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We demonstrate a two-dimensional (2D) grating magneto-optical trap (GMOT) with a single input cooling
laser beam and a planar diffraction grating using 87Rb. This configuration increases experimental access when
compared with a traditional 2D magneto-optical trap (MOT). As described in the paper, the output flux is several
hundred million rubidium atoms/s at a mean velocity of 16.5(9) m/s and a velocity distribution of 4(3) m/s
standard deviation. We use the atomic beam from the 2D GMOT to demonstrate loading of a three-dimensional
(3D) GMOT with 2.46(7) × 108 atoms. Methods to improve output flux are discussed.
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I. INTRODUCTION

Matter wave interferometry has demonstrated orders of
magnitude improvement over a wide range of precision
measurements [1–8]. These successes have spurred interest
in transitioning cold-atom devices from the laboratory to
more demanding environments [9–17]. Recently, a three-
dimensional (3D) grating magneto-optical trap (GMOT) was
demonstrated that satisfies many needs of a deployable system
[18–20]. Particularly, the GMOT increases optical access while
reducing system size, weight, power, and cost compared to
conventional techniques.

A similar principle can be used to form a two-dimensional
(2D) GMOT, resulting in a cold atomic beam. As shown in
Figs. 1(a) and 1(b), a 2D GMOT is formed when a single
red-detuned laser beam is normally incident on a pair of planar
diffraction gratings. The diffracted beams intersect with the
incident light to provide cooling along two axes. Assuming
proper conditions of polarization and magnetic field, atoms
are captured within the region of beam overlap.

The 2D GMOT is used to load a 3D GMOT in a different
chamber, shown in Figs. 1(c) and 1(d). The 2D GMOT enables
faster loading rates and higher atom number in the 3D GMOT
by separating the source vapor from the experimental region.
The resulting 3D GMOT shows comparable atom number
scaling to standard six-beam magneto-optical traps (MOT’s)
[18] and is able to achieve sub-Doppler cooling [21].

The rest of the paper will be organized as follows: The
theory considerations for adapting from the 3D to the 2D case
will be detailed. The design and characteristics of a 2D GMOT
with Doppler cooling along the atom beam axis (the 2D+
configuration [22]) are then presented. Finally, the loading
rates, lifetime, and atom number of the combined 2D+ to
3D GMOT system are reported.

II. THEORY AND DESIGN

Unlike conventional MOT configurations, the GMOT laser
beams are not aligned with the magnetic field axes. Accord-
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ingly, specific conditions for intensity and polarization must
be considered when selecting gratings. These conditions differ
between the 2D and 3D cases.

Each atom in a MOT scatters light from multiple off-
resonant laser beams with wave vectors kj and polarization
vectors ε̂j . Assuming the atom absorbs from F = 0 → F ′ =
1, a circularly polarized beam drives transitions to the mF =
−1, 0,+1 excited states with relative strengths αmF

(ϕ,ε̂j ) that
depend on the beam’s polarization and angle with respect to
the local magnetic field ϕ. For a beam whose polarization is
labeled by s = +1 for right circular or s = −1 for left, these
strengths are α±1 = (1 ∓ s cos ϕ)2/4 and α0 = (sin2ϕ)/2. The
average force from a single beam j , of intensity Ij , on an atom
with velocity v in a magnetic field B, is

Fj = h̄kj

�

2

Ij

Isat

∑
mF =−1,0,1

αmF
(ϕ,ε̂j )

1 +
∑

j Ij

Isat
+ 4(�−kj ·v−μF mF B/h̄)2

�2

,

(1)

where � is the natural linewidth and � = ωL − ω0 is the
detuning of the laser frequency from the transition. Isat is the
saturation intensity and μF = gF μB . In the limit of small
Doppler and Zeeman shifts, the force becomes

Fj ≈ h̄kj

�

2

Ij

Isat

[
K + C

(
kj · v − μF s

h̄

kj · B
|kj |

)]
, (2)

where K = (1 + ∑
j Ij /Isat + 4�2/�2)−1, C = 8�K2/�2

[23].
Contrary to common MOT geometries, the optimal light

field for a GMOT does not have pure circular polarization
because |k̂j · B̂| �= 1 for the diffracted beams. In addition,
intensity balance states

∑
j Ij kj = 0, requiring beam intensity

to change with the diffraction angle. As a result, the 2D and
3D GMOT configurations have different constraints, as shown
in the following.

A circularly polarized beam with intensity I1, normally
incident on a grating, will diffract upward at an angle θ from
normal (+ŷ) with intensity Iup, as shown in Fig. 2. The incident
beam has k1 = −|k|ŷ and s = +1, denoting pure circular
polarization. The magnetic field B = G(xx̂ − yŷ) has gradient
G and is centered on the beam overlap region. The resulting
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FIG. 1. (a) A laser beam impinges on a series of diffraction
gratings to form a 2D GMOT. (b) Inverted grayscale fluorescence
of the 2D GMOT viewed along its axis. (c) A schematic of a 3D
GMOT and (d) its corresponding inverted fluorescence image.

force from beam 1 is

F1 ≈ −h̄k
�

2π

I1

Isat

[
K + C

(
−kvy − μF G

h̄
y

)]
ŷ. (3)

In general, gratings do not preserve polarization. The
diffracted beams will have a fractional intensity P+Iup in the
s = +1 polarization and P−Iup in the s = −1 polarization.
Summing over the polarizations, the total force in x̂ is

Fx ≈ h̄kC�sin2θ
Iup

Isat

[
kvx + (P− − P+)

μF G

h̄
x

]
x̂. (4)

Similarly,

Fy ≈ h̄k�K cos θ
Iup

Isat
+ h̄k�C cos θ

Iup
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×
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μF G
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]

− h̄k
�

2
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Isat
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h̄
y

)]
ŷ. (5)

The constant terms (i.e., those ∝K) represent an intensity
mismatch that will shift the trap center if not properly balanced.
In particular, a trap will only form at the magnetic field zero if

Iup = I1

2 cos θ
. (6)

Then,

Fx ≈ h̄kC
�

2

I1

Isat

sin2θ

cos θ

[
kvx + (P− − P+)

μF G

h̄
x

]
x̂, (7)

Fy ≈ h̄kC
�

2

I1

Isat

{
kvy(1 + cos θ )

+ μF G

h̄
y[1 + (P+ − P−) cos θ ]

}
ŷ. (8)

FIG. 2. A single broad input laser beam has direction labeled
by its wave vector k1. The input beam diffracts from two gratings,
creating additional beams labeled by k2,3 at angle ±θ from ŷ. Each
beam applies forces to atoms near the center of a linear magnetic
field B. Under certain constraints on the grating efficiency and angle,
the input beam polarization, detuning, and intensity can be optimized
to cool and capture atoms in two dimensions.

Note that because � is negative, these forces perform trapping
and cooling.

Equation (6) shows the ideal intensity balance between the
three beams of the 2D GMOT. However, a subtle distinction
separates Eq. (6) from the necessary grating efficiency.
Gratings compress the diffracted beam area with respect to
the originally incident light. Thus, a perfectly efficient grating
(i.e., 100% of input power directed into the first order) would
produce Iup = I1/ cos θ . As a result, satisfying Eq. (6) requires
a grating efficiency of 50%, independent of θ . If not, the
resulting intensity imbalance manifests as an offset in the
trap location from the field zero along the axis normal to
the gratings [24]. In general, for a GMOT with N diffracted
beams, the ideal grating efficiency is 1/N .

The relatively high (1/N = 50%) efficiency requirements
of the 2D GMOT preclude many grating types. Any grating
without a preferred direction would have to diffract practically
all power into the ±1 orders. Asymmetric (e.g., blazed)
gratings are therefore preferable.

Custom nondirectional etched gratings have been fabricated
to this standard for the 3D GMOT [18,25,26], albeit with
considerable design time and fabrication cost. Such gratings
often require e-beam lithography for small (≈500 nm) feature
sizes. Manufacturing large-area gratings requires significant
time in high-demand clean room facilities, motivating our
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FIG. 3. Trapping forces in a 2D GMOT for varying polarizations
of the diffracted beams, assuming 50% total efficiency. Thin black
curves show Fx and thick blue curves show Fy . Dashed black lines
are the linear approximation of Fx from Eq. (7). Plots (a)–(d) show
(P+,P−) = (0,1),(0.1,0.9),(0.2,0.8), and (0.3,0.7), respectively.

experiment to investigate the option of using replicated blazed
gratings.

Replicated gratings are inexpensive and readily available
but confined to existing master gratings. Additionally, repli-

cated gratings are not designed to minimize residual specular
reflections, which can undermine trap performance by driving
antitrapping transitions in the atoms. To avoid reflected light,
GMOT systems with blazed gratings have gaps between the
gratings which are aligned with the central axis of the input
laser.

In addition to intensity balance, the polarization of the
diffracted beams significantly effects the GMOT forces. In
particular, maximizing trapping in the x direction requires
P− = 1 and P+ = 0, as shown in Fig. 3(a). However, this
polarization minimizes trapping in the y direction.

Figure 3 shows the effect of imperfect polarization on the
trapping forces by adjusting the ratio of P+ to P− within
the 50% diffraction efficiency constraint. Figures 3(a)–3(d)
show (P+,P−) = (0,1),(0.1,0.9),(0.2,0.8), and (0.3,0.7), re-
spectively. The linear approximation of Fx from Eq. (7) is
shown as a dashed line. The force along y increases at the
expense of the x trapping strength. Equal trapping strength
along each axis can be achieved for P− − P+ = cos θ . For the
case of θ = 45◦, equal trapping is achieved for P− ≈ 0.85 and
P+ ≈ 0.15.

III. EXPERIMENTAL SETUP

Guided by the results of the previous section, an experiment
is built to demonstrate the 2D GMOT. The experiment uses two
epoxied glass vacuum cells [27] separated by a mini-conflat
flange cross, as shown in Fig. 4. All cell walls are antireflection
coated on both sides of the glass for 780 nm. The 2D GMOT
is produced in a chamber 30 × 40 × 72 mm3, which is capped
by a silicon reflector with a 1-mm-diameter pinhole. The atom
beam travels through the pinhole and then through a second
filtering (3 mm in diameter) pinhole in the copper gasket of the
conflat cross. The atoms are then collected on the opposing side
of the cross by a 3D GMOT in a 25 × 40 × 85 mm3 chamber.

Four permanent neodymium magnets (not shown) are
arranged along the corners of the 2D GMOT chamber, creating
an extended quadrupole magnetic field with a 20 G/cm
gradient. They are positioned via a three-axis translation stage
and a tip-tilt mirror mount to aid alignment of the 2D GMOT
with the silicon pinhole. The 3D GMOT magnetic fields are
produced by an anti-Helmholtz coil pair, centered by cage rods
that align the 3D GMOT optics. At 1.2 A current, they provide
an axial gradient of 10 G/cm.

FIG. 4. The experimental setup for a 2D GMOT loading a
3D GMOT. Input lasers and magnetic field sources omitted for clarity.
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FIG. 5. The optical path of the cooling light used for the 2D and
3D GMOT. A Gaussian beam emits from a polarization-maintaining,
single-mode fiber and expands through a negative lens. A quarter
wave plate provides circular polarization. After expansion, the central,
mostly uniform portion of the beam reflects from a mirror. A final
lens adjusts the remaining light’s collimation.

Gratings are placed outside of each vacuum chamber.
For the 2D GMOT, two 17.5 × 38 mm2 rectangular gratings
are placed with their blazes facing toward the central axis,
separated by a 5-mm gap. For the 3D GMOT, four trapezoidal
gratings are combined to produce a 38 × 38 mm2 square with
a 4 × 4 mm2 gap at its center.

A single laser beam is input into each vacuum cell with
51.5 mW red detuned from the cooling transition for 87Rb and
18.0 mW at the repump transition. As shown in Fig. 5, the
light is emitted from a single-mode, polarization-maintaining
fiber (Numerical Aperture = 0.12) and expanded through a
negative lens (f = −9 mm). A wide-angle quarter wave plate
provides circular polarization to the expanding beam. Only
the central fraction of the beam is reflected toward the GMOT
chamber by a 2-in. mirror. The central region has a broadly
uniform intensity profile. The reflected light passes through a
2-in. lens with a 100 mm focal length. Varying the distance
from the fiber output to the final lens adjusts the collimation
of the downward beam.

The gratings are chosen using the theory presented above.
A more complete model would modify Eq. (1) to account
for the many mF states and gF factors of Rb. These changes
affect the strength of the trapping forces. However, the derived
conditions pertaining to intensity balance and polarization
remain valid. For the 2D GMOT in particular, ideal gratings
diffract at θ = 45◦ to maximize the beam overlap area,
corresponding to ∼906 grooves per mm. Additionally, ideal
gratings diffract circularly polarized incident light at 50%
efficiency while modifying the output beam to be ≈85%
circularly polarized with the opposite handedness.

A commercially produced grating with 830 grooves per
mm and an 800-nm blaze wavelength approximates these
conditions, diffracting at θ = 40.3◦. Assuming light is input
normal to the grating, Fig. 6 shows the theoretical diffraction
efficiency for incident polarization parallel and perpendicular
to the groove direction. These combine to give the average
efficiency, shown as the thick solid curve.

The circularly polarized incident beam has equal intensities
of S- and P -polarized light. Because each component diffracts

FIG. 6. Polarization-dependent grating efficiency as a function of
wavelength at normal incidence for a grating with 830 g/mm and an
800-nm blaze.

differently, the output beam is elliptically polarized. Using
a Thorlabs TXP polarimeter [28], we measure the overall
diffraction efficiency at 68% with P+ = 0.061 and P− =
0.939. Because the gratings are located outside of the vacuum
cell, the optical surfaces of the glass chamber modify the
intensity and polarization of the diffracted beams before they
reach the atoms. As a result, the overall efficiency drops to
64%, with P+ = 0.066 and P− = 0.934.

The nonideal diffraction causes an intensity imbalance
which can be compensated by adjusting the collimation of the
input beam. For the measurements to follow, the beam is made
to focus 40 cm after the final lens, with the gratings positioned
5 cm from the lens. Thus, in the GMOT chambers, the incident
beam has an approximately uniform intensity profile with
11.0 mW/cm2 at the cooling transition and 3.8 mW/cm2 at
the repump transition.

A “push” beam is directed along the 2D GMOT axis
to provide enhanced longitudinal cooling, using 3.3 mW of
cooling light in a beam with a 4 -mm waist. The beam
is retro-reflected from the silicon reflector. We refer to the
2D GMOT with a push beam as a 2D+ GMOT.

The same gratings are used for the 3D GMOT. However,
because the trap uses four diffracted beams, the ideal diffrac-
tion efficiency should be 1/N = 25%. Accordingly, a 0.1-ND
filter is placed between the 3D gratings and the chamber wall.

IV. DIAGNOSTICS

The 3D GMOT fluorescence is monitored using a pho-
todiode (Thorlabs PDA100A [28]). Light from the GMOT
is collected using a f = 25.4 mm lens positioned 2f from
the trap and the sensor surface. Switching the 3D GMOT’s
magnetic field on produces a rising fluorescence signal
proportional to the number of captured atoms. The 3D GMOT
atom number N (t) is approximately described by the capture
rate Rcapture and trap lifetime τtrap

N (t) = τtrapRcapture(1 − e−t/τtrap ). (9)

An 8-mW “plug” laser beam is then positioned just before
the exit pinhole, as seen in Fig. 4. The plug laser acts to
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FIG. 7. A short pulse of the 2D+ GMOT is released at t = 0,
traverses a distance L, and is captured in a 3D GMOT, which grows
as a function of time.

misalign the atomic beam from the 3D GMOT, effectively
reducing Rcapture by an amount R. If the plug beam is turned
off for a short period, the 3D GMOT will grow as atoms
traverse the distance L from the exit pinhole to the capture
volume of the 3D trap, as shown in Fig. 7. This growth is used
to characterize the 2D+ GMOT beam.

Analytic models for the flux of typical 2D+ MOTs have
been presented previously [22,29]. We use a simplified, closed-
form solution to fit the data. Specifically, we assume the steady-
state 2D+ GMOT can be described as a distribution of atoms
in position and velocity

η(z,v) = A

σ
√

2π
exp

[
− (v − v0)2

2σ 2

]
, (10)

where A represents the number of atoms/m in the beam,
weighted by a Gaussian distribution in velocity with peak
v0 and spread σ . Thus, the density of atoms with velocities
between v1 and v2 is

∫ v2

v1
η(z,v)dv.

In the case of an atomic beam with a uniform speed v0

(i.e., σ = 0), no atoms reach the 3D GMOT until t = L/v0.
For t � L/v0, a constant flux reaches the capture volume.
While t � τtrap, loss terms can be neglected and the resulting
3D GMOT growth is linear:

N (t) =
{

0 t < L/v0

R
(
t − L

v0

)
L/v0 � t � τtrap.

(11)

A more realistic atom beam (i.e., σ > 0) will not have such
an abrupt change in N (t). There is still no growth for t <

L/vc, where vc is the capture velocity of the 3D GMOT. But
for t � L/vc, atoms with velocities between vc and v = L/t

contribute to the 3D GMOT number. The velocity spread of
the atom beam causes a gradual transition to linear growth
given by

N (t) =
{

0 t < L/vc∫ 0
L−vct

∫ vc

(L−z)/t
η(z,v) dv dz L/vc � t � τtrap

.

(12)

The solution to these integrals is presented in Appendix B.
Additionally, we show that the flux of atoms exiting the pinhole

with velocities in the range v to v + dv is

�(v)dv = A

σ
√

2π
v exp

[
− (v − v0)2

2σ 2

]
dv. (13)

The total flux defines the linear slope of N (t) as

R =
∫ ∞

−∞
�(v) dv = Av0. (14)

V. RESULTS

A discussion of the data processing and error analysis for
the following results is provided in Appendix C. Figure 8
shows the rise in atom number when the 3D magnetic coils
are switched on. The solid curve is a fit to Eq. (9) in
which Rcapture = 1.12(3) × 108 atoms/s and τtrap = 2.20(3) s,
corresponding to an upper limit on the pressure in the 3D
chamber of ≈1 × 10−8 Torr [30]. The steady-state MOT
number is 2.46(7) × 108 atoms.

The plug beam is then applied to reduce Rcapture. To
synchronize the subsequent time-of-flight experiment, the
plug beam power is monitored with a photodiode. The plug
beam is turned off and the resulting 3D GMOT growth
recorded for total time Ttotal. Over the course of an hour, 16
independent experiments take place for each of the following:
Ttotal = 47, 97, 197, 297, and 397 ms. The longer data sets
determine the linear region of N (t), while the shorter data
sets have greater time resolution to map the initial curvature
in 3D GMOT growth.

The combined data is shown in Fig. 9. A and v0 are strongly
determined by the overall linearity from t ≈ 100–400 ms. We
first fit Eq. (11) to this data, finding A = 4.9(3) × 106 atoms/m
and v0 = 16.5(9) m/s. Using these values, we fit Eq. (12)
across our entire data set to find σ = 4(3) m/s. The linear fit
is depicted in Fig. 9(b) as a dashed line, while the full fit is
given as a solid curve.

Comparing R to Rcapture, the plug beam reduces the atomic
flux by 72%. Additionally, it is likely that only ≈25% of
the 2D+ GMOT beam actually enters the capture volume of
the 3D GMOT, assuming typical atom beam divergence as

FIG. 8. Atom number in 3D GMOT vs time after 3D GMOT
magnetic field is switched on.
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FIG. 9. Growth in 3D GMOT atom number vs time as the plug
laser beam is turned off, allowing the 2D+ GMOT to load the
3D GMOT. The full data set is shown in panel (a), while the initial
growth is detailed in panel (b). The dashed line assumes no spread in
the velocity distribution of the 2D+ GMOT, as in Eq. (11). The solid
curve is a fit using Eq. (12).

discussed in Ref. [22]. We therefore estimate the total flux at
the pinhole to be >4 × 108 atoms/s.

VI. COMPARISONS AND OUTLOOK

Traditional 2D+ MOT’s have typical flux values near
109 atoms/s [22], and in extreme cases are as high as
1011 atoms/s [29]. However, high-flux 2D+ MOT’s form
across 10-cm lengths or longer and saturate with laser
intensities near 20 mW/cm2. By comparison, the 2D+ GMOT
reported here forms over a length of several mm with
11 mW/cm2 laser intensity. The short beam length is expected,
as circular Gaussian beams cause the input intensity profile
to vary significantly, limiting the range over which optimal
cooling parameters are achieved. Future work will employ
beam shaping techniques to create a top-hat intensity profile

within the trap region. A top-hat intensity profile will also help
make more effective use of available laser power.

Increasing the 2D+ GMOT length allows atoms with higher
longitudinal velocities to be collimated into the MOT beam,
increasing flux at the cost of a higher mean speed. Additionally,
length improves total output by integrating a longer capture
volume. Assuming the pressure is low enough that collisions
are negligible, traditional 2D MOT flux scales linearly with
increased length [29,31,32]. While this experiment is not
conducive to independently varying length, we expect the
2D+ GMOT to scale similarly.

Additionally, both the 2D+ GMOT and 3D GMOT should
benefit from higher laser intensity, which acts to raise the
capture velocity. Prior work has shown that 2D+ GMOT flux
is maximal for laser intensities near 20 mW/cm2, while the
3D GMOT atom number saturates near 50 mW/cm2 [18]. Both
are significantly higher than the 11 mW/cm2 produced by our
laser system. Despite the difference, the loaded 3D GMOT
described here shows the highest atom number reported so far
in a grating-based system.

Because this work shows the first 2D GMOT, the system
described above was designed to be large enough that time-
of-flight diagnostics could be easily performed. In future
work, the 2D-to-3D GMOT system will be integrated into
significantly smaller forms. By placing the gratings within the
vacuum cell and using atom chips to create the necessary
magnetic fields, we are presently developing a compact,
laser-cooled system. Toward that goal, we are investigating
various experimental parameters, including the grating choice,
input beam polarization and collimation, capture volume,
and vacuum quality. These results suggest further GMOT
development is warranted for use in field-deployable devices.
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APPENDIX A: 2D GMOT DERIVATION

The average force from the j th beam is

Fj ≈ h̄kj

�

2

Ij

Isat

[
K + C

(
kj · v − μF s

h̄

kj · B
|kj |

)]
. (A1)

The magnetic field is B = G(xx̂ − yŷ). The three beams have
k vectors,

k1 = −kŷ

with polarization s = +1 and

k2 = k(sin θ x̂ + cos θ ŷ),

k3 = k(− sin θ x̂ + cos θ ŷ),

with fraction P+ in the s = +1 polarization and the remainder
P− in the s = −1 polarization, where θ is the diffraction angle
from the +ŷ axis.
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1. Beam 1

For the input beam,

F ≈ h̄k1
�

2

I1

Isat

[
K + C

(
k1 · v − μF s

h̄

k1 · B
|k1|

)]

≈ −h̄k
�

2

I1

Isat

[
K + C

(
−kvy − μF G

h̄
y

)]
ŷ. (A2)

2. Beam 2

For the s = +1 fraction of the second beam,

F ≈ h̄k〈sin θ, cos θ〉�
2

P+I2

Isat

[
K + C

(
kvx sin θ

+ kvy cos θ − μF G

h̄
x sin θ + μF G

h̄
y cos θ

)]
. (A3)

For the s = −1 fraction of the second beam,

F ≈ h̄k〈sin θ, cos θ〉�
2

P−I2

Isat

[
K + C

(
kvx sin θ

+ kvy cos θ + μF G

h̄
x sin θ − μF G

h̄
y cos θ

)]
. (A4)

3. Beam 3

For the s = +1 fraction of the third beam,

F ≈ h̄k〈− sin θ, cos θ〉�
2

P+I3

Isat

[
K + C

(
−kvx sin θ

+ kvy cos θ + μF G

h̄
x sin θ + μF G

h̄
y cos θ

)]
. (A5)

For the s = −1 fraction of the third beam,

F ≈ h̄k〈− sin θ, cos θ〉�
2

P−I3

Isat

[
K + C

(
−kvx sin θ

+ kvy cos θ − μF G

h̄
x sin θ − μF G

h̄
y cos θ

)]
. (A6)

4. Total Ffrces

Combining the contributions of each beam in the x̂ direction
with Iup = I1 = I2 and P+ + P− = 1,

Ftot,x ≈ h̄kC�sin2θ
Iup

Isat

[
kvx + (P− − P+)

μF G

h̄
x

]
. (A7)

Similarly,

Ftot,y ≈ h̄k cos θ
�

2

Iup

Isat

{
2K +

[
2C

(
kvy cos θ

+ 2(P+ − P−)
μF G

h̄
y cos θ

)]}

− h̄k
�

2

I1

Isat

[
K + C

(
−kvy − μF G

h̄
y

)]
. (A8)

For the constant terms (i.e., those ∝K) to cancel, Iup =
I1/2 cos θ . Then,

Ftot,y ≈ h̄kC
�

2

I1

Isat

{
kvy(1 + cos θ ) + μF G

h̄
y

× [1 + (P+ − P−) cos θ ]

}
. (A9)

APPENDIX B: GMOT DISTRIBUTION DERIVATION

1. Beam distribution

When the plug beam is pulsed off for a short period, a
small packet of atoms from the 2D+ GMOT is allowed to pass
through the pinhole, across a distance L, to the 3D GMOT
trapping region. If the atoms from the beam packet are slower
than the capture velocity vc, they will be collected into the
3D GMOT, which will grow with increased atom number. The
process is illustrated in Fig. 7.

Define the pinhole to be at z = 0. Assume that at t = 0,
the atoms are distributed uniformly behind the pinhole (z < 0)
with no atoms past the pinhole (z > 0). Assume the atoms
have a Gaussian distribution in velocity. The number of atoms
between z and z + dz with velocities between v and v + dv is
given by

η(z,v) dz dv = A

σ
√

2π
exp

[
− (v − v0)2

2σ 2

]
dz dv , (B1)

where v0 is the peak velocity of the distribution and σ is the
velocity spread. A represents the number of atoms/m, which
is weighted by a normal distribution in velocity. The total
number of atoms with initial positions between z1 and z2 with
velocities between v1 and v2 is

N =
∫ z1

z2

∫ v2

v1

η(z,v) dv dz . (B2)

The 3D GMOT size at time t is proportional to the number
of atoms that reach the point z = L with velocities less than vc

at or before time t . In other words, an atom at position z must
travel at least L + |z| in time t . Accordingly, the minimum
velocity that reaches the 3D GMOT by time t is v1 = (L +
|z|)/t . The velocity range that can effect the 3D GMOT at
time t is then [v1,v2] = [(L − z)/t,vc].

At t = 0, no atoms exist past the pinhole, so z2 = 0. The
fastest atom capable of being trapped is vc, and it can only
travel a distance vct in time t . The fastest atom can have
an initial position no further behind the pinhole than z1 =
L − vct . Using these limits, the total number of atoms that
reach the 3D GMOT by time t is

N (t) =
∫ 0

L−vct

∫ vc

(L−z)/t

η(z,v) dv dz

= A

σ
√

2π

∫ 0

L−vct

∫ vc

(L−z)/t

exp

[
− (v − v0)2

2σ 2

]
dv dz

= A

2

∫ 0

L−vct

erf

[
v0 − L−z

t

σ
√

2

]
dz−A

2

∫ 0

L−vct

erf

[
v0 − vc

σ
√

2

]
dz.

= A
σt√
2π

(
exp

[
−

(
L
t

− v0
)2

2σ 2

]
− exp

[
− (v0 − vc)2

2σ 2

])
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+ A

2
(v0t − L) erf

[
v0 − L

t

σ
√

2

]

− A

2
t(v0 − vc) erf

[
v0 − vc

σ
√

2

]

+ A

2
(L − vct) erf

[
v0 − vc

σ
√

2

]
. (B3)

2. Flux distribution

Integrating η(z,v) from v = v′ to v′ + dv gives the density
of atoms in the 2D+ GMOT with velocities in that infinitesimal
range. Further integrating from z = −v′(t + dt) to −v′t gives
the number of those atoms exiting the pinhole between times t

and t + dt :

dN(v′,t) =
∫ −v′t

−v′(t+dt)

∫ v′+dv

v′
η(z,v) dv dz

=
∫ −v′t

−v′(t+dt)
[η(z,v′)dv]dz

= A

∫ −v′t

−v′(t+dt)

{
1

σ
√

2π
exp

[
− (v′ − v0)2

2σ 2

]
dv

}
dz

= Av′

σ
√

2π
exp

[
− (v′ − v0)2

2σ 2

]
dvdt. (B4)

Dropping the primes, the flux of atoms in a narrow range of
velocities between v and v + dv is

�(v)dv = dN

dt
= A

σ
√

2π
v exp

[
− (v − v0)2

2σ 2

]
dv, (B5)

which peaks when v = (v0 ±
√

v2
0 + 4σ 2)/2. The total flux

that was blocked by the plug beam is

R =
∫ ∞

−∞
�(v) dv = Av0. (B6)

APPENDIX C: DATA PROCESSING
AND ERROR ANALYSIS

As the 3D GMOT grows, its fluorescence is recorded as
a series of voltage signals from the photodiode. The ith
measured signal Si is converted to atom number Ni with
associated error wi given by the following uncertainties:

(1) The photodiode monitoring the 3D GMOT fluores-
cence has 799 μV root-mean-square noise at the 40-dB gain
setting.

(2) The measured voltage could result from either a
change in atom number or a variation in the scattering rate
Rsc, which depends on laser intensity and detuning. On
the time scale of this experiment, � = −10.1(1) MHz and
I = 11.03(2) mW/cm2. These laser fluctuations lead to an
additional 0.9% uncertainty in the measured voltage.

(3) Conversion of the measured voltage to atom number is
imprecise. The atom number is given by [33] as

Ni = 4πSi

GβEphotonRsc(Tglass)m
, (C1)

for the detector gain G and responsivity β, imaged solid angle
, and photon energy Ephoton. Tglass is the transmissivity of
the m optical surfaces in the imaging setup. Accounting for
the relevant uncertainties in these values, the conversion is
Ni ≈ [1.61(4) × 109 V−1]Si .

The acquired data is binned in time every M = 10 points,
such that the kth bin is represented by mean time

t̄k = 1

M

M∑
l=1

ti , (C2)

weighted average signal

N̄k =
∑M

l=1
Ni

w2
i∑M

l=1
1

w2
i

, (C3)

and weighted average error

w̄k =
√√√√ 1∑M

l=1
1

w2
i

, (C4)

where i = Mk + l.
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