dynamics can be observed in the whole parameter regimes
of the system. The study has been performed not only in
the rotating-wave approximation (RWA) but also in the non-
RWA. The results suggest that the system dynamics can be
controlled by tuning the coupling between the environments.
Transitions from non-Markovian to Markovian regimes have
been identified [44], and the physical origin of the transition
have been found. These features are independent of the nature
of the environments, but are closely related to the coupling
between the environments. It is worth addressing that our
system is the minimal model to show these effects clearly,
and it is feasible within current experimental technologies in
circuit QED [64,65,77].
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APPENDIX A: THE MODEL HAMILTONIAN DERIVED BY
SUPERCONDUCTOR CIRCUIT QED

The schematic diagram of the setup used in our scheme is
shown in Fig. 7, which consists of a small superconducting box
with excess Cooper-pair charges, formed by a SQUID with
capacitance CJ and Josephson coupling energy EJ , pierced
by an external magnetic flux �. A control gate voltage Vg

is connected to the system via a gate capacitor Cg . The
Hamiltonian of the system is

Ĥ = h̄Ec(n − n̄)2 − h̄EJ cos ϕ1 − h̄EJ cos ϕ2, (A1)

where n is the number operator of (excess) Cooper-pair charges
on the box, Ec = 2e2/(Cg + 2CJ )/h̄ is the charging energy,
n̄ = CgVg/2e is the induced charge controlled by the gate
voltage Vg and ϕm, and (m = 1,2) is the gauge-invariant phase
difference between the two sides of the mth junction. We here
focus on the charging regime where Ec � EJ . In this case, a
convenient basis is formed by the charge states, parametrized
by the number of Cooper pairs n on the box with its conjugate
φ; they satisfy the standard commutation relation [φ,n] = i.
At temperatures much lower than the charging energy and
restricting the gate charge to the range of n̄ ∈ [0,1], only a pair
of adjacent charge states |0〉,|1〉 on the island is relevant. The
Hamiltonian (A1) is then reduced to [64,78–81]

Ĥ1 = −h̄Eceσ̂z − h̄E(�)σ̂x, (A2)

SQUID

        superconducting qubits

coupling with multi-mode cavity

        superconducting qubits

coupling with multi-mode cavity

(a)

(b)

FIG. 7. (a) The 1D transmission line resonator consists of a
full-wave section of a superconducting coplanar waveguide. A
Cooper-pair box qubit is placed between the superconducting lines
and is capacitively coupled to the voltage standing wave, yielding a
strong electric dipole interaction between the qubit and photon in the
cavity. The two setups can be grounded through a SQUID. The blue
lines represent two parallel strip lines of isolating material, where
the superconducting region between them constitutes the coplanar
waveguide. Each multimode-cavity interacts with a superconductor
qubit that is denoted by a red regime. This scheme can be realized by
circuit QED [64,65]. (b) Circuit diagram for the previous scheme,
where the cavities are effectively represented by LC resonators.
We assume two identical Josephson junctions of the SQUID with
effective Josephson energy by an external flux �, and superconductor
qubits are constituted by two Josephson junctions shunted by a large
capacitance.

where Ece = 2Ec(1 − 2n̄)/h̄,E(�) = EJ cos(π�/φ0)/h̄ with
φ0 = h/2e being flux quanta, and σ̂z and σ̂x are the Pauli
matrices.

When a superconducting qubit is placed superconductor
transmission line resonator, the total magnetic flux generated
by the resonator and SQUID penetrating the qubit loop is
given by classical magnetic flux and magnetic flux in a lossy
superconductor transmission line resonator:

�′ = � + �q, (A3)

where

�q =
∑

k

ck(âk + â
†
k), (A4)

where ck = So
�kμ0

2πr1

√
h̄ωk

lL
sin (kπx/l). �k =√

�(γ /2)/[ω2
k + (γ /2)2] is proportional to a Lorentzian

shape with γ being the decay rate of a quasimode of cavity,
� the bandwidth associated with the cavity wall transparency
[82]. So is the area surrounded by the superconducting
quantum interference device loop, and r1 is the distance
between the superconducting quantum interference device
and transmission lines [64]. x is the position of the qubit
penetrating the superconductor transmission line resonator.
μ0 (= 4π × 10−7Hm−1) is the magnetic permeability in
vacuum. ωk = vπk/l (v = 1/

√
LC is the propagation

velocity) is the quantized frequency of the superconductor
harmonic cavity with L(C) the total inductance (capacitance)
of the stripline. Then total quantized Hamiltonian can be
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rewritten as (� → �′)

Ĥ1 = −h̄Eceσ̂z − h̄EJ cos[π (� + �q)/φ0]σ̂x . (A5)

Generally speaking, �q � �, and in the degeneracy point
n̄ = 1/2 leading to Ece = 0 [78,80], then the Hamiltonian (A5)
approximately reads

Ĥ1 = −h̄E(�)σ̂x +
∑

k

h̄ωkâ
†
kâk −

∑
k

h̄Gk(âk + â
†
k)σ̂x,

(A6)
where the coupling strength Gk = EJ ck

�
φ0

sin(π�/φ0).
Now we consider the coupling of two superconducting

qubits coupling with multimode cavity, which can be imple-
mented by means of a SQUID. The coupling of first-mode for
each cavity with the eigenfrequency ω1 and �1 can be realized
by matching the frequency first mode for each cavity and the
frequency ω of the ac magnetic flux for the SQUID [65,83]

ĤJ = h̄J (â1 + â
†
1)(b̂1 + b̂

†
1), (A7)

where the SQUID driven by external fluxes allows a mod-
ulation of the electrical boundary condition of the cavities
and their interaction, which can tune the interaction between
the resonators and their boundary conditions, provided the
modulation frequency is smaller than the SQUID plasma
frequency [65,83]. In addition, two qubits interacting at the
same time with two multimode cavities, respectively,

Ĥ ′ = Ĥ ′
0 + Ĥ ′

I ,Ĥ
′
0 = Ĥ ′

S + Ĥ ′
E, (A8)

where

Ĥ ′
S = h̄ν1σ̂

x
1 + h̄ν2σ̂

x
2 ,

Ĥ ′
E =

∞∑
k=1

h̄ωkb̂
†
kb̂k +

∞∑
k=1

h̄�kâ
†
kâk,

Ĥ ′
I = −σ̂ x

1

∞∑
k=1

h̄gk(b̂k + b̂
†
k) − σ̂ x

2

∞∑
k=1

h̄Gk(âk + â
†
k),

(A9)

where the parameters ν1 = −E1(�1), ν2 = −E2(�2), gk =
EJ c1,k

�1
φ0

sin(π�1/φ0), Gk = EJ c2,k
�2
φ0

sin(π�2/φ0). Fi-
nally, we can obtain the Hamiltonian (1) by the unitary
transform to Ĥ = eŜ(Ĥ ′ + ĤJ )e−Ŝ , where the generator of
the transform is Ŝ = −iπσ̂

y

1 /4 − iπσ̂
y

2 /4.

APPENDIX B: CONDITION FOR ROTATING
WAVE APPROXIMATION

In this section, we give the justification about the conditions
of rotating wave approximation as follows. We take the
Hamiltonian for two coupled environments (first-mode) as a
non-RWA form

Ĥ = Ĥ0 + ĤJ (B1)

with

Ĥ0 = h̄�1â
†
1â1 + h̄ω1b̂

†
1b̂1, (B2)

ĤJ = h̄J (â1 + â
†
1)(b̂1 + b̂

†
1), (B3)

non-RWA
RWA

non-RWA
Eq. (3) Eq. (4)

A B
C

FIG. 8. Comparison of rotating wave approximation (correspond-
ing to regime C) and nonrotating wave approximation [corresponding
to regime A given by Eq. (3) and regime B given by Eq. (4)].

where J denotes the coupling strength between two environ-
ments with their own eigenfrequency �1 and ω1, and â1 and
b̂1 stand for annihilation operators of the environment. In the
interaction picture, we have

ĤJ (t) = h̄J â1b̂
†
1e

−i(�1−ω1)t + h̄J â1b̂1e
−i(�1+ω1)t + H.c.

(B4)
The time evolution operator is given by

U (t) = T exp[− i

h̄

∫ t

0
ĤJ (t1) dt1]

= 1 − i

h̄

∫ t

0
ĤJ (t1) dt1 − 1

h̄2

∫ t

0
dt1

×
∫ t1

0
ĤJ (t1)ĤJ (t2) dt2 + · · · . (B5)

Substituting Eq. (B4) into Eq. (B5), we obtain

− i

h̄

∫ t

0
ĤJ (t1) dt1 = J

�1 − ω1
(e−i(�1−ω1)t − 1)â1b̂

†
1

− J

�1 − ω1
(ei(�1−ω1)t − 1)b̂1â

†
1

+ J

�1 + ω1
(e−i(�1+ω1)t − 1)â1b̂1

− J

�1 + ω1

(
ei(�1+ω1)t − 1

)
b̂
†
1â

†
1.

(B6)

The RWA requires {
J

�1+ω1
� 1,

J
|�1−ω1| � J

�1+ω1
,

(B7)

which leads to the conditions (3) and (4) for RWA (see regime
C in Fig. 8). In this case, the counter-rotating terms can be
neglected.

When the system parameters do not satisfy Eq. (B7) (see
regimes A and B in Fig. 8), we cannot neglect the counter-
rotating terms in Hamiltonian (B4), therefore this RWA is
broken down. In this case, we must consider the influence of
counter-rotating terms on the system dynamics.
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APPENDIX C: THE DERIVATION OF EQ. (10)

In Eq. (9), the operator a1 in the interaction picture can be
rewritten as

e
i
h̄
Ĥ0t â1e

− i
h̄
Ĥ0t , (C1)

in accordance with the formula

ex̂ ŷe−x̂ = ŷ + [x̂,ŷ] + 1

2!
[x̂,[x̂,ŷ]] · · ·

+ 1

n!
[x̂,[x̂ · · · [x̂︸ ︷︷ ︸

n x̂

,ŷ]]] + · · ·

≡ [x̂(0),ŷ] + · · · 1

n!
[x̂(n),ŷ] + · · ·; (C2)

here we set x̂ = Ĥ0 and ŷ = â1, and we can obtain the
commutation relation,[

Ĥ
(1)
0 ,â1

] = −�1â1 − J b̂1 ≡ A1â1 + B1b̂1, . . .[
Ĥ

(n)
0 ,â1

] = Anâ1 + Bnb̂1, (C3)

where we can write the recurrence relation as the form of
matrix,

rn+1 = Mnr1, (C4)

with the Hermitian matrix M = (−ω1 −J

−J −�1
) as well as rn =

(Bn

An
). The eigenvalues of M are

Em = −1

2
(ω1 + �1) + η cos(πm), (C5)

where

η = 1

2

√
4J 2 − 2ω1�1 + ω2

1 + �2
1,

cos(θ ) = �1 − ω1

2η
,

sin(θ ) = |J |
η

. (C6)

The corresponding eigenstates are

φm =
(

am

βm

)
, (C7)

where

αm = − sin

(
θm + 2π

2m

)
,

βm = cos

[
θ + (1 − m)π

2

]
. (C8)

Inserting the complete basis of M into Eq. (C4), we can get(
Bn+1

An+1

)
= En

1

(
|a1|2 a1β

∗
1

a∗
1β1 |β1|2

)
r1 + En

2

(
|a2|2 a2β

∗
2

a∗
2β2 |β2|2

)
r1,

(C9)

which leads to

Bn =
∑
j=1,2

En
j |aj |2 B1

Ej

+ En
j ajβ

∗
j

A1

Ej

,

An =
∑
j=1,2

En
j a∗

j βj

B1

Ej

+ En
j |βj |2 A1

Ej

. (C10)

In conclusion, we make use of Eq. (C2) and Eq. (C10) to
rewrite Eq. (C1) as

e
i
h̄
Ĥ0t â1e

− i
h̄
Ĥ0t

= â1

{
1 + A1it + A2(it)2

2
+ · · · + An(it)n

n!
+ . . .

}

+ b̂1

{
B1it + B2(it)2

2
+ · · · + Bn(it)n

n!
+ . . .

}
. (C11)

Simple algebra yields

e
i
h̄
Ĥ0t â1e

− i
h̄
Ĥ0t = A(t)â1 + B(t)b̂1, (C12)

where

A(t) = 1 +
∑
j=1,2

(
eiEj t − 1

)[
a∗

j βj

B1

Ej

+ (∣∣βj

∣∣)2 A1

Ej

]
,

B(t) =
∑
j=1,2

(
eiEj t − 1

)(∣∣aj

∣∣2 B1

Ej

+ ajβ
∗
j

A1

Ej

)
. (C13)

Similarly, the operator b1 in the interaction picture can be
obtained easily, which can be summarized as

e
i
h̄
Ĥ0t b̂1e

− i
h̄
Ĥ0t = C(t)b̂1 + D(t)â1, (C14)

where

C(t) = 1 +
∑
j=1,2

(
eiEj t − 1

)(|aj |2 C1

Ej

+ ajβ
∗
j

D1

Ej

)
,

D(t) =
∑
j=1,2

(
eiEj t − 1

)(
a∗

j βj

C1

Ej

+ |βj |2 D1

Ej

)
, (C15)

where C1 = −ω1 and D1 = −J . Considering Eqs. (C12) and
(C15), we can obtain Eq. (10).
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