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Speeding up adiabatic passage by adding Lyapunov control

Du Ran,1,2 Zhi-Cheng Shi,1,2,* Jie Song,3 and Yan Xia1,2,†
1Department of Physics, Fuzhou University, Fuzhou 350116, China

2Fujian Key Laboratory of Quantum Information and Quantum Optics, Fuzhou University, Fuzhou 350116, China
3Department of Physics, Harbin Institute of Technology, Harbin 150001, China

(Received 20 February 2017; published 1 September 2017)

We propose a scheme to speed up adiabatic passage by using Lyapunov control theory. This is a good choice to
solve the problem that may emerge in Berry’s transitionless quantum driving [M. V. Berry, J. Phys. A 42, 365303
(2009)]. That is, the extra couplings in the counterdiabatic driving Hamiltonian can be avoided by choosing
the available control Hamiltonian in an actual physical system. As examples, we shorten the evolution time
of adiabatic population transfer in a three-level system and the entanglement generation in a cavity quantum
electrodynamics system. Moreover, the occupation of an intermediate state can be sharply suppressed by properly
choosing the control Hamiltonian in the three-level system. The scheme can also be generalized to a complex
system where the exact expressions of adiabatic eigenstates are difficult to obtain.
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I. INTRODUCTION

Reliable population transfer and entanglement generation
have various applications in quantum information processing
(QIP) [1–5]. In the context of QIP, quantum control theory has
generated increasing interest in the last few years due to its
important role in the development of quantum chemistry and
quantum optics as well as potential applications in metrology
[6,7], communications [8,9], and other technologies [10–13].

To accurately control a quantum system to evolve as one
expects, reliable techniques including optimal control [14,15],
adiabatic control [16,17], and measurement-based control
[18,19] have been widely used. Among them, adiabatic tech-
niques which are famous for their robustness against the noises
of driving fields have been holding an irreplaceable position
in the quantum control field. Two of the most important
applications of adiabatic techniques are stimulated Raman
adiabatic passage (STIRAP) [20] and fractional stimulated
Raman adiabatic passage (f-STIRAP) [21]. The STIRAP
(f-STIRAP) technique was first demonstrated with sodium
dimer molecular beams [22], and applied in many contexts
both theoretically and experimentally [23–27] from then on.
However, the drawback of STIRAP that the system evolution
needs to satisfy the adiabatic condition greatly reduces the
evolution speed and causes increased decoherence effect. It
has been shown that the fidelities of the desired states are very
sensitive to the dephasing due to the long evolution time in
STIRAP [28,29]. Therefore, from the view of decoherence,
accelerating the dynamics towards the perfect final outcome
is a good choice and perhaps is the most reasonable way to
fight against the decoherence. In order to speed up adiabatic
passage, many methods have been proposed, for instance, the
transitionless quantum driving algorithm [30–42].

Here we would like to introduce another reliable quantum
control technique, the Lyapunov-based open-loop control,
which has been extensively studied recently [43–57] due to its
simplicity and intuitive nature in the design of control fields.
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The key point in Lyapunov control is to construct a Lyapunov
function and then to design time-dependent control fields. With
these control fields, the problems of driving a quantum system
to a target state or realizing some specific operations can
be successfully solved. For instance, the Lyapunov control
method could be applied to generate entanglement between
two distant two-level atoms in cavities connected by an optical
fiber [58]. In addition, Wang et al. [59] proposed two different
designs of the Lyapunov function and applied them to adiabatic
quantum computation to improve adiabatic evolution.

In this paper, we propose a scheme to speed up adiabatic
passage by using Lyapunov control to drive the nonadiabatic
transition state back to the target instantaneous eigenstate.
The scheme can effectively avoid the requirement of extra
couplings in the transitionless quantum driving algorithm,
and it can be easily generalized to complex quantum systems
where the exact expression of the counterdiabatic Hamiltonian
is difficult to obtain. In our concrete illustrations, to ensure
high population such as Pf � 0.99, the laser pulse width T

required in STIRAP methods is much larger than that in adding
Lyapunov control, which means that the adiabatic condition
can be effectively weakened by adding Lyapunov control.

The rest of this paper is organized as follows. In Sec. II,
we present the Lyapunov control theory in the adiabatic
passage, then elucidate the physical mechanism of this control
process. In Sec. III, we use Lyapunov control to speed
up the population transfer in a three-level system and the
entanglement generation in a cavity QED system. Conclusions
are presented in Sec. IV.

II. LYAPUNOV CONTROL THEORY
IN ADIABATIC PASSAGE

Consider a N -dimensional nondegenerate quantum system
with Hamiltonian H0(t), where the instantaneous eigenstates
|φn(t)〉 and corresponding eigenvalues En(t) (n = 1,2, . . . ,N )
satisfy

H0(t)|φn(t)〉 = En(t)|φn(t)〉. (1)

In the adiabatic approximation, the system always stays in
instantaneous eigenstate |φT (t)〉 if the initial state is |φT (0)〉.
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However, when the adiabatic condition cannot be satisfied
very well (e.g., shortening the evolution time), nonadiabatic
transition between instantaneous eigenstates occurs. As a
result, the system gradually deviates from the instantaneous
eigenstate |φT (t)〉. In order to overcome this drawback, Berry
proposed the transitionless quantum driving algorithm to elim-
inate the nonadiabatic couplings by adding a counterdiabatic
driving Hamiltonian [31]. Nevertheless, the counterdiabatic
driving Hamiltonian often requires extra couplings which are
unfeasible or even nonexistent in actual physical systems
[42]. Furthermore, this algorithm is very difficult to extend to
complex quantum systems. In the following, we demonstrate
that the drawbacks existing in the transitionless quantum
driving algorithm can be effectively overcome when applying
Lyapunov control in adiabatic passage.

To keep the system state evolving along with the instanta-
neous eigenstate |φT (t)〉, an additional Hamiltonian Hc(t) =∑K

k=1 fk(t)Hk needs to be added in the original system, where
Hk (k = 1, . . . ,K) are control Hamiltonians that are available
in physical systems and fk(t) are time-varying real functions,
representing the value of control fields. Then, the evolution of
a quantum system is governed by the following Schrödinger
equation (h̄ = 1):

i|ψ̇(t)〉 = [H0(t) + Hc(t)]|ψ(t)〉, (2)

where |ψ(t)〉 is the system state. In order to design the shape
of control fields fk(t) that impose |ψ(t)〉 approaching to
the instantaneous eigenstate |φT (t)〉, one first should select a
Lyapunov function V (t). Here we consider the following form
of the Lyapunov function, which is based on the so-called
Hilbert-Schmidt (or, equivalently, on the trace) distance [60]:

V (t) = 1 − |〈φT (t)|ψ(t)〉|2. (3)

From this Lyapunov function, we find that the value of
V (t) becomes smaller when the system state is closer to
the instantaneous eigenstate |φT (t)〉. In particular, the value
of V (t) is minimum when the system state entirely stays in
the instantaneous eigenstate |φT (t)〉. By calculating the time
derivative of V (t), we have

V̇ (t) = 2
K∑

k=1

fk(t)Im[〈φT (t)|ψ(t)〉〈ψ(t)|Hk|φT (t)〉]

− 2Re[〈φ̇T (t)|ψ(t)〉〈ψ(t)|φT (t)〉], (4)

where Im[·] and Re[·] represent the imaginary and real part of
the argument, respectively. In order to satisfy the condition of
V̇ (t) � 0, the natural choices of control fields fk(t) are

fk(t) = −AkIm[〈φT (t)|ψ(t)〉〈ψ(t)|Hk|φT (t)〉], k �= k0,

fk0 (t) = Re[〈φ̇T (t)|ψ(t)〉〈ψ(t)|φT (t)〉]
Im[〈φT (t)|ψ(t)〉〈ψ(t)|Hk0 |φT (t)〉] , k = k0, (5)

where the positive number Ak is used to adjust the ampli-
tude of control fields. k0 is specified to satisfy the condi-
tion Im[〈φT (t)|ψ(t)〉〈ψ(t)|Hk0 |φT (t)〉] �= 0, and the control
field fk0 (t) is used to eliminate the uncontrollable term
−2Re[〈φ̇T (t)|ψ(t)〉〈ψ(t)|φT (t)〉]. Under the domination of
this designated control field fk(t), the system state |ψ(t)〉
will converge to the LaSalle invariant set, for which V̇

vanishes [61].

In order to get a more clear insight into the physical process
of why the system state can evolve along with the instantaneous
eigenstate |φT (t)〉 in the adiabatic passage by adding Lyapunov
control, we turn to the “adiabatic frame.” To be specific,
by performing a unitary transformation with the unitary
operator U (t) = ∑N

n=1 |φn(t)〉〈n|, the system Hamiltonian
H (t) = H0(t) + ∑

k fk(t)Hk in the adiabatic frame reads

H(t) = U †(t)H (t)U (t) − iU †(t)U̇ (t)

=
N∑

n=1

En(t)|n〉〈n| − i

N∑
n,m=1

〈φm(t)|φ̇n(t)〉|m〉〈n|

+
N∑

m,n=1

K∑
k=1

fk(t)〈φm(t)|Hk|φn(t)〉|m〉〈n|, (6)

where {|n〉} are the basis states satisfying
∑

n |n〉〈n| = 1 and
〈m|n〉 = δmn. Suppose that the system state |ψ(t)〉 can be
written as |ψ(t)〉 = ∑N

n=1 an(t)|φn(t)〉, where an(t) are the
probability amplitudes of instantaneous eigenstate |φn(t)〉.
According to the Schrödinger equation, we find

i
∂

∂t

⎛
⎜⎜⎜⎜⎝

a1(t)

a2(t)
...

aN (t)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
H11 H12 · · · H1N

H21 H22 · · · H2N

...
...

. . .
...

HN1 HN2 · · · HNN

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a1(t)

a2(t)
...

aN (t)

⎞
⎟⎟⎟⎟⎠, (7)

where the matrix elements Hnn = −i〈φn(t)|φ̇n(t)〉 +
En(t) + ∑

k fk(t)Enk(t) with Enk(t) = 〈φn(t)|Hk|φn(t)〉,
Hmn = −i〈φm(t)|φ̇n(t)〉 + ∑

k fk(t)Hmn
k (t) with Hmn

k (t) =
〈φm(t)|Hk|φn(t)〉 (m,n = 1,2, . . . ,N ; m �= n). Note that Hk(t)
represent the control Hamiltonian in the adiabatic frame, and
the control fields of Eq. (5) accordingly read

fk(t) = −AkIm

[
N∑

n=1

aT (t)a∗
n(t)〈φn(t)|Hk|φT (t)〉

]
. (8)

One can see that Eqs. (7) and (8) represent a nonlinear
autonomous dynamical system. This system will necessarily
converge to an invariant set defined by E = {|ψ(t)〉 : V̇ (t) =
0} according to LaSalle’s invariant principle [61], which is also
equivalent to fk(t) = 0 in Eq. (8). In general, this invariant set
may contain many instantaneous eigenstates, depending on the
choice of control Hamiltonian Hk . If the control Hamiltonian
Hk is suitably chosen to satisfy 〈φm(t)|Hk|φT (t)〉 �= 0, which
means that the off-diagonal elements of the control Hamil-
tonian do not vanish in the adiabatic frame [i.e., there exists
direct coupling between the instantaneous eigenstate |φT (t)〉
and all the other eigenstates |φm(t)〉], the LaSalle invariant
set would only contain the instantaneous eigenstate |φT (t)〉
[49,62,63]. As a result, the system state would be steered into
the instantaneous eigenstate |φT (t)〉 under Lyapunov control
in adiabatic passage. In the following we will show some
applications for this scheme.
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III. APPLICATIONS

A. Speeding up population transfer in a three-level system

Before studying the problem of speeding up the population
transfer in a three-level system, we first briefly review how
to achieve population transfer in STIRAP [20]. Consider a
three-level system with states |1〉, |2〉, and |3〉, where |1〉 and
|2〉 are coupled by a pump laser with the Rabi frequency �p(t),
and |2〉 and |3〉 are coupled by a Stokes laser with the Rabi
frequency �s(t). Under one-photon resonance condition and
the rotating-wave approximation, the system Hamiltonian can
be written as (h̄ = 1)

H0(t) = 1
2 [�p(t)|1〉〈2| + �s(t)|2〉〈3| + H.c.]. (9)

The instantaneous eigenstates, with the corresponding eigen-
values E1(t) = 0, E2(t) = �(t)/2, and E3(t) = −�(t)/2

[�(t) =
√
�2

s (t) + �2
p(t)], are

|φ1(t)〉 = cos θ |1〉 − sin θ |3〉,
|φ2(t)〉 = 1√

2
(sin θ |1〉 + |2〉 + cos θ |3〉),

|φ3(t)〉 = 1√
2

(sin θ |1〉 − |2〉 + cos θ |3〉), (10)

where tan θ = �p(t)/�s(t). To achieve perfect population
transfer from |1〉 to |3〉 along the dark state |φ1(t)〉, we shall
slowly change the value of θ in Eq. (10) from zero to π

2 to
guarantee the system satisfies the adiabatic condition, and the
boundary conditions read

lim
t→0

�p(t)

�s(t)
= 0, lim

t→+∞
�s(t)

�p(t)
= 0. (11)

This requires that the Stokes laser begins and ends earlier than
the pump laser, which can be achieved by appropriate spatial
displacement of the axes of cw lasers or a suitable time delay
between the pump and Stokes lasers [20]. For instance, we
choose the Stokes and pump pulses as follows:

�p(t) = �0
pe−(t+τ )2/T 2

,

�s(t) = �0
s e

−(t−τ )2/T 2
, (12)

where T is the pulse width and τ is the time delay. According
to the adiabatic theorem [64], the adiabatic condition is
satisfied well when �effT 	 1, where �eff = �(t)/2 denotes
the effective laser intensities. For a given T , the inequality can
be satisfied well by increasing �eff. This is exactly the point of
interest for experiments, since it shows that the adiabatic limit
can be achieved for strong enough pulses even if the pulse
duration is short.

Now, we need to study the regions where the adiabatic
condition is unsatisfied for STIRAP by setting the laser
amplitude �0

n (n = s,p) constant and varying the laser pulse
width T of Eq. (12). In Fig. 1(a), we show the population
Pf = |〈ψ(t)|φ1(t)〉|2 as a function of laser pulse width T by
using STIRAP. For the blue dashed line in Fig. 1(a), the laser
pulse width T � 11 μs, which cannot keep the population
Pf � 0.99, is defined as the adiabatic condition unsatisfied
regions. To see the STIRAP more clearly, in Fig. 1(b), we
show the time evolution of instantaneous eigenstate |φ1(t)〉
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FIG. 1. (a) The population Pf as a function of laser pulse
width T in f-STIRAP (blue dashed line) and adding Lyapunov
control (green solid line), where τ = 0.7T , �0

s = 5
3 �0

p = 1 MHz.
(b) Time dependence of the Rabi frequencies for STIRAP with
laser pulse width T = 11 μs (carmine lines, corresponding to the
right y coordinate), and the time evolution of population Pf for
STIRAP (blue dashed line, corresponding to the left y coordinate).
(c) Time dependence of the Rabi frequencies for STIRAP with laser
pulse width T = 3.2 μs (carmine lines, corresponding to the right y

coordinate), and the time evolution of population Pf for STIRAP with
the blue dashed line and for Lyapunov control with the green solid
line (corresponding to the left y coordinate). (d) The time evolution of
corresponding control fields for Lyapunov control with A1 = A2 = 1.

(the blue dashed line) and the laser pulse sequences of Eq. (12)
(the magenta lines) when the pulse width T = 11 μs. One can
easily find that the population Pf almost keeps unit during
the evolution process, meaning that the adiabatic condition
is satisfied well in this case. However, when the pulse width
T = 3.2 μs, as shown in Fig. 1(c), the population Pf can only
reach about 0.5 (the blue dashed line), demonstrating that the
system cannot satisfy the adiabatic condition very well so that
the system state seriously deviates from the instantaneous state
|φ1(t)〉. In the following, we show that the adiabatic condition
can be weakened by using Lyapunov control.

In order not to add extra interaction in the system, we still
take the pump and Stokes lasers as the control Hamiltonians
in Lyapunov control, i.e.,

H1 = |1〉〈2| + |2〉〈1|, H2 = |3〉〈2| + |2〉〈3|, (13)

where the control fields are given by Eq. (5) with Hk0 = Hk .
From Fig. 1(a), the red solid line, we can see that the laser
pulse width T 
 3.2 μs is enough to obtain a high-fidelity
population transfer (Pf 
 0.99) in Lyapunov control strategy,
which is greatly shortened as compared to that needed for
STIRAP. To be more specific, in Fig. 1(c), the green solid
line represents the time evolution of population Pf by adding
Lyapunov control in STIRAP with the pulse width T = 3.2 μs,
and the time varying control fields fk are plotted in Fig. 1(d),
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FIG. 2. The population (a) P2 and (b) P3 as a function of mixing
angle ϑ and evolution time t . The time evolution of population of
bare state |k〉 (k = 1,2,3) in STIRAP, (c) with Lyapunov control at
mixing angle ϑ = 3π/2 and (d) without Lyapunov control, where the
parameters are T = 3.2 μs, τ = 0.7T , �0

s = 5
3 �0

p = 1 MHz.

demonstrating that the system state is basically transferred to
the instantaneous target state in this case.

In STIRAP, the occupation of intermediate state |2〉 is
usually small. Naturally, one may care about the population
of the intermediate state in the Lyapunov control case.
Generally, the choice of control Hamiltonian dominates the
effectiveness of the control. Note that the population Pf

cannot always keep unit [see Fig. 1(c) green solid line] in
the whole evolution process, which means the eigenstate
|φ1(t)〉 is transferred to other eigenstates at some moment,
leading to the nonzero population of intermediate state |2〉.
Nevertheless, the intermediate state |2〉 can be suppressed
by optimizing the control Hamiltonian. For instance, one
can choose the common and feasible modulation function
to optimize the control Hamiltonian. In Figs. 2(a) and 2(b),
the trigonometric modulation functions are used to optimize
the control Hamiltonian, i.e., H ′

1 = cos ϑ(|1〉〈2| + |2〉〈1|) and
H ′

2 = sin ϑ(|3〉〈2| + |2〉〈3|). We can see from Figs. 2(a) and
2(b) that the mixing angle ϑ dominates the values of population
Pl (Pl = |〈l|ψ(t)〉|2, l = 2,3). In most cases, ϑ can ensure the
perfect population transfer from |1〉 to |3〉 [see Fig. 2(b)], and
the optimal ϑ can be easily obtained according to Fig. 2(a).
For instance, for ϑ = 3π/2, a relatively small population of
the intermediate state can be found when achieving the perfect
population transfer from |1〉 to |3〉, which is plotted in Fig. 2(c).
This not only shows that the single control Hamiltonian H ′

1 =
|1〉〈2| + |2〉〈1| can realize the perfect population transfer but
also offers us the direction to suppress the population of the
intermediate state. In addition, the single control Hamiltonian
is also beneficial to experimental operations, indicating the
flexibility choice of the control Hamiltonian in Lyapunov
control. That is, it is not completely necessary to choose the
control Hamiltonian as the same form as the counterdiabatic
driving Hamiltonian in the transitionless quantum driving

algorithm. For comparison, in Fig. 2(d) we plot the population
transfer from |1〉 to |3〉 by using the STIRAP method with
the same parameters, demonstrating the STIRAP method is
invalid when the laser pulse width is shortened.

The physical mechanism to accelerate the adiabatic pop-
ulation transfer in the three-level system can be specified as
follows. With the given control Hamiltonian in Eq. (13), the
matrix elements in Eq. (7) read

H11 = E1(t),

H22 = E2(t) + sin θf1(t) + cos θf2(t),

H33 = E3(t) − sin θf1(t) − cos θf2(t),

H12 = (H21)∗ = −iθ̇√
2

+ cos θf1(t)√
2

− sin θf2(t)√
2

,

H13 = (H31)∗ = −iθ̇√
2

+ cos θf1(t)√
2

− sin θf2(t)√
2

,

H23 = (H32)∗ = 0. (14)

From Eq. (14), we can see that the condition H11 �= H22 �=
H33 is satisfied. Furthermore, the elements of the adiabatic
control Hamiltonian read H12

1 (t) = cos θ/
√

2 �= 0, H13
1 (t) =

− cos θ/
√

2 �= 0, H12
2 (t) = − sin θ/

√
2 �= 0, and H13

2 (t) =
sin θ/

√
2 �= 0, which means that the direct couplings between

the target eigenstate [|φ1(t)〉] and other eigenstates [|φ2(t)〉 and
|φ3(t)〉] exist. With the help of control fields f1(t) and f2(t), the
system will be driven to the invariant set that only contains the
target eigenstate |φ1(t)〉 according to Lyapunov control theory
[49,62,63]. Thus even if the nonadiabatic transitions occur due
to the unsatisfied adiabatic condition during system evolution
(for instance, the laser pulse width T = 3.2 μs cannot satisfy
the adiabatic condition well), they will be driven back to the
target eigenstate |φ1(t)〉 by control fields, leading to the system
evolution always evolving along with target eigenstate |φ1(t)〉.

Consider a special case in Lyapunov control, that is, Lya-
punov function V (t) = 0 all the time, which means the system
state |ψ(t)〉 always evolves along with the instantaneous
eigenstate |φT (t)〉. In the three-level system, if the control
Hamiltonian is chosen as H1 = |1〉〈3| − |3〉〈1|, the matrix
elements of Eq. (7) read as below:

H11 = E1(t), H22 = E2(t), H33 = E3(t),

H12 = (H21)∗ = − 1√
2

[f1(t) − iθ̇ ],

H13 = (H31)∗ = − 1√
2

[f1(t) − iθ̇ ],

H23 = (H32)∗ = 0. (15)

In order to satisfy V (t) = 0, we must ensure that all the
off-diagonal elements of Eq. (15) are zero, i.e., the control
field f1(t) = iθ̇ . This is exactly the counterdiabatic driving
Hamiltonian HCD = f1(t)H1 by using Berry’s approach [42].
Therefore the transitionless quantum driving algorithm can be
regarded as a particular case of Lyapunov control. However,
in our method, we can avoid the difficulty of the realization
of the counterdiabatic driving Hamiltonian HCD by choosing
some available control Hamiltonians.
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FIG. 3. (a) The population Pf as a function of laser pulse
width T in f-STIRAP (blue dashed line) and adding Lyapunov
control (green solid line), where τ = 0.7T , �0

s = �0
p = 1 MHz.

(b) Time dependence of the Rabi frequencies for f-STIRAP with
laser pulse width T = 5.5 μs (carmine lines, corresponding to the
left y coordinate), and the time evolution of population Pf for
f-STIRAP (blue dashed line, corresponding to the right y coordinate).
(c) Time dependence of the Rabi frequencies for f-STIRAP with laser
pulse width T = 1.5 μs (carmine lines, corresponding to the left y

coordinate), and the time evolution of population Pf for STIRAP
with the blue dashed line and for Lyapunov control with the green
dot-dashed line (corresponding to the right y coordinate). (d) The
time evolution of corresponding control fields for Lyapunov control
with A1 = A2 = 1.

Note that by suitably choosing the pump and Stokes
lasers one can achieve superposition coherent state |φ1(t)〉 =
cos θ |1〉 − sin θ |3〉 under f-STIRAP [21], where the pump and
Stokes pulses satisfy the following condition:

lim
t→0

�p(t)

�s(t)
= 0, lim

t→+∞
�p(t)

�s(t)
= tan θ. (16)

In this case, the Stokes pulse still comes first and is followed
after a certain time delay by the pump pulse, but the two pulses
vanish simultaneously eventually, i.e., the two pulses can be
chosen as

�p(t) = �0
p sin θe−(t−τ )2/T 2

,

�s(t) = �0
s e

−(t+τ )2/T 2 + �0
s cos θe−(t−τ )2/T 2

. (17)

Following the same routine to the case of perfect population
transfer in STIRAP, Fig. 3(a) shows the evolution of population
Pf = |〈ψ(t)|φ1(t)〉|2 versus laser pulse width T under f-
STIRAP and adding Lyapunov control. We can see that
ensuring high population transfer such as Pf � 0.99 requires
the laser pulse width T � 5.5 μs for f-STIRAP but only
T � 1.5 μs by adding Lyapunov control strategy, which means
it needs shorter interaction time between lasers and system for
Lyapunov control. In Fig. 3(b), we show the time evolution of
instantaneous eigenstate |φ1(t)〉 and the laser pulse sequences
of Eq. (17) for laser pulse width T = 5.5 μs. One can find
that the system evolution always follows the instantaneous
eigenstate |φ1(t)〉, which indicates the adiabatic condition is

satisfied very well with T = 5.5 μs for f-STIRAP, while if the
laser pulse width T reduces to 1.5 μs the system evolution
will deviate away from the instantaneous eigenstate, which is
shown in Fig. 3(c) with the blue dashed line. However, when
we add Lyapunov control to this case, as we can see from
the green solid line in Fig. 3(c), the system evolution will
follow the instantaneous eigenstate |φ1(t)〉 again. Figure 3(d)
shows the time evolution of control fields for which we added
Lyapunov control to f-STIRAP.

B. Speeding up entanglement generation
in a cavity QED system

Another application is to accelerate adiabatic generation of
atom-atom entanglement in a cavity QED system [65], where
two �-type atoms are trapped in two distant single-mode
optical cavities connected by an optical fiber. The kth atomic
transition |0〉k → |e〉k (k = 1,2) is resonantly coupled to the
kth cavity with coupling coefficient gk(t). The kth classical
field drives the atomic transition |1〉k → |e〉k resonantly with
coupling coefficient �k(t). For simplicity we assume both gk(t)
and �k(t) are real. In the rotating wave approximation, the
system Hamiltonian can be written as (h̄ = 1)

H0 =
2∑

k=1

[gi(t)|e〉k〈0| + �k(t)|e〉k〈1|] + νb(a†
1 + a

†
2) + H.c.,

(18)

where ak and b are the annihilation operator for the kth cavity
mode and fiber mode, respectively, and ν is the coupling
strength between fiber and cavities. By defining the excitation
number operator Ne = ∑2

k=1(|e〉k〈e| + |1〉k〈1| + a†a) + b†b,
due to [Ne,H0] = 0, the subspace with Ne = 1 can be spanned
by the state vectors

|ϕ1〉 = |10〉a|00〉c|0〉f , |ϕ2〉 = |e0〉a|00〉c|0〉f ,

|ϕ3〉 = |00〉a|10〉c|0〉f , |ϕ4〉 = |00〉a|00〉c|1〉f ,

|ϕ5〉 = |00〉a|01〉c|0〉f , |ϕ6〉 = |0e〉a|00〉c|0〉f ,

|ϕ7〉 = |01〉a|00〉c|0〉f , (19)

where |m1m2〉a|n1n2〉c|nf 〉f denotes the atomic state |mk〉
(mk = 0,1,e; k = 1,2), nk (k = 1,2) photons in the kth cavity,
and nf photons in the fiber. The Hamiltonian H0 has the
following dark state:

|φT (t)〉 = K12[g1(t)�2(t)|ϕ1〉 − �1(t)�2(t)|ϕ3〉
+�1(t)�2(t)|ϕ5〉 − g2(t)�1(t)|ϕ7〉], (20)

where the normalization constant K12 = (g2
1�

2
2 + 2�2

1�
2
2 +

g2
2�

2
1)−1/2. Suppose the initial state of the system is |ϕ1〉. If

g1(t),g2(t) 	 �1(t),�2(t), and the pulse shapes satisfy

lim
t→0

g2(t)�1(t)

g1(t)�2(t)
= 0, lim

t→+∞
g2(t)�1(t)

g1(t)�2(t)
= tan β, (21)

the initial state can be adiabatically transferred to |φT (t →
∞)〉 = (cos β|10〉a − sin β|01〉a)|00〉c|0〉f , which is the en-
tangled state for two atoms in fact. The time-dependent
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FIG. 4. The population Pf as a function of Tc and Tl in (a) the
f-STIRAP process and (b) the f-STIRAP process with Lyapunov
control. The pulse parameters are chosen as �/2π = 10 MHz,
�0 = 5�, g0 = 25�, ν = 30�, d = 3/�. We take t = 16/γ for the
simulation where the system has been a steady state.

coupling coefficients are given as below:

g1(t) = g2(t) = g0e
−t2/T 2

c ,

�1(t) = �0 sin βe−(t−d)2/T 2
l ,

�2(t) = �0e
−(t+d)2/T 2

l + �0 cos βe−(t−d)2/T 2
l , (22)

where Tc and Tl are the Gaussian pulse widths of the cavity
and the laser fields, respectively. d is the distance between
the center of the cavity and the laser axis. The goal here
is to speed up the adiabatic transfer process from the initial
state |ψ(0)〉 = |ϕ1〉 to the target state |φT (t)〉 = (cos β|10〉a −
sin β|01〉a)|00〉c|0〉f by adding Lyapunov control. In order not
to add extra interaction in the system, the control Hamiltonians
are also chosen as

H1 = |e〉1〈1| + |1〉1〈e|,
H2 = |e〉2〈1| + |1〉2〈e|.

(23)

In Figs. 4(a) and 4(b), we simulate the evolution of
population Pf = |〈ψ(t)|φT (t)〉|2 as a function of Tc and Tl

for the conventional adiabatic passage and Lyapunov control,
respectively. The control fields are designed by Eq. (5) with
A1 = 1 and Hk0 = H ′

1. We see that the regions of high
populated target state are enlarged for Lyapunov control as
compared with the conventional adiabatic passage. Especially,
high population of the target state can also be realized for small
Tc under Lyapunov control while it is invalid for conventional
adiabatic passage. Moreover, Lyapunov control removes pop-
ulation oscillations that emerge in the conventional adiabatic
passage when Tl > 6 μs.

IV. CONCLUSIONS

We have presented an effective scheme to speed up
adiabatic evolution by using Lyapunov control. Specifically, in
a three-level system associating with STIRAP and f-STIRAP,
we have shown that the requirement of laser pulse width
for perfect population transfer can be greatly shortened by
using Lyapunov control. Additionally, we have also explored
the application of the scheme to speed up entanglement
generation in a cavity QED system. The advantages of the
scheme are as follows. First, no extra couplings are needed for
the control Hamiltonian to perform adiabatic quantum state
transfer. Second, the occupation of the intermediate state can
be effectively suppressed by properly choosing the control
Hamiltonian. Third, the proposed scheme may be applied to
accelerate adiabatic evolution in complex quantum systems
where the exact expressions of adiabatic eigenstates cannot
be reachable. We expect that the scheme may offer insight on
adiabatic theory and quantum information processing.
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