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We theoretically study the dynamics and resonance shift of the Rabi model with frequency modulation, i.e., the
Rabi model driven additionally by a slow longitudinal field, by using the counterrotating-hybridized rotating-wave
(CHRW) method, aiming to illustrate the effects of the counterrotating (CR) terms of the transverse field. The
CHRW method is based on a unitary transformation and reduces the aperiodic Hamiltonian to an effective periodic
Hamiltonian that can be efficiently treated by Floquet theory. The validity of the effective Hamiltonian and widely
used rotating-wave approximation (RWA) Hamiltonian is carefully examined compared to the numerically exact
results over a wide parameter range. It is found that the effective Hamiltonian gives a correct description, while
the RWA breaks down in the strong driving regime. Interestingly, we show that under certain conditions the
longitudinal field can be used to modify resonance widths such that resonance widths can be comparable to
the magnitude of the Bloch-Siegert (BS) shift, which in turn makes the CR-induced BS shift significant and
leads to the complete breakdown of the RWA even in a moderately strong driving regime (in which the RWA
holds for the Rabi model without frequency modulation). In addition, by using the effective Hamiltonian, we
can efficiently access resonance positions for the bichromatically driven qubit and study how the resonance
shifts due to the combined effects of the CR terms and frequency modulation. For a weak longitudinal field, we
show that resonance positions can be analytically calculated from the effective Rabi frequency for the effective
Hamiltonian, which are in excellent agreement with the numerically exact results.
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I. INTRODUCTION

Recently, there is increased interest in studying driven
quantum systems in the strong driving regime where the
rotating-wave approximation (RWA) breaks down [1–9]. It
follows from the development of artificial atoms that light-
matter interaction in the strong- and ultrastrong-coupling
regimes will become available in laboratories. For instance,
strongly driven two-level systems with a Rabi frequency
comparable to the transition frequency of the two levels have
been experimentally realized in the context of the flux qubit
[8,10]. Strong driving turns out not only to cause unique
physical phenomena such as coherent destruction of tunneling
[11] and Bloch-Siegert (BS) shift [12–14] but also to be useful
in the fast quantum control of semiconductor qubits, which is
essential for solid-state quantum computation [15,16].

The prototype of the driven quantum system is the Rabi
model, which is described by (h̄ = 1)

H (t) = 1

2
ω0σz + �x cos(ωxt)σx

= 1

2
ω0σz + �x

2
(eiωx tσ− + e−iωx tσ+)

+�x

2
(e−iωx tσ− + eiωx tσ+), (1)

where σ± = (σx ± iσy)/2 and σx,y,z are the Pauli matrices.
ω0 is the transition frequency of the qubit. �x cos(ωxt) is the
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transverse driving field with amplitude �x and frequency ωx .
This model is widely used in quantum optics [17] and has
been extensively studied by numerically exact and analytical
methods [13,18,19]. In the strong driving regime (�x/ω0 � 1),
one becomes concerned with the effects of the counterrotating
(CR) terms [last line in Eq. (1)], which are neglected in the
RWA. It is clear that the CR terms are to induce a complex
beat in the real-time dynamics and the BS shift. The latter has
been studied both theoretically [12,13,20] and experimentally
in the context of superconducting qubits [21,22]. Due to the
inevitable power broadening, one finds that the magnitude of
the BS shift of the main resonance at ω0 ≈ ωx is generally
much less than that of the resonance width, thus the BS shift
can be neglected even when the driving is moderately strong.

It is interesting to investigate whether the resonance width
can be significantly modified with additional driving such that
the resonance width is comparable to the magnitude of the
BS shift and how the BS shift influences the dynamics in
this situation. To address these issues, we consider that the
transition frequency in the Rabi model is modulated by a
longitudinal field. The total Hamiltonian is given by

H (t) = 1
2 [ω0 + �z cos(ωzt)]σz + �x cos(ωxt)σx, (2)

where �z cos(ωzt) is the longitudinal driving field with
amplitude �z and frequency ωz. The model can be used
to describe the magnetic resonance [23] and solid quantum
optics experiments in the context of artificial atoms such as
superconducting qubits [24] and nitrogen vacancy spin qubits
[25]. As the limit case of the quantum Rabi model that a qubit
interacts with two harmonic oscillators [25], it can be expected
to provide a description physically equivalent to that with the
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fully quantized theory in the large-photon-number limit when
the quantized fields are in coherent states, similar to the usual
Rabi model [13]. In previous work, this model was studied with
the aid of the RWA for the transverse field [23,24,26–28]. For
instance, in Ref. [26], Saiko and coworkers have theoretically
and experimentally studied the resonance shift resulting from
the fast-oscillating terms of the longitudinal field, which is
referred to as δd shift henceforth, to distinguish it from another
shift caused by the CR terms of the transverse field (in their
paper, the δd shift is called the BS shift). Clearly, the combined
effect of the CR terms and the longitudinal field has not been
illustrated because of the RWA.

It can be expected that the CR-induced BS shift in the
bichromatically driven qubit described by Eq. (2) is much
more significant than that in the standard Rabi model for the
following reasons. First, it has been revealed that a qubit driven
by a bichromatic field with two perpendicular components has
multiple resonance peaks appearing at ω0 ≈ ωx + mωz (m =
0,±1,±2, . . . ) [24]. This is in sharp contrast with the usual
Rabi model, where one finds only a single resonance peak at
resonance position ω0 ≈ ωx [13]. It is therefore interesting to
study the CR-induced BS shifts of the additional resonance
peaks (m �= 0). Second, it is found that the resonance peak at
ω0 ≈ ωx can be narrower with longitudinal modulation than
without longitudinal modulation [24]. Consequently, one may
ask whether the widths of resonance peaks may reduce to the
magnitude of the BS shifts in the presence of longitudinal
modulation, which cannot be expected in the Rabi model at
the main resonance, due to power broadening [29].

In this work, we use both the counterrotating-hybridized
rotating-wave (CHRW) method and the numerically exact
method to study the dynamics and resonance shifts of the Rabi
model with the frequency modulation in the strong driving
regime. The exact method is based on the generalized Floquet
theory (GFT) [30]. The CHRW method is developed with
a unitary transformation. It is applied to derive an effective
Hamiltonian periodic in time so that methods for the peri-
odically driven quantum system can be applied. The validity
of the RWA Hamiltonian and our effective Hamiltonian is
carefully examined by comparison with the exact transient and
time-average transition probabilities obtained with the GFT. It
is found that our effective Hamiltonian can provide a much
more reliable description than the previous RWA one over
a wide range of parameters. For moderately strong transverse
driving, although the CR terms can be neglected in the absence
of longitudinal field, it becomes essentially important when
an elaborated longitudinal field is additionally applied. The
longitudinal field can significantly reduce the resonance width
to the magnitude of the BS shifts at the central band and
sidebands, which in turn results in a dramatic difference in
dynamics between the RWA and the non-RWA theories at
the resonance positions given by the RWA. We find that
well-approximated resonance positions that takes BS shifts
into account can be efficiently calculated from our effective
Hamiltonian. Without the RWA, the additional resonance
peaks have both the BS shift and the δd shift. In particular,
when the longitudinal field is relatively weak, it is found that
the resonance shift can be analytically calculated from the
effective Rabi frequency for the effective Hamiltonian, and
the result agrees well with the numerically exact result.

The remainder of the paper is organized as follows. In
Sec. II, first we briefly review previous RWA treatment. Then
we derive an effective periodic Hamiltonian by using the
unitary transformation. The effective system is treated by
the Floquet approach. In Sec. III, we introduce the GFT
approach. In Sec. IV, we calculate the transient transition
probability and examine the performance of the RWA and
effective Hamiltonians by comparing their predictions with
the exact ones and demonstrate that the longitudinal field can
amplify the effects of CR terms on the dynamics. In Sec. V, by
calculating the time-average transition probability, we clarify
how the effects of the CR terms become significant under
moderately strong transverse driving due to the longitudinal
field and illustrate BS shifts at both the central band and the
sideband in the moderately strong transverse driving regime.
In Sec. VI, we give concluding remarks on this work.

II. EFFECTIVE HAMILTONIAN AND FLOQUET
FORMALISM

A. Rotating-wave approximation

We first briefly review the RWA method used in previous
work [23,24,26–28] to solve the time evolution governed by
Eq. (2). Within the RWA, the Hamiltonian becomes

HRWA(t) = 1

2
[ω0 + �z cos(ωzt)]σz

+ �x

2
(σ+e−iωx t + σ−eiωx t ), (3)

where the CR terms of the transverse field have been omitted.
It is straightforward to further simplify the RWA Hamiltonian
in the frame rotating at frequency ωx , i.e.,

H̃RWA(t) = R(t)HRWA(t)R†(t) − iR(t)
d

dt
R†(t)

= �x

2
σx + 1

2
[δ + �z cos(ωzt)]σz, (4)

where R(t) = exp(iωxtσz/2) and δ = ω0 − ωx is the detuning
of the transverse field from the static transition frequency.
Clearly, Eq. (4) is corresponding to a periodically driven
qubit, which can be solved by the Floquet approach [13].
Although the RWA simplifies the problem, it is expected
to hold for near- and on-resonance cases and weak driving
conditions (�x � ω0). Therefore, the validity of Eq. (4)
becomes questionable in the strong driving regime, i.e., the
driving strength of the transverse field becomes comparable
to the transition frequency ω0, in which case the CR terms
are found to cause complex dynamics and a remarkable BS
shift. To take into account the effects of the CR terms of the
transverse field, we propose the use of a unitary transformation
other than the RWA to derive an effective periodic Hamiltonian
with a more precise description compared to the RWA one.

B. Unitary transformation

The evolution operator of a driven qubit satisfies the
equation of motion

d

dt
U (t) = −iH (t)U (t). (5)
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To go beyond the RWA, we perform the unitary transformation
to the evolution operator [19,20,31]

U ′(t) = eS(t)U (t), (6)

where

S(t) = i
�x

ωx

ξ sin(ωxt)σx, (7)

with ξ being undetermined. It is straightforward to show that
the transformed evolution operator satisfies a similar equation
d
dt

U ′(t) = −iH ′(t)U ′(t) with the transformed Hamiltonian

H ′(t) = eS(t)[H (t) − i∂t ]e
−S(t)

= 1
2 [ω0 + �z cos(ωzt)]{cos [Z sin(ωxt)]σz

+ sin [Z sin(ωxt)]σy

}
+�x(1 − ξ ) cos(ωxt)σx, (8)

where Z = 2�x

ωx
ξ . To proceed, we use the identity

exp(iz sin θ ) =
∞∑

n=−∞
Jn(z)einθ , (9)

where Jn(z) is the Bessel function of the first kind with order
n, and divide H ′(t) into two parts:

H ′(t) = H ′
CHRW(t) + H ′

2(t), (10)

H ′
CHRW(t) = 1

2 [ω0 + �z cos(ωzt)]J0(Z)σz + ω0J1(Z)

× sin(ωxt)σy + �x(1 − ξ ) cos(ωxt)σx

+ 1
2J1(Z)�z cos(ωzt)(σ+e−iωx t + H.c.), (11)

H ′
2(t) = [ω0 + �z cos(ωzt)]

∞∑
n=1

{J2n(Z) cos(2nωxt)σz

+ J2n+1(Z) sin[(2n + 1)ωxt]σy} − 1

2
J1(Z)

×�z cos(ωzt)(σ+eiωx t + H.c.). (12)

Now we are in a position to determine the parameter ξ by
requiring H ′

CHRW(t) to take a rotating-wave form similar to
H̃RWA(t). To this end, we restrict ξ to the interval (0,1) and
determine its value via the following equation:

�x(1 − ξ ) = ω0J1(Z). (13)

This equation can be solved numerically or analytically by
Taylor expansion. When �x/ωx < 1, it is easy to find the
expression for ξ accurate up to sixth order in �x as follows:

ξ = ωx

ω0 + ωx

[
1 + �2

xω0

2(ωx + ω0)3
+ ω0(8ω0 − ωx)�4

x

12(ωx + ω0)6

+ �6
xω0

(
ω2

x − 46ωxω0 + 169ω2
0

)
144(ωx + ω0)9

]
+ O

(
�8

x

)
. (14)

Using Eq. (13) and

�̃x = 2�x(1 − ξ ), (15)

we can rewrite H ′
CHRW(t) as

H ′
CHRW(t) = 1

2 [ω0 + �z cos(ωzt)]J0(Z)σz + 1
2 [�̃x

+ J1(Z)�z cos(ωzt)](σ+e−iωx t + H.c.), (16)

which now takes the rotating-wave form. When �z → 0,
H ′

CHRW(t) recovers the CHRW Hamiltonian for the monochro-
matically driven qubit [20,31].

To derive an effective periodic Hamiltonian, we use a
treatment similar to the RWA method, namely, we transform
the resulting Hamiltonian into a rotating frame with R(t),
yielding

H̃ (t) = H̃CHRW(t) + H̃2(t), (17)

H̃CHRW(t) = 1
2 {[ω0 + �z cos(ωzt)]J0(Z) − ωx}σz

+ 1
2 [�̃x + J1(Z)�z cos(ωzt)]σx, (18)

H̃2(t) = [ω0 + �z cos(ωzt)]
∞∑

n=1

{J2n(Z) cos(2nωxt)σz

−iJ2n+1(Z) sin[(2n + 1)ωxt](σ+eiωx t − H.c.)}
−1

2
J1(Z)�z cos(ωzt)(σ+ei2ωxt + H.c.). (19)

Up till now, the treatment is still exact without introducing
any approximation. If ωz is much smaller than ωx , H̃CHRW(t)
includes the slow-varying terms with periodicity T = 2π/ωz,
whereas H̃2(t) possesses the fast-oscillating terms. To proceed,
we use H̃CHRW(t) as the effective Hamiltonian.

We neglect H̃2(t) for the following reason. Physically, H̃2(t)
is related to multiphoton processes assisted by photons of the
transverse and longitudinal fields, i.e., it yields the multiphoton
resonances that occur at ω0 ≈ nωx + mωz for n = 3,5,7, . . .

and m any integer. When neglecting H̃2(t), we just retain the
resonances that occur at ω0 ≈ ωx + mωz, similarly to the RWA
treatment [24]. We can expect our treatment to be valid in the
regime where the contribution from H̃2(t) is insignificant and
negligible. Therefore, we should require that Jn(Z) � 1 (n �
2) and J1(Z)�z/ω0 � 1 are fulfilled. Recalling the properties
of the higher-order Bessel functions (n � 2) and the fact that
ξ < 1, it is straightforward to verify that the first condition is
met when �x/ωx < 1. Hence, if �x/ωx < 1, the validity of the
effective Hamiltonian depends only on the second condition. In
Fig. 1, we calculate the dimensionless amplitude J1(Z)�z/ω0

as a function of the ratios �z/ω0 and �x/ωx . The blue area,
J1(Z)�z/ω0 � 0.1, represents the regime of the validity. It
seems almost unchanged for the two values of the ratio ω0/ωx

and does not depend on the value of ωz as long as ωz is
smaller than ωx . In Secs. IV and V, we demonstrate that in
the valid regime, the effective Hamiltonian indeed provides a
much better description than the RWA Hamiltonian.

C. Floquet formalism

Since the CHRW Hamiltonian is periodic in time, i.e.,
H̃CHRW(t) = H̃CHRW(t + T ), the corresponding time evolution
operator ŨCHRW(t) can be simply obtained by the Floquet
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FIG. 1. Dimensionless amplitude J1(Z)�z/ω0 versus the ratios �z/ω0 and �x/ωx for (a) ω0 = 0.6ωx and (b) ω0 = ωx . The blue area
represents the valid regimes of the effective Hamiltonian.

formalism and is assumed to take the form [13,32]

ŨCHRW(t) =
∑

γ

|ũγ (t)〉〈ũγ (0)|e−iε̃γ t , (20)

where |ũγ (t)〉 has the same periodicity as H̃CHRW(t) and is
called the Floquet state. ε̃γ is the corresponding quasienergy.
By differentiating Eq. (20) with respect to t , one readily derives
the equation that the Floquet state and quasienergy satisfy,

[H̃CHRW(t) − i∂t ]|ũγ (t)〉 = ε̃γ |ũγ (t)〉. (21)

This differential equation can be solved by Fourier expansion.
We expand the CHRW Hamiltonian and Floquet state as
follows:

H̃CHRW(t) =
∑

n

H̃
(n)
CHRWeinωzt , (22)

H̃
(n)
CHRW =

⎧⎪⎨
⎪⎩

1
2 {[J0(Z)ω0 − ωx]σz + �̃xσx}, n = 0,

1
4 [J0(Z)σz + J1(Z)σx]�z, n = ±1,

0, n �= 0,±1,

(23)

and

|ũγ (t)〉 =
∑

n

∣∣ũ(n)
γ

〉
einωzt , (24)

where

∣∣ũ(n)
γ

〉 = 1

T

∫ T

0
e−inωzt |ũγ (t)〉dt (25)

is a time-independent Fourier component of the Floquet state.
By substituting Eqs. (22) and (24) into Eq. (21), one derives
the algebra equation concerning the Fourier components and
quasienergy, which reads∑

n

[
H̃

(m−n)
CHRW + nωzδn,m

]∣∣ũ(n)
γ

〉 = ε̃γ

∣∣ũ(m)
γ

〉
, (26)

where δn,m is the Kronecker delta function. This equation can
be further rewritten as

H̃CHRW|ũγ 〉〉 = ε̃γ |ũγ 〉〉. (27)

We have defined the Floquet matrix and its eigenstate as

H̃CHRW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . . H̃

(0)
CHRW − ωz1 H̃

(−1)
CHRW 0

. . . H̃
(1)
CHRW H̃

(0)
CHRW H̃

(−1)
CHRW

. . .

0 H̃
(1)
CHRW H̃

(0)
CHRW + ωz1

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |ũγ 〉〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
|ũ(−1)

γ 〉
|ũ(0)

γ 〉
|ũ(1)

γ 〉
...

⎞
⎟⎟⎟⎟⎟⎟⎠

, (28)

respectively. Here 0 (1) denotes a 2 × 2 zero (identity)
matrix. Up till now, the problem of finding the Floquet
states and quasienergies in Eq. (21) is converted into an
eigenvalue problem, Eq. (27). One can diagonalize H̃CHRW

numerically or analytically and use the knowledge of its
eigenvalues (quasienergies) and eigenstates (consisting of
Fourier components of Floquet states) to derive ŨCHRW(t).
Finally, the original evolution operator can be obtained with

the relation

U (t) = e−S(t)R†(t)ŨCHRW(t). (29)

In this work, we mainly use the method based on the numerical
diagonalization of H̃CHRW to study the transition probability
and resonance shifts. This treatment is referred to as the
CHRW method throughout this paper to distinguish it from
the RWA and GFT approaches. When the longitudinal field is
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sufficiently weak, we use the analytical treatment based on the
Van Vleck perturbation theory.

We now show how to calculate the transient and time-
average transition probabilities, which are the primary physical
quantities of interest in both theory and experiment. The former
is given by

P (t,t0) = |〈+|U (t,t0)|−〉|2
= Tr{|+〉〈+|U (t,t0)|−〉〈−|U †(t,t0)}, (30)

describing the probability of finding the qubit in the excited
state |+〉 at time t when the qubit is initially in the ground
state |−〉. Using Eq. (29), we can rewrite the above equation
in terms of the Floquet states and quasienergies as

P (t,t0) = Tr[R(t)eS(t)|+〉〈+|e−S(t)R†(t)ŨCHRW(t,t0)

×R(t0)eS(t0)|−〉〈−|e−S(t0)R†(t0)Ũ †
CHRW(t,t0)]

= 1

2
− 1

4

∑
i,j

∑
γ,λ

fi(t)fj (t0)〈ũλ(t)|σi |ũγ (t)〉

×〈ũγ (t0)|σj |ũλ(t0)〉e−i(εγ −ελ)(t−t0), (31)

where fi(j )(t) (i or j = x,y,z) are given as follows:

fx(t) = sin[Z sin(ωxt)] sin(ωxt), (32)

fy(t) = sin[Z sin(ωxt)] cos(ωxt), (33)

fz(t) = cos[Z sin(ωxt)]. (34)

Based on this formal expression, we can readily derive the
time-average transition probability

P = P (t,t0)

= 1

2
− 1

4

∑
γ

[
J0(Z)X(z)

γ γ,0 + J1(Z)X(x)
γ γ,0

]2
, (35)

where

X
(i)
γ γ,0 = 1

T

∫ T

0
〈ũγ (t)|σi |ũγ (t)〉dt. (36)

To derive the above result, one should average with respect
to the time t0 while fixing t − t0 and then average over the
duration t − t0. It follows from Eq. (35) that the time-average
transition probability is not greater than 0.5. In particular, the
maximum P = 0.5 indicates the resonance of the driven qubit.

III. GENERALIZED FLOQUET THEORY

To examine the validity of the CHRW and RWA Hamil-
tonians, we use the GFT to calculate numerically the exact
transient and time-average transition probabilities of the Rabi
model with modulation. The GFT states that the ansatz for the
evolution operator in the case of polychromatic driving takes
the form [30]

U (t) =
∑

γ

|uγ (t)〉〈uγ (0)|e−iεγ t , (37)

which is similar to the ansatz of the Floquet theory. When
differentiating the above equation with respect to t , one arrives

at the following equation:

[H (t) − i∂t ]|uγ (t)〉 = εγ |uγ (t)〉. (38)

Here |uγ (t)〉 is no longer periodic in time and does not possess
a standard Fourier expansion. Nevertheless, it can be expanded
by the “multimode” Fourier series. For H (t) given in Eq. (2),
we expand it by the “two-mode” Fourier series [30], which
reads

|uγ (t)〉 =
∑
nx,nz

∣∣u(nx,nz)
γ

〉
ei(nxωx+nzωz)t , (39)

where |u(nx,nz)
γ 〉 is a time-independent component and has the

same dimension as |uγ (t)〉. In addition, the Hamiltonian can
be expanded similarly,

H (t) =
∑
nx,nz

H (nx,nz)ei(nxωx+nzωz)t

= H (0,0) + H (1,0)eiωx t + H (−1,0)e−iωx t

+H (0,1)eiωzt + H (0,−1)e−iωzt , (40)

where

H (0,0) = ω0

2
σz, H (±1,0) = �x

2
σx, H (0,±1) = �z

4
σz.

(41)

By substituting Eqs. (39) and (40) into Eq. (38), we readily
derive the following time-independent equation:∑

nx,nz

[H (mx−nx,mz−nz) + (nxωx + nzωz)

× δnx,mx
δnz,mz

]
∣∣u(nx,nz)

γ

〉 = εγ

∣∣u(mx,mz)
γ

〉
. (42)

Similarly to Eq. (26), this equation also represents an eigen-
value equation:

HF2 |uγ 〉〉 = εγ |uγ 〉〉. (43)

Here HF2 is the two-mode Floquet matrix and reads

HF2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . . HF − ωzI C O
. . . C HF C

. . .

O C HF + ωzI
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(44)

where HF is the single-mode Floquet matrix for a driven qubit
in the absence of a longitudinal field and given by

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . . H (0,0) − ωx1 H (−1,0) 0
. . . H (1,0) H (0,0) H (−1,0) . . .

0 H (1,0) H (0,0) + ωx1
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(45)
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FIG. 2. Transient transition probability P (t,0) versus time t for ω0 = 0.6ωx and ωz = 0.3ωx . Other parameters are given in the plots. The
CHRW and RWA results are obtained from the CHRW and RWA Hamiltonians with the Floquet theory, respectively. The GFT results are
calculated from the original Hamiltonian with the generalized Floquet theory.

Here O and I represent the zero matrix and identity matrix,
respectively, which have the same dimension as HF . C is
an infinite-rank coupling matrix through which the diagonal
blocks in HF2 are coupled to others. Its explicit form is given
by

C = diag{. . . ,H (0,±1),H (0,±1),H (0,±1), . . . }. (46)

The eigenstate |uγ 〉〉 is related to |u(nx,nz)
γ 〉 via the relation

|uγ 〉〉T = [
. . . ,

∣∣u(−1,−1)
γ

〉T
,
∣∣u(0,−1)

γ

〉T
,
∣∣u(1,−1)

γ

〉T
, . . . ,

. . . ,
∣∣u(−1,0)

γ

〉T
,
∣∣u(0,0)

γ

〉T
,
∣∣u(1,0)

γ

〉T
, . . . ,

. . . ,
∣∣u(−1,1)

γ

〉T
,
∣∣u(0,1)

γ

〉T
,
∣∣u(1,1)

γ

〉T
, . . .

]
, (47)

where a superscript T denotes the transpose operation.
The key task of the GFT approach is to diagonalize the

two-mode Floquet matrix, which is similar to the Floquet
theory approach. In general, the matrix HF2 can be nu-
merically diagonalized with an appropriate truncation. After
the diagonalization, one readily obtains its eigenstates and
eigenvalues. The eigenstates can be used to construct |uγ (t)〉
by using relations (39) and (47). The eigenvalues are, of course,
the quasienergies. Therefore, we can obtain the evolution
operator and calculate the transient and time-average transition
probabilities. More details about the GFT approach can be
found in the review article [30].

IV. TRANSIENT TRANSITION PROBABILITY

In this section, we examine in detail the performance of the
CHRW and RWA Hamiltonians by comparing their dynamics
with that of the original Hamiltonian obtained by the GFT
approach. In doing so, we can get some insights into the effects
of the CR terms on the dynamics as well as the accuracy of the
CHRW and RWA Hamiltonians. Throughout this paper we fix
the transverse frequency ωx as the unit.

To begin with, we consider ω0 = 0.6ωx . In accordance with
the valid regime shown in Fig. 1(a), we choose four pairs
of ratios �x/ωx and �z/ω0 (which lie near the boundary of
the valid regime) and set ωz = 0.3ωx to carry out numerical
calculation. The numerical results are shown in Fig. 2.
Obviously, the CHRW results are in good agreement with the
GFT results. On the contrary, the RWA results significantly
deviate from the GFT results, indicating the breakdown of the
RWA under strong driving conditions. In addition, Figs. 2(a)
and 2(b) show that the CR terms significantly modify the Rabi
oscillation frequency in the strong driving regime. Figures 2(c)
and 2(d) show that for moderately strong transverse driving,
the RWA cannot give accurate oscillation amplitudes even if
its Rabi frequencies are similar to the exact ones of the GFT.

We move to consider ω0 = ωx and choose the other
parameters as in Fig. 2. We display the transient transition
probability in Fig. 3. As expected, the CHRW method agrees
well with the GFT approach when the driving parameters are
in the valid regime. Comparing the RWA and GFT results,
one readily notes that the RWA method gives a coarse-grained
approximate dynamics only for �x/ωx = 0.2 [Fig. 3(d)] and
breaks down for the other three values of �x . It is easy to
further verify that when ω0 > ωx , the CHRW method still
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FIG. 3. Transient transition probability P (t,0) versus time t for ω0 = ωx and ωz = 0.3ωx . Other parameters are given in the plots.

holds in the valid regime even if the RWA breaks down. In
comparison with the RWA and GFT results, we obtain that
the CHRW Hamiltonian can still provide a correct dynamical
description when the RWA Hamiltonian breaks down in the
strong driving regime.

To examine whether the value of ωz would affect the validity
of the CHRW method, we carry out the numerical calculation
for ω0 = 0.6ωx and various ωz values, ranging from 0.1ωx to
0.9ωx , and show the results in Fig. 4. One readily finds that
the dynamics of the CHRW Hamiltonian is consistent with the

FIG. 4. Transient transition probability P (t,0) versus time t for ω0 = 0.6ωx and various longitudinal frequencies ωz. Other parameters are
�x/ωx = 0.4 and �z/ω0 = 0.6.
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FIG. 5. Transient transition probability P (t,0) versus time t for ωz = 0.3ωx and �x/ωx = 0.2. Other parameters used are given in the plots.

exact dynamics of the original Hamiltonian for each ωz, while
the RWA breaks down. Nevertheless, Fig. 4 also shows that
with an increase in ωz, the difference in oscillation amplitudes
between the CHRW and the GFT methods becomes larger and
larger. On the other hand, when ωz � ωx , we find that both
the CHRW and the RWA methods break down. Therefore, we
conclude that the CHRW method holds in the valid regime as
long as ωz is smaller than ωx .

To end this section, we illustrate that the longitudinal field
can amplify the effects of CR coupling of the transverse field in
a moderately strong transverse driving regime, e.g., �x/ωx =
0.2. In Figs. 5(a) and 5(b), we show the dynamics of the driven
qubit for �z/ωz = 0 and �z/ωz = 2.4, respectively. The other
parameters are given by ω0 = ωx and ωz = 0.3ωx . Obviously,
one notes that the RWA, CHRW, and Floquet theory results
are in good agreement with each other without modulation
(�z/ωz = 0). However, the RWA result becomes dramatically
different from the CHRW and GFT results for �z/ωz = 2.4,
indicating that the longitudinal field can intensify the effects
of the CR terms on the dynamics under certain conditions.
In Figs. 6(a) and 6(b), we plot the dynamics of the driven
qubit for �z/ωz = 0 and �z/ωz = 0.05, respectively, with
ω0 = 0.7127ωx [this value of ω0 corresponds to the maximum
position of the RWA curve in Fig. 10(d)] and ωz = 0.35ωx .
Similarly, the difference between the RWA and the other
non-RWA results becomes larger in the case of �z/ωz = 0.05
than in the case of �z/ωz = 0. These results lead us to conclude
that the application of a longitudinal field can intensify the
effects of the CR terms under certain conditions. In what
follows, we carry out a comprehensive study to clarify how
the effects of the CR terms are heightened with modulation of
the longitudinal field.

V. TIME-AVERAGE TRANSITION PROBABILITY AND
BLOCH-SIEGERT SHIFTS

In this section, first we illustrate how the CR terms of a
transverse field modify the resonance curves of a bichromati-
cally driven qubit. Then we analyze the effects of longitudinal
modulation on the resonance curves to demonstrate how the
effects of the CR terms of the transverse field can be amplified.
We discuss in detail how the resonance shifts at the central band
and sideband due to the CR terms of the transverse field and
the modulation of the longitudinal field.

In Fig. 7, we plot the time-average transition probability as a
function of ω0 for a fixed ratio �x/ωx = 0.2 and four different
ratios �z/ωz. In all plots, the CHRW results are found to be
almost indistinguishable from the numerically exact results
except for some ultranarrow peaks, which are generally too
narrow to be observed. The ultranarrow peaks can be safely
neglected in most cases except that when the ratio �z/ωz is
large enough, some of them may possess nonvanishing width
as shown in the inset in Fig. 7(d). The additional narrow peaks
correspond to multiphoton resonances at ω0 ≈ nωx + mωz for
n > 1 and m �= 0 and are not taken into account by the CHRW
Hamiltonian due to the neglect of H̃2(t). We concentrate on the
resonance at ω0 ≈ ωx + mωz in the present paper and discuss
other multiphoton resonances elsewhere. By comparing the
CHRW and GFT results with the RWA results, one readily
figures out the modifications to the time-average transition
probability resulting from the CR terms of the transverse field.
First, the RWA curves are symmetric about the center ω0 = ωx .
However, the CHRW and GFT curves are not symmetric with
respect to the center, indicating that the CR terms lift the sym-
metry. Second, there are shifts between the curves of the RWA
and those of the non-RWA theories. Needless to say, the shifts

FIG. 6. Transient transition probability P (t,0) versus time t for ωz = 0.35ωx and �x/ωx = 0.2. Other parameters used are given in the
plots. Inset in (a): Dynamics at the time interval (400, 500)ω−1

x .
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FIG. 7. Time-average transition probability P versus ω0 for �x = 0.2ωx , ωz = 0.3ωx , and various ratios �z/ωz. Inset in (d): The three
resonance peaks near 0.7ωx .

are actually the BS shifts caused by the CR terms, which are ne-
glected within the framework of the RWA. The present results
show that the BS shifts can be observed not only at the central
band peaking at ω0 ≈ ωx but also at the sidebands peaking at
ω0 ≈ ωx + mωz. We discuss the BS shifts in detail later.

To clarify how the longitudinal field heightens the differ-
ence between the RWA and the non-RWA theories as shown
in Figs. 5(b) and 6(b), we analyze the roles of longitudinal
modulation on the time-average transition probability shown in
Fig. 7. We first focus on the central bands in Fig. 7. As the ratio
�z/ωz increases, the width of the central peak significantly
decreases. In particular, when �z/ωz = 2.4, the width of the
central peak becomes comparable to the magnitude of the BS
shift. As a consequence, the resonance position ω0 = ωx of the
RWA Hamiltonian actually becomes an off-resonance position
far from the resonance of the non-RWA Hamiltonian, i.e., the
BS shift cannot be neglected, which results in the significant
dynamical difference between the RWA and the non-RWA
results shown in Fig. 5(b). In contrast, when �z = 0, one can
see that the resonance width is much larger than the BS shift,
and the RWA resonance position, i.e., ω0 = ωx , is close to the
resonance position for the non-RWA Hamiltonian. Thus, the
BS shift is negligible. It follows that the RWA prediction is
consistent with those of the non-RWA Hamiltonians as shown
in Fig. 5(a). In the same way, the difference between the
RWA and the non-RWA theories shown in Fig. 6(b) can be
understood using a similar analysis based on the RWA and
non-RWA resonance curves shown in Fig. 10(d). The present
results show that under certain conditions, the resonance width
can be modified by longitudinal modulation to be comparable
to the BS shift. In contrast, this phenomenon hardly occurs
for the Rabi model without longitudinal modulation in a
moderately strong driving regime due to power broadening.
As a consequence, when the transverse field is moderately

strong, the CR-induced BS shift becomes more important in the
Rabi model with longitudinal modulation than in that without
longitudinal modulation, indicating that the effect of the CR
terms is heightened.

It is well known that power broadening adversely affects
the measurement of the BS shift in the Rabi model [33].
The present results indicate that longitudinal modulation may
help to remove this inevitable adverse effect. We briefly
discuss conditions under which the widths of resonance peaks
can be narrowed by longitudinal modulation. By numerical
simulation of the transition probability, it is found that the
width of the central peak becomes significantly small when ωz

is much larger than �x and �z/ωz is large enough. In contrast
with the central band, the small widths of the sidebands are
easily obtained with a relatively weak longitudinal modulation
(�z/ωz � 1) as long as ωz is much larger than �x . In what
follows, we examine the combined effects of the longitudinal
field and CR terms on the resonance positions.

A. Central-band Bloch-Siegert shifts

In Fig. 8, we plot the resonance positions at the central
band as a function of �x for ωz = 0.3ωx and �z/ωz = 2. The
resonance positions are obtained by numerically searching the
positions of the maximum P = 0.5, denoted ωres. It is evident
that the CHRW and GFT approaches are consistent with each
other, i.e., they predict that the larger the transverse field
strength �x is, the smaller the resonance position ωres becomes.
In contrast, the RWA resonance position is independent of �x

and remains at ωres = ωx . In addition, one finds that there is
a slight deviation between the CHRW and the GFT results,
implying that the CHRW method slightly underestimates the
BS shift because of the neglect of H̃2(t). Nevertheless, the devi-

033802-9



YIYING YAN, ZHIGUO LÜ, JUNYAN LUO, AND HANG ZHENG PHYSICAL REVIEW A 96, 033802 (2017)

FIG. 8. The resonance position ωres of the central band near ωx

for ωz = 0.3ωx and �z/ωz = 2. The “monochrom.” curve represents
the positions of the main resonance of the monochromatically driven
qubit when �z = 0, which is obtained by the Floquet theory.

ation is very small and negligible compared to the BS shift (the
gap between the dashed line and the solid line is very small).

Next we analyze the effects of longitudinal modulation on
the central-band BS shift. Figure 8 shows that the CHRW
curve (solid line) is almost indistinguishable from the curve
for the monochromatically driven qubit (short-dashed line).
The value of ωres given in the CHRW and monochromatic
cases, respectively, is slightly larger than that of the GFT for
a fixed �x . This indicates that longitudinal modulation is able
to enhance slightly the central-band BS shift under certain
conditions. To further investigate this effect, in Fig. 9(a), we
plot the central-band BS shift for a fixed ratio �z/ωz = 2
and three ωz values by using the exact GFT approach. The
resonance positions are found to shift towards smaller values
with increasing ωz when �z/ωz is fixed. In Fig. 9(b), we
display the dependence of the BS shift on �x for a given ωz

FIG. 9. (a) Resonance positions of the central band for various
longitudinal frequencies and the fixed ratio �z/ωz = 2. (b) Resonance
positions of the central band for various ratios �z/ωz and a fixed
ωz = 0.45ωx . All curves but the “monochrom.” ones are obtained by
the GFT approach.

FIG. 10. Time-average transition probability P versus ω0 for
ωz = 0.35ωx , �z/ωz = 0.05, and four driving strengths �x . The
CHRW result is obtained based on the numerical diagonalization of
the Floquet Hamiltonian. The CHRW + 2nd VV results are calculated
based on the effective Rabi frequency given by the second Van Vleck
perturbation theory.

and different ratios �z/ωz, calculated by the GFT method. It
turns out that the higher the ratio is, the larger the BS shift
becomes (the gap between the curve and the horizontal line
ωres = ωx becomes larger). Nevertheless, when �z/ωz � 1,
the increase in the BS shift is generally negligible. Even
at 1 < �z/ωz � 2.5 (0.45 < �z/ωx � 1.125 is a very high
strength), the increment in the BS shift is also much smaller
than the magnitudes of the BS shift. Therefore, even though the
CHRW Hamiltonian fails to capture the effect that longitudinal
modulation can slightly enhance the central-band BS shift [due
to the neglect of H̃2(t)], it still provides reasonable results
compared to the GFT in the valid regime.

B. Sideband Bloch-Siegert shifts

To show explicitly the shift of the sidebands, Figs. 10(a)–
10(d) show the time-average transition probability close to
0.65ωx for ωz = 0.35ωx , �z/ωz = 0.05, and four �x values.
As �x increases, it is clearly shown that the resonance peaks of
both the RWA and the non-RWA Hamiltonians shift towards
a larger ω0. For the RWA Hamiltonian, the shift from the
position at ω0 = ωx − ωz can be completely attributed to the
fast-oscillating terms of the longitudinal modulation, which
can be analytically characterized by the theory given in
Ref. [26]. We call this type of shift δd shift. For the CHRW and
original Hamiltonians, it turns out that the shift from 0.65ωx

is smaller than the RWA one at a given �x . There are shifts
between the RWA and non-RWA peaks, which also increases
with �x . Needless to say, this is the BS shift caused by the
CR terms of the transverse field. Therefore, the sidebands
generally have two types of resonance shifts: δd shift and
BS shift. More importantly, Fig. 10 shows that the width of
the sideband can be comparable to the magnitude of the BS
shift, leading to the essential effect of the CR terms in the
bichromatically driven qubit as mentioned.
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FIG. 11. Resonance position ωres of the sideband near ωx − ωz

for ωz = 0.35ωx and �z/ωz = 0.05.

When �z/ωz � 1, we find that it is convenient to analyt-
ically calculate the time-average transition probability by the
effective Rabi frequency WR given in (A25), derived from the
effective Hamiltonian. We present the analytical derivation of
the effective Rabi frequency by the Van Vleck perturbation
theory in Appendix A. Figure 10 shows that the analytical
results are in excellent agreement with those of the numerical
approaches, indicating that the analytical treatment is capable
of giving a correct description in the limit case. In addition,
it provides an alternative way to calculate the resonance
positions, i.e., one can obtain the resonance frequency by
solving the equation ∂WR

∂ω0
= 0 for the variable ω0. Below we

study the behavior of the resonance positions as �x increases
and compare results from the analytical treatment and the
numerical approaches.

In Fig. 11, we plot the behaviors of the resonance position
of the sideband near 0.65ωx with the variation of �x for
the same ωz and �z/ωz as given in Fig. 10. Except for the
CHRW + 2nd VV curve, the other curves are obtained by
numerically searching the maximum position of the time-
average transition probability near 0.65ωx . The dotted line
shows that when �z/ωz � 1, the δd shift monotonously
increases as �x increases. Moreover, one finds that the gap
between the RWA curve and the horizontal axis is much larger
than the gap between the RWA and the non-RWA curves. In
other words, the magnitude of the δd shift is larger than that
of the BS shift. Nevertheless, this does not mean that the BS
shift is not important in this scenario. As mentioned above,
the width of the sideband is comparable to the magnitude of
the BS shift, leading to the breakdown of the RWA theory.
Comparing the numerical results for the perturbation theory
with the exact ones, one finds excellent agreement between
them, indicating that when �z/ωz � 1 the resonance positions
for the bichromatically driven qubit can be directly calculated
from ∂WR

∂ω0
= 0.

In general, the behaviors of resonance positions at side-
bands with the variation of �x are generally more complex
than those at the central band and strongly depend on the
longitudinal field parameters. We consider a relatively strong
longitudinal field. Figure 12 displays the dependence of the
sideband resonance positions on �x for ωz = 0.3ωx and

FIG. 12. Resonance positions ωres of the sidebands near ωx ± ωz

for ωz = 0.3ωx and �z/ωz = 2.

�z/ωz = 2. It is clear that the RWA sideband resonance
position nonmonotonously varies with �x . In addition, the
gap between the RWA curve and the line ωres = ωx + mωz

(m = ±1 in this case) is smaller than the gap between the
RWA and the CHRW (GFT) curves, i.e., the absolute value
of the δd shift is smaller than that of the BS shift. This is in
contrast with the case of the weak longitudinal field shown in
Fig. 11.

VI. CONCLUSIONS

In summary, we have systematically studied the dynamics
and BS shifts of the Rabi model with frequency modulation.
Based on the unitary transformation, we have derived an
effective periodic Hamiltonian, the evolution operator of which
can be obtained by the efficient Floquet theory approach.
We carefully examined the performance of the effective
Hamiltonian and the RWA Hamiltonian in the strong driving
regime. It was found that over a wide range of parameters,
the effective Hamiltonian can provide a much more accurate
description than the RWA Hamiltonian compared to the results
with the original Hamiltonian obtained by the exact GFT
approach. We found that under certain conditions, longitudinal
modulation can heighten the effects of the CR terms on the
dynamics, leading to the breakdown of the RWA in the Rabi
model with frequency modulation, although it holds in the Rabi
model without modulation. This follows from the fact that the
longitudinal field can significantly reduce the resonance width
to the magnitude of the BS shift, and as a result, the BS shifts
become essentially important and the RWA and non-RWA
dynamics becomes dramatically different at the resonance
positions given by the RWA.

By using the effective Hamiltonian, we can use both
analytical and numerical methods to calculate the time-average
transition probability and evaluate the resonance positions at
ω0 ≈ ωx + mωz for a bichromatically driven qubit, which are
in good agreement with the exact resonance positions derived
with the original Hamiltonian. More importantly, the CHRW
method is more efficient in numerical calculation than the GFT

033802-11



YIYING YAN, ZHIGUO LÜ, JUNYAN LUO, AND HANG ZHENG PHYSICAL REVIEW A 96, 033802 (2017)

approach, which requires significant cost for higher precision.
In the case of weak longitudinal modulation, we have shown
that the effective Rabi frequency for a doubly dressed qubit can
be used to calculate the time-average transition probability and
resonance positions, which are in excellent agreement with the
exact numerical results. Our results indicate that the resonance
shifts of the sidebands may be experimentally accessed
with weak longitudinal modulation and moderately strong
transverse excitation. More importantly, power broadening
can be significantly suppressed in the bichromatically driven
qubit, which is conducive to the experimental measurement of
resonance shifts.
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APPENDIX A: VAN VLECK PERTURBATION
CALCULATION OF THE EFFECTIVE RABI FREQUENCY

To calculate the effective Rabi frequency for the effective
Hamiltonian, we introduce a set of new spin-1/2 operators,
i.e., dressed operators,⎛

⎝sx

sy

sz

⎞
⎠ = 1

�̃R

⎛
⎝ δ̃ 0 −�̃x

0 �̃R 0
�̃x 0 δ̃

⎞
⎠
⎛
⎝σx

σy

σz

⎞
⎠, (A1)

where

δ̃ = J0(Z)ω0 − ωx (A2)

is the effective detuning, and

�̃R =
√

δ̃2 + �̃2
x (A3)

is the effective Rabi frequency of the qubit merely dressed
by the transverse field. The effective Hamiltonian can be
rewritten as

H̃CHRW(t) = 1
2 �̃Rsz + 1

2�z cos(ωzt)(gsx + f sz), (A4)

where

g = J1(Z)
δ̃

�̃R
− J0(Z)

�̃x

�̃R
, (A5)

f = J0(Z)
δ̃

�̃R
+ J1(Z)

�̃x

�̃R
. (A6)

We further transform the Hamiltonian with the generator

X(t) = i
�z

2ωz

f sin(ωzt)sz, (A7)

yielding

H̃ ′
CHRW(t) = eX(t)[H̃CHRW(t) − i∂t ]e

−X(t)

= 1

2
�̃Rsz +

∑
l

(pls+ + p−ls−)eilωzt , (A8)

with

pl = 1

4
�zg

[
Jl−1

(
�z

ωz

f

)
+ Jl+1

(
�z

ωz

f

)]
, (A9)

s± = (sx ± isy)/2. (A10)

The resulting transformed Hamiltonian is still pe-
riodic in time and its Rabi frequency can be de-
rived by Floquet theory. Employing the product basis
|↑̃(↓̃),n〉 ≡ |↑̃(↓̃)〉 ⊗ |n〉 with sz|↑̃(↓̃)〉 = +(−)|↑̃(↓̃)〉 and
|n〉 ≡ exp(inωzt) (n = 0,±1,±2, . . . ) and the inner product
〈n|m〉 = 1

T

∫ T

0 exp[−i(n − m)ωzt]dt , the Floquet Hamilto-
nian H̃′

CHRW = H̃ ′
CHRW(t) − i∂t reads

H̃′
CHRW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . |↑̃,n − 1〉 |↓̃,n − 1〉 |↑̃,n〉 |↓̃,n〉 |↑̃,n + 1〉 |↓̃,n + 1〉
|↑̃,n − 1〉 E↑̃,n−1 0 0 p−1 0 p−2

|↓̃,n − 1〉 0 E↓̃,n−1 p1 0 p2 0
|↑̃,n〉 0 p1 E↑̃,n 0 0 p−1

|↓̃,n〉 p−1 0 0 E↓̃,n p1 0
|↑̃,n + 1〉 0 p2 0 p1 E↑̃,n+1 0
|↓̃,n + 1〉 p−2 0 p−1 0 0 E↓̃,n+1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

where

E↑̃,n = 1
2 �̃R + nωz, (A12)

E↓̃,n = − 1
2 �̃R + nωz. (A13)

To proceed, we use the Van Vleck perturbation theory to
calculate the eigenvalues for H̃′

CHRW. The Floquet Hamiltonian
can be divided into two parts. One is the diagonal part,
which is treated as the free Hamiltonian H0. The other is
the off-diagonal part treated as the perturbation V . The two

degenerate states can be constructed by the condition

E↑̃,n−m ≈ E↓̃,n (A14)

or, alternatively,

�̃R ≈ mωz, (A15)

where m is an integer nearest to �̃R/ωz. By this construction,
we have the projection operator on the subspace spanned by
two degenerate states


n = |↑̃,n − m〉〈↑̃,n − m| + |↓̃,n〉〈↓̃,n|. (A16)
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We use a further unitary transformation to transform the
Floquet Hamiltonian into a block diagonal matrix accurate up
to a certain order in the perturbation [4,34]. Using

eiKAe−iK = A + [iK,A] + 1

2!
[iK,[iK,A]] + · · ·

and the series expansion of the generator in the perturbation
(superscripts indicate orders),

iK = iK (1) + iK (2) + iK (3) + · · · ,

we have the transformed Floquet Hamiltonian up to second
order in the perturbation

H̃′′
CHRW = H0 + V + [iK (1),H0] + [iK (1),V ] + [iK (2),H0]

+ 1
2 [iK (1),[iK (1),H0]] + · · · . (A17)

H̃′′
CHRW becomes a block diagonal matrix if


nH̃′′
CHRW
l = 0 (A18)

with n �= l. A further assumption,


nK
n = 0, (A19)

is imposed on K such that it does not have matrix elements
inside each subspace of two degenerate states. Under these
conditions, the generator can be determined order by order. For
Eq. (A11), one readily finds that the nonvanishing elements of
K up to first order are given by

〈↑̃,n|iK (1)|↓̃,l〉 = pn−l

�̃R + (n − l)ωz

, (A20)

〈↓̃,l|iK (1)|↑̃,n〉 = − pn−l

�̃R + (n − l)ωz

(A21)

for n − l �= −m. Then the nonvanishing diagonal blocks of the
Floquet Hamiltonian up to second order in the perturbation can
be calculated by [4,34]

H̃′′(n)
CHRW = H0
n + 
nV 
n + 1

2

n[iK (1),V ]
n =

⎛
⎝E↑̃,n−m +∑

l �=−m

p2
l

�̃R+lωz
p−m

p−m E↓̃,n −∑
l �=−m

p2
l

�̃R+lωz

⎞
⎠. (A22)

Its eigenenergies are given by

λ↑̃,n−m = nωz − 1
2mωz + 1

2WR, (A23)

λ↓̃,n = nωz − 1
2mωz − 1

2WR, (A24)

where

WR =

√√√√√
⎛
⎝mωz − �̃R − 2

∑
l �=−m

p2
l

�̃R + lωz

⎞
⎠

2

+ 4p2−m

(A25)

is the effective Rabi frequency of the doubly dressed qubit. It
is straightforward to verify that the effective Rabi frequency
is related to the quasienergies of the original Hamiltonian
via ε±,k,l = (ωx − mωz ± WR)/2 + kωx + lωz for k and l

any integer. On the other hand, recall that the time-average
transition probability can be calculated by the derivative of the
quasienergy with respect to ω0 [13],

P = 1

2

[
1 − 4

(
∂ε

∂ω0

)2
]
,

leading to

P = 1

2

[
1 −

(
∂WR

∂ω0

)2
]
. (A26)

This means that we can directly calculate the time-average
transition probability via the derivative of the effective Rabi
frequency with respect to ω0.

APPENDIX B: DERIVATIVE OF THE EFFECTIVE
RABI FREQUENCY

To determine the time-average transition probability, we
derive the derivative of the effective Rabi frequency with
respect to ω0. It can be calculated straightforwardly:

∂WR

∂ω0
= 1

WR

⎧⎨
⎩
⎛
⎝mωz − �̃R − 2

∑
l �=−m

p2
l

�̃R + lωz

⎞
⎠

×
⎡
⎣
⎛
⎝2

∑
l �=−m

p2
l

(�̃R + lωz)2
− 1

⎞
⎠∂�̃R

∂ω0

− 4
∑
l �=−m

pl

�̃R + lωz

∂pl

∂ω0

⎤
⎦+ 4p−m

∂p−m

∂ω0

⎫⎬
⎭, (B1)

which can be fully determined by the derivatives

∂pl

∂ω0
= 1

4
�z

[
Jl−1

(
�z

ωz

f

)
+ Jl+1

(
�z

ωz

f

)]
∂g

∂ω0

+ 1

8
�zg

[
Jl−2

(
�z

ωz

f

)
− Jl+2

(
�z

ωz

f

)]
∂f

∂ω0
, (B2)

∂g

∂ω0
=
{

[J0(Z) − J2(Z)]
δ̃

�̃R
+ 2J1(Z)

�̃x

�̃R

}
�x

ωx

∂ξ

∂ω0

− J0(Z)

(
∂�̃x

∂ω0
− �̃x

�̃2
R

∂�̃R

∂ω0

)

+ J1(Z)

(
∂δ̃

∂ω0
− δ̃

�̃2
R

∂�̃R

∂ω0

)
, (B3)
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∂f

∂ω0
=
{

[J0(Z) − J2(Z)]
�̃x

�̃R
− 2J1(Z)

δ̃

�̃R

}
�x

ωx

∂ξ

∂ω0

+ J0(Z)

(
∂δ̃

∂ω0
− δ̃

�̃2
R

∂�̃R

∂ω0

)

+ J1(Z)

(
∂�̃x

∂ω0
− �̃x

�̃2
R

∂�̃R

∂ω0

)
, (B4)

∂�̃R

∂ω0
= 1

�̃R

[
δ̃

∂δ̃

∂ω0
+ �̃x

∂�̃x

∂ω0

]
, (B5)

∂δ̃

∂ω0
= J0(Z) − 2ω0J1(Z)

�x

ωx

∂ξ

∂ω0
, (B6)

∂�̃x

∂ω0
= −2�x

∂ξ

∂ω0
, (B7)

and

∂ξ

∂ω0
= − ωx

(ω0 + ωx)2
− ωx(3ω0 − ωx)�2

x

2(ω0 + ωx)5

− ωx

(
40ω2

0 − 22ω0ωx + ω2
x

)
�4

x

12(ω0 + ωx)8
. (B8)
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