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Dynamics of a mesoscopic qubit ensemble coupled to a cavity: Role of collective dark states
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We consider the dynamics of a disordered ensemble of qubits interacting with a single-mode photon field,
which is described by an exactly solvable inhomogeneous Dicke model. In particular, we concentrate on the
crossover from few-qubit systems to the system of many qubits and analyze how the collective behavior of a
coupled qubit-cavity system emerges despite the broadening. We show that quantum interference effects survive
in the mesoscopic regime—the dynamics of an entangled Bell state encoded into the qubit subsystem remains
highly sensitive to the symmetry of the total wave function. Moreover, relaxation of these states is slowed down
due to the formation of collective dark states weakly coupled to light. Dark states also significantly influence the
dynamics of the excitations of a photon subsystem by absorbing them into the qubit subsystem and releasing
quasiperiodically in time. We argue that the predicted phenomena can be useful in quantum technologies based on
superconducting qubits. For instance, they provide tools to deeply probe both collective and quantum properties
of such artificial macroscopic systems.
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I. INTRODUCTION

Controllable manipulation by quantum states of spin-
photon coupled systems has attracted considerable current
interest since ensembles of spins or atoms interacting with the
quantized electromagnetic field are promising candidates for
the implementation of quantum information and computation
devices [1–4]. One of the most prospective applications of
such systems is the storage of quantum information [5–7].
There are various physical realizations of spin-photon coupled
systems, which range from superconducting artificial atoms
(qubits) coupled to microwave resonators to nitrogen-vacancy
(NV) centers in diamond, and even include hybrid circuits
combining two or more physical systems [8]. Effective
parameters of state-of-the-art spin-photon systems can be very
different as well as the numbers of coherently interacting spins
(qubits). For instance, a typical number of NV centers in the
ensemble is macroscopically large, while the coupling of a
single center to the cavity mode is very weak. In contrast,
state-of-the-art superconducting quantum circuits are limited
by tens of qubits, while the interaction between a single qubit
and the microwave radiation can be relatively strong [8–12].
Nevertheless, essentially any solid-state physical realization is
characterized by the inhomogeneous broadening of the density
of states, i.e., by the splitting between excitation frequencies
of individual spins. Broadening is caused by fundamental
mechanisms and therefore is poorly controlled: for example, an
excitation frequency of superconducting flux qubits depends
exponentially on Josephson energies of contacts embedded
into their structure [13], which makes it highly sensitive
to characteristics of nanometer-scale Josephson junctions.
For NV centers, inhomogeneous broadening is induced by
background disorder [14].

Disorder in spin excitation energies is usually considered
as a negative phenomenon that prevents quantum information
processing by introducing a decoherence [15–17]. In order

to overcome this problem, various ideas for the spectral
engineering of spin density profile [18,19] or spectral hole
burning [16] have been proposed (mostly in the context of NV
centers in diamond). However, inhomogeneous broadening
can also play a positive role since it may be utilized for
the construction of multimode quantum memories [6]. A
theoretical description of such systems is usually provided
within a Tavis-Cummings (Dicke) model, while interpretations
are developed in terms of so-called radiant and subradiant
modes, which turn out to be coupled if broadening is present
in the system since in this case they do not match the exact
eigenstates of the Dicke Hamiltonian [15–17]. In other words,
the excitation stored initially in the radiant mode is finally
absorbed by a bath of subradiant states. A smart idea aimed
to circumvent this problem is based on the hole-burning
technique: spins within certain “dangerous” energy intervals,
which are predominantly responsible for the interaction with
subradiant modes, are neutralized for some time period by an
external pulse [16]. As a result, special light-matter quantum
states can be engineered, with these states being mostly
localized within the spin subsystem. If energy dissipation in a
cavity is much larger than in the spin subsystem, as is usually
valid for realizations based on natural quantum systems, by
using this approach it is possible to efficiently protect the
quantum state from the cavity decay, which might lead to
realizations of quantum memory prototypes.

The aim of the present paper is a general study of the
dynamics of inhomogeneously broadened spin ensembles of
mesoscopic rather than macroscopic sizes. This is especially
actual for possible realizations of such ensembles coupled
to microwave resonators within a superconducting platform
(sometimes referred to as quantum metamaterials; see, e.g.,
Refs. [9,11,12]) and perhaps some other future solid-state
circuits. In particular, we focus on the crossover from the
system of just a few qubits to the macroscopic system
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and study how collective dynamical behavior emerges along
this crossover. This is done using an exact solution of a
Dicke Hamiltonian via the Bethe ansatz [20–22]. We restrict
ourselves to the regime of weak excitation, i.e., when there is
no more than one excitation in the system. We also consider
different initial conditions and show that they can result in
qualitatively different dynamics. Our approach provides a
simple and pictorial understanding for the main features of
the system’s evolution. It allows one to obtain a direct access
to Hamiltonian eigenstates, which can be classified as dark
and bright, and their properties, as well as to explicitly study
the role of such states in the system’s dynamics. In contrast
to earlier studies [23–26], we mostly concentrate on the
dynamics starting from excitations within a spin subsystem,
being motivated by recent experimental advances in hybrid
systems [15–17], and consider mesoscopic qubit ensembles.

We show that in the limit of just a few spins, there appear
Rabi-like oscillations between the spin excitations and photon
mode, irrespective of the initial condition (excitation either
in spin or photon subsystem), as expected. However, as the
spin number increases, the dynamics becomes highly sensitive
to the initial conditions. The most counterintuitive behavior
is found for the initial condition of excitation in the spin
subsystem—the spin excited state becomes frozen through
what we call the Zeno-like effect [27]: its relaxation time
grows with the number of spins so that in the limit of infinite
spin number, the excited state does not decay at all. For
finite systems, there appear periodic partial revivals of an
excited state, while the period of revivals grows with the spin
number. We also demonstrate that certain collective excitations
encoded into the spin subsystem and characterized by a finite
entanglement, such as an antisymmetric Bell state, become
even more robust with respect to the influence of environment
of the remaining spins despite the fact that entanglement is,
in general, a very fragile entity. Because this collective state
is constructed from a couple of spins, it essentially does not
decay at all even in the presence of a bath of remaining spins,
provided these two spins have excitation energies neighboring
in the energy space. Nevertheless, for larger separation
between spin excitation frequencies, the evolution remains
highly sensitive to the symmetry of the wave function, i.e., to
the minus or plus sign in the Bell state. This result highlights a
nontrivial role of quantum interference effects for disordered
ensembles in a mesoscopic regime. Since entanglement is
a key resource for quantum technologies, while quantum
interference effects are essential for the experimental demon-
stration of “quantumness” of artificial macroscopic systems,
our conclusions might be important for applications. The
Zeno-like effect we found is directly linked to the formation of
a quasicontinuum of Hamiltonian eigenstates poorly coupled
to light, which we refer to as collective dark states. They have
similarities with subradiant states of a homogeneous model,
with the latter states being totally uncoupled from light [28].
In the case of a single photon present in the system in the
initial moment, dark eigenstates also significantly affect the
dynamics of a mesoscopic ensemble—they absorb the photon
into the spin subsystem and then periodically release it, giving
rise to sharp revivals.

Our results are potentially useful for quantum states’
protection, storage, and engineering. We believe that they can

also be used to deeply probe the quantum mechanical nature
as well as collective properties of mesoscopic ensembles of
artificial macroscopic spins, such as superconducting qubits,
coupled to cavities.

II. HAMILTONIAN AND PRELIMINARIES

We consider an ensemble of two-level systems coupled to
a single-mode photon field. This coupled system is described
by a Dicke Hamiltonian of the form

H =
L∑

j=1

εjσ
+
j σ−

j + ωa†a + g

L∑
j=1

(a†σ−
j + aσ+

j ), (1)

where a† and a correspond to the boson degree of freedom,

[a,a†] = 1, (2)

while σ±
j , σ z

j correspond to the Paulion degrees of freedom
and describe a set of L two-level systems:

[σ+
j ,σ−

j ] = 2σ z
j , (3)

[σ z
j ,σ±

j ] = ±σ±
j . (4)

The Hamiltonian (1) commutes with the operator of the
total pseudoparticle number, i.e., the number of bosons plus
the number of excited two-level systems. Let us denote this
number as M . Pseudoparticles of the Dicke model are often
referred to as excitations (of a noninteracting system), but they
should not be confused with excited states within a sector of
given M (of an interacting system). Namely, for any fixed M ,
there are different eigenstates of the Hamiltonian. At given
M , the lowest-energy state is the ground state, while others
represent excited states. Note that ground-state energies for
different values of M can also be quite different. For example,
if interaction constant g is large enough, a global ground state
can be attained at some nonzero M . This behavior is closely
related to the so-called superradiant transition [29].

Note that the Hamiltonian (1) is based on the rotating-
wave approximation, which neglects counter-rotating terms
of the form g(aσ−

j + a†σ+
j ). These terms do not conserve

the excitation number and it is known that they can be
omitted provided the detuning between the cavity and spin
is not too large, |εj − ω| � ω; see, e.g., Ref. [30]. However,
counter-rotating processes have to be taken into account even
in the resonance, but only in certain specific situations such as
parametric and periodic excitation of a coupled qubit-cavity
system [31]. In the situation that we consider in this article,
counter-rotating terms can indeed be safely neglected since
we are mostly interested in the interaction between the spin
ensemble and cavity, which are close to the resonance, and do
not treat such parametric excitations.

We also introduce an operator S†(λ) defined as

S†(λ) = a† +
L∑

j=1

g

λ − εj

σ+
j , (5)
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which is parametrized by the energylike quantity (rapidity) λ.
The state of the form

M∏
n=1

S†(λn)|↓↓ . . . ↓,0〉 (6)

is an eigenstate of the Hamiltonian, provided rapidities satisfy
a set of Bethe equations [20,32,33],

λn − ω

g
+

M∑
m�=n

2g

λn − λm

−
L∑

j=1

g

λn − εj

= 0, (7)

while the eigenenergies E are expressed through the roots λn

as

E =
M∑

n=1

λn. (8)

There are, in general, multiple solutions of Eq. (7), i.e., many
sets {λn}, which form an energy spectrum within a sector of a
given M according to Eq. (8).

We restrict ourselves to the regime of a single pseudoparti-
cle, M = 1. In this case, there is only single rapidity λ, which
satisfies a single Bethe equation,

λ − ω

g
−

L∑
j=1

g

λ − εj

= 0. (9)

This is a polynomial equation of the order of L + 1 that has
the same number of solutions, which we refer to as λ(α). It can
be readily extracted from Eq. (9) that all solutions are real.
They correspond to different eigenstates of the Hamiltonian in
the same sector M = 1. The unnormalized eigenfunctions can
be represented as

|�α〉 = S†(λ(α))↓↓ . . . ↓,0〉. (10)

It is easy to find a norm as

〈�α|�α〉 = 1 +
L∑

j=1

g2

(λ(α) − εj )2
. (11)

The normalized wave function thus reads

|ϕα〉 = 1√〈�α|�α〉 |�α〉. (12)

In Appendix A, we show how these results can be used to
analyze the system’s evolution, starting from different initial
conditions but corresponding to the same sector M = 1. This
number is, of course, conserved during the free evolution.

Note that in the absence of inhomogeneous broadening,
Bethe states of the Dicke model do not form a complete
set (see, e.g., Ref. [34]), since degenerate nonradiating states,
decoupled from light, cannot be obtained through Eq. (9).

III. FLAT DISTRIBUTION WITH NEARLY CONSTANT
DENSITY OF STATES

A. Hamiltonian eigenstates

In the limit of a single spin L = 1, the Hamiltonian (1)
reduces to the well-known Jaynes-Cummings Hamiltonian. In
this case, there exist only two solutions of Bethe equation (9).
These are shown schematically in Fig. 1, where a full resonance
between spin excitation energy and photon frequency is
assumed. In the case of many spins L, the set of Bethe
roots becomes drastically different due to the splitting between
spin energies. This situation is also illustrated schematically
in Fig. 1 for the distribution of spin energies having abrupt
terminations. In this case, in addition to the two separated
roots relevant for the Jaynes-Cummings model, new roots do
appear, which are confined between neighboring spin energies.
Note that in the limit of strong interaction g, when splitting
between spin energies is irrelevant, two separated roots become

FIG. 1. Schematic illustration for the location of Hamiltonian eigenstates and spin excitation energies along the energy axis for different
number of qubits L = 1 and L = 6. Blue open circles show the positions of spin excitation energies. Green filled circles correspond to different
Hamiltonian eigenenergies in the sector of single pseudoparticle, M = 1. The vertical dashed line shows a position of photon energy, which is
assumed to be in a resonance with mean spin excitation energy.
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responsible for Rabi oscillations of the whole ensemble of
spins with frequency g

√
L.

Among physically meaningful distributions of the density
of states induced by disorder are the Gaussian and Lorentzian
distributions [35] or q-Gaussian distribution relevant for
NV centers [15]. Furthermore, a simplified, equally spaced
distribution of ε between the two cutoffs is of fundamental
importance since it allows one to grasp the main features of
the system’s dynamics produced by the splitting of excitation
frequencies. Physically, it might correspond to the broad
distribution for which a central part, most strongly interacting
with the photon mode, has a nearly constant density of states.
In the next section, we will briefly describe the effects due to
distributions with smooth tails.

Now let us concentrate on such an equally spaced dis-
tribution of spin energies εj with the difference between
neighboring εj denoted as d. We assume that the width of
the distribution 	, i.e., the difference between maximum
and minimum excitation energies, is independent of L, while
the number of spins L is large. We then consider the limit
L → ∞ and find explicitly a leading order in L behavior as
well as dominant corrections in 1/L essential for mesoscopic
systems. In this limit, d → 0. In order to construct 1/L

expansion, we assume that g
√

L is L independent. Thus,
d/g ∼ 1/

√
L � 1 in this limit, so that there are many spin

excitation frequencies within the energy scale g. We also
focus on the most interesting regime, when 	 and g

√
L are of

the same order, which results in a very rich phase diagram
already for static systems. While the former quantity is a
natural scale to characterize broadening, the latter provides
coupling energy between the photon and spin subsystem in
the absence of broadening. Thus, at 	 ∼ g

√
L, there exists

a pronounced competition between the collective action of
the whole ensemble of spins and their individual behavior
[35,36]. The situation we consider is of particular importance
in the context of superconducting qubit-resonator systems,
since state-of-the-art superconducting circuits seem to start
entering such a regime, where collective properties become
significant despite the disorder [8,9,11,12]. Thus, we start
from the limit of very few spins at g � 	, which is addressed
mainly numerically, and analyze the whole crossover to the
limit g

√
L � 	 with a particular focus on the intermediate

mesoscopic regime g
√

L ∼ 	.
In Appendix B, we address solutions to Bethe equation (9)

within our model. There are in total (L + 1) solutions; (L − 1)
of them are confined between neighboring spin excitation
frequencies, while the two remaining roots are, in general,
separated, as shown in Fig. 1. Physically, two additional
roots and confined roots describe Hamiltonian eigenstates
with quite different properties. Indeed, it follows from Eq. (5)
that each of these states |ϕ(α)〉 consists of a superposition of
a single-photon state and spin excited states with excitation
energies detuned from λ(α) by energy not too large, i.e., �g.
Therefore, eigenstates corresponding to confined roots are
coupled essentially to each spin among a set of ∼g/d � 1
spins and to the photon mode. The coupling to the photon
thus appears as quite weak. Therefore, such eigenstates can be
characterized as dark states. Actually, they can be imagined
as superpositions of many individual excited spins centered in

energy space around a given spin, with each superposition
being only weakly coupled to light. In the limit of the
homogeneous model, these eigenstates should become fully
decoupled from the light being gradually transformed to the
usual subradiant states. In contrast, two separated roots have
a smaller number of surrounding spin excitation energies, and
coupling to the light for these two eigenstates is stronger,
so that they can be referred to as bright states. We would
like to stress that collective dark states emerge only in the
limit g/d � 1 since each of them must be represented by a
superposition of many individual spin states in order to be
dark. Indeed, in the regime of just a few spins and at g � 	,
coupling to the light for all eigenstates is significant.

B. Dynamics of the system with single spin excited
in the initial moment

Now we use our general results from Appendices A and B
to study the dynamics of the system with single spin excited
in the initial moment and the excitation energy of this spin
being εA. We rewrite the time-dependent wave function (A6)
in leading order as

|ψ(t)〉 � d2

g2π2

L−1∑
α=1

e−iλ(α)t g

λ(α) − εA

1

1 + 1
π2

(
ln εL−εα

εα−ε1

)2

×
⎛
⎝a† +

L∑
j=1

g

λ(α) − εj

σ+
j

⎞
⎠|↓↓ . . . ↓,0〉. (13)

Let us stress that we omitted in Eq. (13) a contribution from
two separated roots (bright states), which is justified in this
order. For the amplitude of the probability to find the initially
excited spin still in this state, we have

〈ψ(t = 0)|ψ(t)〉 � d2

π2

L−1∑
α=1

e−iλ(α)t 1

(λ(α) − εA)2

× 1

1 + 1
π2

(
ln εL−εα

εα−ε1

)2 . (14)

Let us now focus on the situation when all energies εj are
centered around ω, while εA is also in a resonance with ω. It is
easy to see that under such conditions, δα � d/2 in a vicinity
of ω. It is also clear that the logarithm in the right-hand side of
Eq. (14) can be omitted (at least for t not too large). We then
obtain, in leading order for t � 2π/d,

〈ψ(t = 0)|ψ(t)〉 � d2

π2
e−iεAt

L−1∑
α=1

e−i(εα−εA)t 1

(εα − εA + d/2)2

� 8

π2
e−iεAt

∞∑
n=0

cos [(2n + 1)td/2]

(2n + 1)2
. (15)

This function represents a simple periodic triangle wave of a
period 4π/d. The initially excited spin decays on a time scale
∼1/d ∼ L. There is a revival after such a decay due to the finite
size of the environment of other spins, i.e., the finiteness of the
number of spins having frequencies close to ω. In other words,
an initial excitation becomes redistributed between ∼g/d spins
most strongly interacting with an initially excited spin via the
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photon field. After some time, there occurs a refocusing of
such a collective state into an initial state. At long times, an
ideal periodic function (15) becomes somehow smeared and
less regular since various subdominant contributions in 1/L

come into play, which, in particular, results in certain finite
occupations of strongly detuned spins.

The major conclusion deduced from Eq. (15) is that the
excited state decays on a time scale, which grows as the
number of spins (density of states) in the system increases.
Thus, the excited state becomes stabilized by the continuum
of dark states, giving rise to what we refer to as the Zeno-like
effect. A similar effect of “radiation trapping” is known from
the literature for a homogeneous Dicke model [28]. Thus, we
show that such an effect also takes place for inhomogeneously
broadened ensembles and we reveal how it emerges as the
number of spins in such an ensemble grows. Physically, this
phenomenon might be attributed to the fact that the energy
of the initial state with one of the spins excited is closer
to the eigenenergies of dark states. The dynamics is then
governed mostly by these dark states, which are weakly
coupled to the light. Such an understanding has to be contrasted
with naive expectations that an addition of extra “parasitic”

spins should only lead to a kind of a chaotization of Rabi
oscillations between the given excited spin and the photon
field. A chaotization occurs only in the limit of just a few spins
in the sense that in this limit, the dynamics is highly sensitive
to precise detunings between spin excitation frequencies and
the photon frequency. However, at L � 1, it transforms to the
universal triangle wave dependence sensitive only to the mean
density of states in the vicinity of ω.

Let us now take into account a first-order correction in 1/L.
The most important contribution in this order stems from the
fact that we have neglected two additional roots of Eq. (9), i.e.,
the bright states. We can readily find that these states produce
a correction to the amplitude of the probability (15) given by

δ〈ψ(t = 0)|ψ(t)〉 � 1

L
e−iεAt

∑
α=0,L

e−it(λ(α)−εA)

× 1

〈�0,L|�0,L〉
g2L

(λ(α) − εA)2
. (16)

Bright states give rise to Rabi-like oscillations contributing to
the total dynamics.

FIG. 2. Evolution of |〈ψ(t = 0)|ψ(t)〉| for (a) L = 4, (b) L = 6, (c) L = 10, (d) L = 20, and at g = 0.05ω, 	 = 0.1ω. The initial state
of the system corresponds to the single spin excited among the ensemble of spins with broadened excitation energies. Red solid lines show
numerical results, while blue dashed lines correspond to explicit results based on 1/L expansion.
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FIG. 3. Evolution of |〈ψ(t = 0)|ψ(t)〉| for L = 20 Fig. 2(d) and at g = 0.05ω,	 = 0.1ω and two different realizations of disorder.
Excitation energies of spins are randomly distributed between two cutoffs.

Figure 2 visualizes how the dynamics changes as L grows. It
shows the evolution of |〈ψ(t = 0)|ψ(t)〉| for L = 4 [Fig. 2(a)],
L = 6 [Fig. 2(b)], L = 10 [Fig. 2(c)], L = 20 [Fig. 2(d)], and
at g = 0.05ω,	 = 0.1ω, εA = ω. Two different results are
compared—the first one is obtained numerically by solving the
Bethe equation and the second one is an explicit result, which
contains a dominant contribution (15) as well as a subdominant
correction (16). We indeed find quite good agreement between
the numerical and explicit results starting from L ≈ 10, while
qualitative agreement exists even for smaller values of L.
These plots visualize how Rabi oscillations at L = 1 transform
into a triangle wave of very large period at L � 1.

Despite the universality in the large-L limit, actual time
evolution for the spin occupation can be very sensitive to
mesoscopic fluctuations. In order to illustrate this, we plot
in Fig. 3 the same quantity |〈ψ(t = 0)|ψ(t)〉| calculated
numerically at L = 20, g = 0.05ω, and 	 = 0.1ω, but for
randomly distributed spin energies confined between the same
cutoffs, while εA is taken to be closest to the resonance among
all spins. Figures 3(a) and 3(b) correspond to two typical
realizations of disorder. In the first case, the evolution of
|〈ψ(t = 0)|ψ(t)〉| is quite close to the similar dependence for
the idealized equally spaced distribution, while in the second
case spin occupation oscillates with nearly the same period,
but it does not reach zero. Such a behavior in the latter case
is a direct consequence of mesoscopic fluctuations, i.e., the
finiteness of spin number L.

We also verify that Eq. (14) is consistent with the
normalization condition |〈ψ(t = 0)|ψ(t = 0)〉| = 1. Indeed,
it is known that

∑∞
n=0

1
(2n+1)2 = π2/8, with this identity being

connected to the famous Basel problem. We would like to
stress that the way this relation appeared in our formalism
seems to be highly nontrivial.

In contrast, occupations in the photon subsystem appear to
be generally very small under the initial condition of single
spin excitation. Namely, the probability amplitude of finding
a system in the state with a single photon vanishes in the limit

L → ∞. This result can be derived from Eq. (13), yielding

〈0,↓ . . . ↓|a|ψ(t)〉 � 4d

gπ2
e−iεAt

∞∑
n=0

sin [(2n + 1)td/2]

2n + 1
,

(17)

which is a periodical square wave of the amplitude proportional
to d/g. It is small provided there are many spin excitation en-
ergies within g. Note that two separated roots produce an addi-
tional contribution of the order of 1/L. This result is consistent
with the fact that the coupling between the dark states and the
photon state is very weak, while dark states are predominantly
responsible for the system’s dynamics in the large-L limit.
Thus, a “radiation trapping” effect for the homogeneous model
[28] is naturally recovered. If energy dissipation is present in
the system and it is much larger for the cavity compared to the
spin subsystem, then a coupling to dark states allows one to
drastically reduce the total effective dissipation.

The obtained results are potentially important in the context
of quantum information storage and quantum state protection
since they show that dark eigenstates are able to greatly
enhance the lifetime of the single excited spin and also
they reveal how stabilization of excitations within the spin
subsystem induced by these states emerges as the number
of spins increases. Perhaps our findings can also be used to
probe the properties of mesoscopic ensembles of artificial
spins coupled to a cavity. By exciting one of the spins of the
ensemble via an additional waveguide and tracing its evolution,
it is possible to see whether the ensemble behaves collectively
according to the scenario we predict or such a behavior is
suppressed due to the disorder and/or decoherence processes.

The problem we study might also be considered as an
exactly solvable toy model for the coupled qubit-cavity system
in the presence of a mesoscopic environment of “parasitic”
quantum two-level systems (fluctuators) interacting with the
main system via photon degree of freedom and leading to
decoherence. This model, however, is unable to account for

033804-6



DYNAMICS OF A MESOSCOPIC QUBIT ENSEMBLE . . . PHYSICAL REVIEW A 96, 033804 (2017)

FIG. 4. Evolution of the occupation of a single-photon state for (a) L = 4, (b) L = 8, (c) L = 20, and at g = 0.05ω,	 = 0.1ω.

the fluctuator’s own environment, so that it is applicable
provided fluctuators are more strongly coupled to the qubit-
cavity system than to their environment. The model has to
be contrasted with the spin-boson model and it corresponds
to a pure quantum regime when an entanglement between
the qubit-cavity system and fluctuators is of importance [37].
The existence of the exact solution allows one to perform a
microscopic analysis for such a situation without switching to
any simplified and not fully controllable approximation. In this
context, we investigated the dynamics of a single qubit-cavity
coupled system in the presence of a mesoscopic ensemble
of fluctuators with strongly detuned excitation frequencies.
We found that such an ensemble produces very significant
phase drift (“dephasing”) for the amplitude of the probability
of qubit excitation. We would like to stress that this effect
is much stronger than the influence of fluctuators on a qubit
excited-state population—even if Rabi oscillations are almost
perfectly reproduced, the phase drift can be significant. Of
course, it becomes larger as the detuning between the mean
fluctuator frequency and photon mode is decreased. We also
expect that the presence of individual environments of qubits
should lead to the suppression of the Zeno-like effect, so that in

the regime of strong energy dissipation, the lifetime of the qubit
excited state is limited by the decay into its own environment.

C. Dynamics of the system with single-photon state
in the initial moment

Let us now apply our general results for Bethe roots in the
equally spaced model to the dynamics of the system starting
from a single-photon state. For the amplitude of probability to
still have a single-photon state after some evolution, we obtain,
from (A9),

〈0,↓ . . . ↓|a|ψ(t)〉 � d2

π2g2
e−idt/2

L−1∑
α=1

e−iεα t

× 1

1 + 1
π2

(
ln εL−εα

εα−ε1

)2

+
∑

α=0,L

e−iλ(α)t 1

1 + g2L

(λ(α)−ε1)(λ(α)−εL)

,

(18)
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where we separated contributions from dark and bright states.
In the regime of weak disorder, 	 � g

√
L, a maximum

of the absolute value of the first term as a function of t

scales as ∼	2/g2L, while the second term starts to represent
collective Rabi oscillations of the spin ensemble as a whole
with frequency g

√
L and the amplitude approaching 1. In

the intermediate regime g
√

L ∼ 	, amplitudes of oscillations
due to these two contributions are generally of the same order.

As an example, Fig. 4 shows the evolution of the occupation
of a single-photon state for L = 4 [Fig. 4(a)], L = 12
[Fig. 4(b)], L = 20 [Fig. 4(c)], and at g = 0.05ω,	 = 0.1ω

calculated numerically. This figure evidences that the dynam-
ics for small spin number is essentially chaotic. However, it
becomes more ordered as the number of spins grows and the
system enters an intermediate regime, 	 ∼ g

√
L. Initially,

the photon is mainly absorbed by a set of dark states, which
transform the excitation into the spin subsystem. The photon
state occupation in this limit is represented by a superposition
of small-amplitude Rabi-like oscillations due to two bright
states and quasiperiodical sharp revivals of a period ∼1/d due
to the set of dark states, which release the excitation from
the spin subsystem and then absorb it again. These revivals
are only partial. The time delay for the first revival increases
with the increase of the number of spins in the ensemble
due to the growth of the dark-state number. The amplitude
of oscillations due to the bright states grows as L increases, so
that in the regime g

√
L � 	, they have to be transformed to

Rabi oscillations of the whole ensemble with frequency g
√

L,
while the role of dark states in the dynamics of the photon
subsystem and for the initial condition considered becomes
negligible. Let us stress that, on the contrary, they play a
dominant role in the dynamics of a spin subsystem in this limit
for the initial condition considered in the preceding section.

As for the dynamics of the spin subsystem, we obtain, for
the amplitude of probability to have a single spin with energy
εm excited,

〈0,↓ . . . ↓|σm|ψ(t)〉

=
L∑

α=0

e−iλ(α)t 1

1 + ∑L
j=1

g2

(λ(α)−εj )2

g

λ(α) − εm

� 4d

π2g
e−iεmt

∞∑
n=0

sin [(2n + 1)td/2]

2n + 1

+
∑

α=0,L

e−iλ(α)t 1

1 + g2L

(λ(α)−ε1)(λ(α)−εL)

g

λ(α) − εm

, (19)

where we again separated contributions from dark and two
bright states. This probability is generally small.

D. Dynamics of the system with Bell entangled states encoded
in the initial moment into a continuum of spins

Let us now consider the dynamics of the system with
constant density of states, when the initial state is one of
the Bell states, |χ±〉 = 1√

2
(σ+

A ± σ+
B )|↓↓ . . . ↓,0〉. These states

thus can be symmetric and antisymmetric. They represent
more sophisticated states which are characterized by a finite
quantum entanglement and include more than one spin. The

evolution, in this case, is described by Eq. (A11). It is known
that in the case of a homogeneous model, the antisymmetric
Bell state does not decay at all for any L [28]. It is of interest to
explore an influence of broadening on its stability in the case
of a mesoscopic ensemble.

An important quantity in this context is an overlap between
the initial state of the system χ± and its state |ψ(t)〉 after the
beginning of the evolution,

〈χ±|ψ(t)〉 = 1

2

L∑
α=0

e−iλ(α)t 1

1 + ∑L
j=1

g2

(λ(α)−εj )2

×
[

g

λ(α) − εA

± g

λ(α) − εB

]2

. (20)

In the large-L limit, this expression reduces to

〈χ±|ψ(t)〉 � 8

π2
e−i(εA+εB )t/2

[
cos

(
εB − εA

2
t

)

×
∞∑

n=0

cos [(2n + 1)td/2]

(2n + 1)2
± d

(εA − εB)

× sin

(
εB − εA

2
t

) ∞∑
n=0

sin [(2n + 1)td/2]

2n + 1

]
.

(21)

The correspondent evolution of fidelity defined as |〈χ±|ψ(t)〉|
and calculated numerically at L = 20 for three different values
of |εB − εA|, with εA being in a resonance with ω, is plotted
in Fig. 5. The agreement between the numerics and explicit
result (21) (not plotted in Fig. 5) is again spectacular.

We see that instead of the periodic triangle wave, the fidelity
follows a much more complicated evolution. The lifetime of
the state χ+, i.e., the time needed for the fidelity to drop from
maximum to the first zero, is of the same order as for the single
excited spin, i.e., it is enhanced due to the Zeno-like effect. The
situation, however, is very different for χ−. Namely, for the
minimum possible separation between energies of two spins
A and B, |εB − εA| = d, the lifetime becomes infinite since
the fidelity oscillates periodically but always remains high.
Such a behavior in the case of the χ− state is predictable for
two isolated spins, but we see that it survives even in the
presence of an environment of other spins with excitation
frequencies close to the resonance, which are expected to
strongly interact with a couple of given spins. In reality, the
interaction is strongly suppressed due to a specific structure
of a two-spin wave function. The fidelity also does not vanish
in the case |εB − εA| = 2d, but becomes suppressed in its
minimum due to the influence of the intermediate spin. Starting
from |εB − εA| = 3d, the minimum fidelity reaches zero, but
the lifetime of the χ− state nevertheless remains longer than the
lifetime for the χ+ state. Thus, χ− turns out to be much more
robust than χ+, especially for small separations between εA and
εB . However, the effect of the difference between εA and εB

is quite strong and it reflects significant deviations of behavior
from the case of the homogeneous model. Nevertheless, the
evolution of the fidelity remains highly sensitive to the plus or
minus sign in the Bell state, i.e., quantum interference effects
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FIG. 5. Evolution of |〈χ±|ψ(t)〉| for L = 20, g = 0.05ω,	 = 0.1ω and (a) |εB − εA| = d , (b) = 2d , (c) = 3d . Blue solid (red dashed)
lines correspond to χ+ (χ−).

in the mesoscopic regime appear as quite robust with respect
to broadening.

These results demonstrate that it is possible to stabilize in
the spin subsystem collective quantum states involving few
spins and not only single-spin states. Surprisingly, they can be
even more stable than single-spin states and are able to support
finite entanglement, in principle, for an arbitrary time, which is
rather unexpected because entanglement is usually considered
as a rather fragile entity.

Note that it also follows from Eq. (20) that the first-order
correction produced by two separated roots is suppressed in
the case of the χ− state due to the minus sign in the sum. This
is consistent with the results shown in Fig. 5.

Next, let us turn to a photon subsystem and evaluate the
amplitude of probability of having a single-photon state. We
readily obtain

〈0,↓ . . . ↓|a|ψ(t)〉

= 1√
2

L∑
α=0

e−iλ(α)t

[
g

λ(α) − εA

± g

λ(α) − εB

]

× 1

1 + ∑L
j=1

g2

(λ(α)−εj )2

. (22)

In leading order in L, it reduces to

〈0,↓ . . . ↓|a|ψ(t)〉

� 2
√

2

π2

d

g
(e−iεAt ± e−iεB t )

∞∑
n=0

sin [(2n + 1)td/2]

2n + 1
. (23)

Due to the presence of the term (e−iεAt ± e−iεB t ), the occupa-
tion of the single-photon state in the case of an antisymmetric
initial condition and at εA ≈ εB is dramatically reduced
compared to the case of a single excited spin considered
above, where it is also small. Thus, such a state turns out
to be “superdark”. This is why χ− is more robust compared
to χ+. In the case of a homogeneous model, χ− becomes
a true Hamiltonian eigenstate totally decoupled from light
(subradiant mode [28]).

The results of this section might also be used for testing the
quantum mechanical nature of artificial spin-cavity systems
including a manifestation of quantum interference effects,
which are crucial for an unambiguous demonstration of
“quantumness” of such engineered macroscopic systems.
The entangled state between two qubits can be created
via additional tunable cavities coupled to these particular
qubits. By performing a two-qubit tomography, it is then
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possible to follow the entanglement dynamics and to deeply
probe coherent properties of qubit-cavity coupled systems.
Particularly, the evolution must be sensitive to the symmetry
of the Bell state (plus or minus sign).

IV. EFFECTS OF STATISTICS

Let us briefly discuss the effects arising due to a deviation
from an equally spaced distribution towards Gaussian or
similar types of statistics characterized by smooth tails. We
found numerically that if the typical energy scale associated
with the deviation from an equally spaced distribution (such as
mean variance for Gaussian distribution) is much larger than
g, then no qualitative change of behavior for the dynamics
starting from excitations within the spin subsystem is observed
at short times, ∼2πd0, with d0 being an inverse maximum
density of states. Namely, leading-order contributions to the
quantities found above are qualitatively very similar. This
happens because the strongest interaction between the photon
and spin subsystems is due to spins with energies close to
the resonance with ω, while the influence of the remaining
spins becomes larger at long times. Nevertheless, subdominant
contributions do change since no well-defined bright state
survives under Gaussian-like distributions with tails; this, for
instance, results in the absence of Rabi-like oscillations, which
are transformed into small-amplitude chaotic dependencies
similar to the ones visible in Fig. 3.

However, rather significant changes do occur provided the
scale associated with the deviation from the equally spaced
distribution is lowered to �g. In this case, the dynamics
becomes more irregular. Nevertheless, the typical relaxation
time of a single spin excitation remains long. Moreover,
our general conclusion about the extreme robustness of
antisymmetric Bell state χ−, which does not decay at all for
neighboring spins A and B, remains valid as well.

V. CONCLUSIONS

We studied the dynamics of an mesoscopic ensemble of
qubits coupled to a single-mode cavity and concentrated on
effects of disorder in qubit excitation frequencies and the
regime of a weak excitation. In particular, we analyzed how
collective properties of such a coupled system are formed as
the number of qubits in the ensemble grows. This is done using
a Bethe ansatz solution of the Dicke model, which provides
a direct access to Hamiltonian exact eigenstates as well as a
simple and pictorial understanding based on them.

We found that dark states weakly coupled to light gradually
emerge and start to play a very important role upon the
crossover from few-qubit systems to large ensembles. They
are similar to the subradiant modes of a homogeneous Dicke
model, which are totally decoupled from the light. The role of
dark states in the free evolution dynamics is more important
for initial conditions corresponding to excitations within the
qubit subsystem.

Our main conclusions are as follows:
(a) Despite inhomogeneous broadening, single-qubit exci-

tation becomes stabilized in the infinite qubit number limit
through what can be referred to as the Zeno-like effect. It is
induced by the gradual formation of dark states.

(b) Surprisingly, an antisymmetric entangled Bell state
constructed from the individual states of two qubits can
be even more stable than single-qubit excitation provided
the excitation frequencies of these two qubits are not far
from each other in the energy space. However, as separation
grows, inhomogeneous broadening is able to suppress this
effect. Nevertheless, the evolution remains highly sensitive to
the symmetry of the total wave function, which highlights
a nontrivial role of quantum interference effects in the
mesoscopic regime.

(c) The effect of a finite number of spins is generally
manifested through partial revivals of the initial state, with the
period of revivals being proportional to the number of qubits.
This scenario explains how Rabi-like oscillations in the limit
of just a few qubits are transformed into collective and highly
cooperative behavior in the limit of many qubits.

(d) The role of dark states is less essential for the initial
condition corresponding to the single photon. They, however,
are still of importance in the mesoscopic regime, when they
are able to absorb photon into the qubit subsystem and then
to release it quasiperiodically in time. A characteristic period
of such revivals grows with the number of qubits, while the
amplitude lowers. They coexist with Rabi-like oscillations
between the whole ensemble of qubits and photon field so
that in the infinite number limit, such oscillations are naturally
recovered.

Our results provide additional insights into the physics of
qubit-cavity coupled systems and might be of importance
for quantum states’ engineering, protection, and storage. In
particular, we believe that our theoretical predictions can
be used to deeply probe both the coherent and collective
properties of mesoscopic ensembles of artificial spins coupled
to cavities. For instance, the Zeno-like effect is definitely
linked to the formation of collective properties of the ensemble
despite the disorder in excitation frequencies. On the other
hand, a sensitivity of the evolution of the entangled Bell state
to the symmetry of the wave function is based on quantum
interference effects, while an experimental demonstration of
such effects is crucial for the unambiguous evidence of the true
“quantumness” of engineered macroscopic artificial systems.
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APPENDIX A: TIME DEPENDENCE

Let us consider the dynamics of the system starting from
some initial state |ψ(t = 0)〉 corresponding to M = 1, with
this number being conserved during the evolution. We expand
the time-dependent wave function over the orthonormal basis
|ϕα〉 as

|ψ(t)〉 =
L∑

α=0

Cα(t)|ϕα〉, (A1)
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where

Cα(t = 0) = 〈ϕα|ψ(t = 0)〉. (A2)

These coefficients at arbitrary t > 0 can be readily found from
the Schrödinger equation,

Cα(t) = Cα(t = 0) exp(−iλ(α)t). (A3)

Below we consider several initial conditions and a general
distribution of spin energies. These general results are then
used to analyze the system’s dynamics explicitly for an equally
spaced distribution of spin energies.

1. Single-spin excitation

Let us obtain the time-dependent wave function correspond-
ing to the initial state defined as

|ψ(t = 0)〉 = σ+
A |↓↓ . . . ↓,0〉, (A4)

which describes a single spin excitation, while all the remain-
ing spins are in their ground states and there is no photon in the
system. Such states have a direct relation to states engineered
in Ref. [15] by a spectral hole-burning technique. It is of
interest to explore its dynamics as the number of spins in
the system grows. Note that in the limit L = 1, there appear
Rabi oscillations between the single-spin and photon field. The
naive expectation is that an addition of extra spins would just
lead to a sort of a chaotization of Rabi oscillations. We will
show that this is not the case.

We readily obtain, from Eq. (A5),

Cα(t = 0) = 〈ϕα|ψ(t = 0)〉 = 1√〈�α|�α〉
g

λ(α) − εA

. (A5)

In the explicit form, the time-dependent wave function reads

|ψ(t)〉 =
L∑

α=0

e−iλ(α)t g

λ(α) − εA

1

1 + ∑L
j=1

g2

(λ(α)−εj )2

×
⎛
⎝a† +

L∑
j=1

g

λ(α) − εj

σ+
j

⎞
⎠|↓↓ . . . ↓,0〉. (A6)

2. Single photon

We may also consider the initial condition of another type,
which corresponds to the single photon in a cavity,

|ψ(t = 0)〉 = a†|↓↓ . . . ↓,0〉. (A7)

From Eq. (A5), we again find

Cα(t = 0) = 〈ϕα|ψ(t = 0)〉 = 1. (A8)

In the explicit form, the time-dependent wave function is

|ψ(t)〉 =
L∑

α=0

e−iλ(α)t 1

1 + ∑L
j=1

g2

(λ(α)−εj )2

×
⎛
⎝a† +

L∑
j=1

g

λ(α) − εj

σ+
j

⎞
⎠↓↓ . . . ↓,0〉. (A9)

3. Bell state encoded into the spin subsystem

Let us now consider a dynamics of the system with the
initial state being one of the two Bell states encoded into two
spins within the spin subsystem,

|χ±〉 = 1√
2

(σ+
A ± σ+

B )|↓↓ . . . ↓,0〉. (A10)

Using the developed approach, we arrive at the explicit form
of the time-dependent wave function,

|ψ(t)〉 = 1√
2

L∑
α=0

e−iλ(α)t

[
g

λ(α) − εA

± g

λ(α) − εB

]

× 1

1 + ∑L
j=1

g2

(λ(α)−εj )2

⎛
⎝a† +

L∑
j=1

g

λ(α) − εj

σ+
j

⎞
⎠

×↓↓ . . . ↓,0〉. (A11)

APPENDIX B: ROOTS FOR EQUALLY SPACED
DISTRIBUTION

For the confined roots, it is convenient to represent λ(α) as
εα + δα , where δα < d. In order to find δα , we split the sum in
Eq. (9) into two contributions:

λ(α) − ω

g2
=

min(α−2,L−α)∑
k=0

[
1

dk + d + δα

− 1

dk − δα

]

+
⎡
⎣ α−2∑

k=min(α−2,L−α)+1

1

dk + d + δα

−
L−α∑

k=min(α−2,L−α)+1

1

dk − δα

⎤
⎦. (B1)

The first contribution is over the energies εj extending
symmetrically from εα in both sides, while the second one
includes contributions of the remaining energies εj . Since we
consider the regime of large L � 1, we may replace the upper
limits of summation in the first contribution by +∞. This term
then reduces to

+∞∑
k=0

[
1

dk + d + δα

− 1

dk − δα

]
= π

d
cot

(
π

δα

d

)
. (B2)

We may also replace the summation by integration in the
remaining terms in Eq. (B1) as well as λ(α) by εα in its left-hand
side. We then arrive at the expression for δα given by

δα � d

π
cot−1

{
1

π

[
d

g2
(εα − ω) + ln

εL − εα

εα − ε1

]}
. (B3)

An important special case is a distribution centered around ω,
which leads to δα � d/2 for εα approaching ω.

Using a similar method, we evaluate 〈�α|�α〉 as

〈�α|�α〉 � g2 π2

d2

1

sin2
(

πδ(α)

d

) . (B4)
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The expression of sin2(πδ(α)

d
) can be readily obtained from

Eq. (B3), yielding

〈�α|�α〉 � g2 π2

d2

[
1 + 1

π2

(
ln

εL − εα

εα − ε1

)2
]
.

(B5)

Let us now consider two additional roots of Eq. (9), which
we denote as λ(0) and λ(L), while λ(0) < ε1 and λ(L) > εL.
In order to find these roots, we may replace summation by
integration in this equation, which is allowed provided ε1 −
λ(0) � d and λ(L) − εL � d. The equations for λ(0) and λ(L)

are identical and they read

λ(0,L) − ω � g2L

	
ln

λ(0,L) − ε1

λ(0,L) − εL

. (B6)

These are transcendental equations, which can be solved
numerically. Let us stress that the dependence of λ(0,L)

on g is nonanalytic. The norms for the two corresponding
eigenfunctions are

〈�0,L|�0,L〉 � 1 + g2L

(λ(0,L) − ε1)(λ(0,L) − εL)
. (B7)
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