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Evolution from few- to many-body physics in one-dimensional Fermi systems:
One- and two-body density matrices and particle-partition entanglement
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We study the evolution from few- to many-body physics of fermionic systems in one spatial dimension with
attractive pairwise interactions. We determine the detailed form of the momentum distribution, the structure of
the one-body density matrix, and the pairing properties encoded in the two-body density matrix. From the low-
and high-momentum scaling behavior of the single-particle momentum distribution we estimate the speed of
sound and Tan’s contact, respectively. Both quantities are found to be in agreement with previous calculations.
Based on our calculations of the one-body density matrices, we also present results for the particle-partition
entanglement entropy, for which we find a logarithmic dependence on the total particle number.
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I. INTRODUCTION

In the last decade, the detailed experimental study of
ultracold atoms has revealed a stunning array of phenomena in
a wide range of situations. The ever-growing ability to control
and measure the properties of atomic clouds has enabled the
study of fermionic and bosonic systems in one, two, and three
dimensions, lattices, and even mixed dimensions by carefully
tuning external trapping potentials (see, e.g., Refs. [1–3]).
As is well known, that versatility extends to changes in the
interaction strength via Feshbach resonances [4] as well as to
control over the degree of polarization (pseudospin population
imbalance) and mass asymmetry (by isotopic variations).
Such an unprecedented plasticity makes the investigation of
the challenging strongly coupled regimes both urgent and
necessary.

On the computational side, the quantitative characterization
of these quantum few- and many-body systems poses a
formidable challenge. The complexity of quantum many-body
physics presents itself in two ways. In nonstochastic methods,
such as exact diagonalization, the memory requirements scale
factorially with the size of the system (number of particles or
spatial volume, depending on the algorithm), simply because
that is how the dimension of the Hilbert space grows. In
stochastic methods, namely quantum Monte Carlo (QMC)
and all its incarnations, full access to eigenstates is relaxed
in exchange for answers to specific questions (i.e., specific
correlation functions) and so the memory limitations are much
milder.

As far as computations of properties of 1D systems are
concerned, there are several nonstochastic ways to arrive at the
ground-state properties, such as the Bethe ansatz [5], (density-
matrix) renormalization-group approaches [6], exact diago-
nalization [7], methods based on effective interactions [8],
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as well as coupled-cluster approaches frequently applied in
quantum chemistry [9].

One of the main objectives of the present work is to set
benchmarks that show quantitatively and in detail what is
presently feasible with our lattice QMC approach. To this
end, we expand on previous works [10,11] and consider a
model for two-component Fermi gases in one dimension with
an attractive contact interaction between the two species (see
Sec. II for a brief discussion), focusing on systems with an
equal population of spin-up and spin-down fermions. The
algorithm we use relies on an auxiliary field transformation to
decouple the spin species in the density channel. This allows
for a relatively simple calculation of the one-body density
matrix as well as the on-site two-body density matrix (i.e.,
the pair-correlation function). However, the latter requires
taking the square of the one-body density matrix for each
auxiliary field configuration, which increases the statistical
noise significantly. Therefore, better statistics are needed to
obtain a more accurate estimate for this quantity, which can be
most easily tested and achieved in the one-dimensional (1D)
limit.

In Sec. III, we present fully nonperturbative calculations
of the one- and two-body density matrices along with the
associated momentum distributions for our 1D system of
fermions. We compute these quantities in the ground state
for different particle content and across a number of coupling
strengths ranging from the noninteracting case to the strongly
coupled regime. The fact that this specific problem is in
principle exactly solvable by way of the Bethe ansatz [12]
is of great importance to us as it allows us to benchmark our
lattice QMC approach, e.g., with respect to the computation
of the ground-state energy and the speed of sound. Since the
exact analytic approaches successfully employed over decades
in the 1D case do not possess a straightforward generalization
to higher-dimensional systems, our present study aims to set
the methodological stage for future quantitative studies of
one- and two-body density matrices of Fermi gases in higher
dimensions. In particular, for future studies of systems with a
finite spin and mass imbalance, the computation of general
correlation functions is of interest as the formation of an
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inhomogeneous ground state is expected to leave its imprint on
these quantities; see, e.g., Refs. [13–15]. Although our present
1D study does not fully generalize to higher dimensions, e.g.,
with respect to the scaling of the observables with the lattice
size, we still consider it useful from a methodological point of
view as it is possible to take vastly more data than in higher
dimensions. This allows us to test how our algorithms perform
against the background of the existing exact results in the 1D
limit.

From a phenomenological point of view, 1D Fermi gases
allow us to study the transition from few- to many-body physics
in detail, both experimentally [16] and theoretically (see
Ref. [17] for a review). The exploration of this transition has
been enriched by the concepts of quantum information, such
as entanglement, entanglement entropy, mutual information,
as well as corresponding methods to determine them. We
rush to add that a direct comparison of our present results to
experimental data would be qualitative at best. Indeed, we shall
consider fermions in a box with periodic boundary conditions
since they have been found to minimize finite-volume effects in
relativistic model studies in the sense that the infinite-volume
limit is approached faster than in the case of antiperiodic
boundary conditions (see, e.g., Ref. [18]). Of course, the
latter are only one representative of boundary conditions
which do not allow for a zero-momentum mode. A rigorous
proof of this observation for general boundary conditions
and observables is difficult, if possible at all. In any case,
for a quantitative comparison with experimental data in the
future (in particular with respect to the few-body limit), the
numerical implementation of trap potentials [19,20] as used
in experiments will be required. For example, harmonic traps
are often considered in 1D experiments [16]. Interestingly, we
note that the realization of flat-bottom traps in experiments
has now also become possible (see, e.g., [21]). Compared
to systems with periodic boundary conditions, however, the
computational cost at fixed system size for studies involving
such trapping geometries has been found to increase [20,22]
in the case of our present MC approach.

As a direct and nontrivial application of our results for the
density matrix, we are able to push further and explore specific
quantum-information aspects of this system by computing
the one-particle partition-entanglement entropy. The so-called
Rényi entanglement entropy has been a center of attention for
the last few years as a possible order parameter for topological
phase transitions [23]. Indeed, it was found that the so-called
area-law violation (specifically, a logarithmic modification to
the expected area law scaling with subsystem size) could signal
such a phase change [24]. Our motivation for considering the
particle-partition form of the Rényi entanglement entropy is
based on the recent interest in this quantity and its scaling with
the system size, which has been empirically found to follow a
logarithmic law as in the case of spatial entanglement [25,26].
While conventional studies of entanglement analyze the degree
of spatial entanglement of a subsystem, circumscribed by a
specific region of space, with the rest of the system, the kind
of entanglement we study here is different. Particle-partition
entanglement quantifies the degree of quantum correlation
between a subset of particles (identified by labels of the density
matrix) and the rest of the particles in the system. As in the
case of spatial entanglement, the quantum correlation being

measured includes statistical effects, which are nontrivial
even for noninteracting systems. However, particle-partition
entanglement features nonuniversal coefficients in the leading
logarithms that vary with the particle statistics as well as with
the interaction strength, which makes it a useful diagnostic tool
for quantum correlations in strongly coupled matter [25,26].

II. MODEL AND SCALES

We focus on the attractive regime of the unpolarized
Gaudin-Yang model [27] in a finite box with periodic boundary
conditions which, in first quantization, is given by the
Hamiltonian

Ĥ = − h̄2

2m

N∑
i=1

∂2

∂x2
i

− g
∑
i<j

δ(xi − xj ). (1)

The coupling g is related to the s-wave scattering length as ,
g ∼ 1/as; see, e.g., Ref. [28]. We use conventions such that
g > 0 corresponds to an attractive interaction and work in
units where kB = h̄ = m = 1 with m being the mass of the
fermions, equal for both spins. As previously mentioned, our
attention is restricted to the case with two fermion species
interacting via a contact interaction, an example for a Luttinger
liquid [29]. For our ground-state calculations, we employ the
techniques previously used in Refs. [10,30,31]. Specifically,
we formulate the given quantum many-body problem on
a discretized Euclidean space-time of dimensionless extent
Nx × Nτ . Using a symmetric Trotter-Suzuki decomposition
followed by an auxiliary field transformation, we arrive at
path-integral expressions for our desired observables, which
we evaluate via the hybrid Monte Carlo (HMC) algorithm.

The calculations presented in this work have been carried
out by projecting the ground state out of a guess wave
function of fixed particle number N = N↑ + N↓. This even
integer along with the ring circumference L = Nx� with lattice
spacing � and the attractive coupling strength g > 0 comprise
the physical input parameters where only the latter two are
dimensionful. As is typical in 1D ground-state studies, from
these two quantities we define a single intensive dimensionless
parameter γ = g/n, where n = N/L is the particle-number
density. The extent of the imaginary time direction is β =
τNτ , defining τ as the temporal lattice spacing. Therefore
an extrapolation to the large βεF limit is required, where
εF = k2

F/(2m) and kF = πn/2. Note that, in all cases, we have
fixed the (spatial) lattice spacing to unity, which sets the length
and momentum scales.

III. RESULTS

In this section, we discuss our results for all previously men-
tioned observables as a function of the dimensionless coupling
γ . In general, we took Nx = 80 lattice sites, consistent with
previous studies for the 1D ground state [10]. Results were
obtained by averaging ∼5000 decorrelated samples. Typical
autocorrelation times for the total energy are of the order
of 10−2 and the sampling frequency of order 1, to ensure
decorrelation also for other quantities under study. Unless
otherwise noted, error estimates were obtained from statistical
uncertainties by considering the standard deviation of the
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FIG. 1. Equation of state for N = 4–12 particles as a function
of γ , extrapolated to the infinite-volume limit. The dashed and dot-
dashed lines are the results from the Bethe ansatz (BA) [32] in the
thermodynamic limit for weak and strong coupling, respectively. We
observe fast convergence to the thermodynamic limit.

mean. For a discussion of lattice size and discretization effects,
we refer the reader to the Appendix.

A. Ground-state energy

As a first cross-check, we recomputed the ground-state
energy as a function of the coupling strength and particle
number.

In Fig. 1, we compare our results for E/EF with the weak-
coupling expansion,

E

EF
= 1 − 6γ

π2
− γ 2

π2
+ · · · , (2)

and the strong-coupling expansion,

E

EF
= − 3

π2
γ 2 +

(
γ

1−2γ

)2(
1+ 4π2

15(1−2γ )3

)
+ · · · , (3)

in the thermodynamic limit as obtained from the Bethe
ansatz [32,33], where EF/L = k3

F/(3π ) = (N/L)3π2/24 is
the ground-state energy of the noninteracting two-component
Fermi gas. We observe that our results are in excellent
agreement with the weak-coupling expansion for γ � 2 and
with the strong-coupling expansion for γ � 2. Moreover, the
thermodynamic limit appears to be approached rather rapidly;
see also the inset of Fig. 1.

The exact (binding) energy of one spin-up and one
spin-down fermion interacting via a contact interaction in
the infinite-volume limit is given by E1+1 = −g2/4 [34],
corresponding to E1+1/EF = −3γ 2/π2. Thus, we observe that
the ground-state energy per pair is simply given by the energy
of the 1 + 1-body problem, E/Npairs = −g2/4, at leading
order in the strong-coupling expansion. Loosely speaking,
the dynamics in the strong-coupling limit may therefore be
viewed as dominated by the formation of tightly bound pairs
built up from one spin-up and one spin-down fermion. In the
strict infinite-coupling limit 1/γ = 0, the many-body system

can be viewed as a gas of composite bosons, the so-called
Tonks-Girardeau gas [35].

In the weak-coupling limit, a finite gap 
/EF ∼
|γ |e−π2/(2|γ |) has been found to emerge between the singlet
ground state and the first triplet excited state together with
gapless density fluctuations [32,36–38]. Consequently, the
dynamics of the many-body system in this limit is associated
with a Bardeen- Cooper-Schrieffer (BCS) superfluid. For a
detailed discussion of the many-body phase diagram, we refer
the reader to Ref. [38]. Here, we only highlight that a smooth
crossover from the formation of tight bosonic molecules in the
limit 1/γ → −∞ to Cooper pairing in the limit 1/γ → ∞ is
found to occur at γ ∼ 2 in this system. At this point, the size
of the bosonic pairs is of the order of the distance between
the fermions [32,38]. Indeed, for the two-body problem in
the infinite-volume limit, the “diameter” d0 of the bosonic
pair1 is given by d0 = 2/g; see, e.g., Ref. [34]. Thus, we
have d0n = 2/γ which may be viewed as a measure for the
crossover point in terms of the coupling at which the properties
of the system change significantly.

In the following subsections we do not aim at a detailed
quantitative discussion of the phase diagram but focus on
our results for the momentum distribution, the one- and two-
body density matrices, and the particle-partition entanglement
entropy from few to many fermions.

B. One-body density matrix and momentum distribution

The one-body density matrix ρ
(σ )
1 in principle allows us to

compute all single-particle expectation values and is defined as
ground-state expectation value of a creation and annihilation
operator:

ρ
(σ )
1 (x,x ′) = 〈ψ̂†

σ (x)ψ̂σ (x ′)〉 , (4)

where σ refers to the spin index and the operators ψ̂σ (ψ̂†
σ )

denote annihilation (creation) operators. In terms of a general
N -body wave function �(x↑,1,x↓,1, . . . ,x↑,N↑ ,x↓,N↓ ), the one-
body density matrix associated with, e.g., the spin-up fermions
is given by

ρ
(↑)
1 (x,x ′) = N↑

∫ L/2

−L/2
dy2 · · ·

∫ L/2

−L/2
dyN�∗(x,y2, . . . ,yN )

× �(x ′,y2, . . . ,yN ), (5)

and correspondingly for the spin-down fermions. The (single-
particle) momentum distribution ñ

(σ )
k,k′ , i.e., the Fourier trans-

form of the one-body density matrix, is implicitly defined as

ρ
(σ )
1 (x,x ′) =

∑
l,l′

ϕ∗
l (x)ñ(σ )

l,l′ ϕl′(x
′), (6)

where

ϕl(x) = 1√
L

eiωlx (7)

1We define the diameter d0 as |�(0,d0/2)|2 = |�(0,0)|2/e, where
�(x↑,x↓) is the ground-state wave function. Note that � is only a
function of |x↑ − x↓| in the infinite-volume limit.
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and ωl = 2πl/L for the periodic box of extent L considered
in this work.

The one-body density matrix ρ
(σ )
1 determines the overlap

of a state in which a fermion with spin σ has been removed
from the ground state at point x ′, with a state, in which a
fermion with the same spin σ has been removed at point
x. Correspondingly, the associated single-particle momentum
distribution determines the overlap of a state in which a
fermion with spin σ and momentum k′ has been removed
from the ground state with a state in which a fermion with
the same spin σ but momentum k has been removed. From
the definition of the single-particle momentum distribution,
it follows immediately that it is only finite for |k| � kF and
|k′| � kF in the noninteracting limit.

In a periodic box, the one-body density matrix of the
noninteracting system can be computed analytically. We find

ρ
(σ )
1 (x,x ′) = 1

L

⎛
⎝1 + 2

N̄σ∑
j=1

cos[ωj (x − x ′)]

+ δ(Nσ mod 2),0{cos[ωN̄σ +1(x − x ′)]

− cos[ωN̄σ +1(x + x ′)]}
⎞
⎠, (8)

where N̄σ = (Nσ − 1)/2 for odd Nσ and N̄σ = (Nσ − 2)/2
for even Nσ .

For odd Nσ , we observe that the one-body density matrix of
the noninteracting system is a translation-invariant quantity as
it only depends on the distance between x and x ′. For even Nσ ,
however, the one-body density matrix of the noninteracting
system is no longer translation invariant in a periodic box but
depends on x and x ′ separately; see Eq. (8). Nevertheless, in
the large-Nσ limit, the term breaking translation invariance is
only subdominant, implying that the one-body density matrix
becomes a translation-invariant quantity in the thermodynamic
limit, as it should be. In fact, we have

ρ
(σ )
1 (x,x ′) = sin(πnσ |x − x ′|)

π |x − x ′| (9)

for fixed nσ = Nσ/L with Nσ → ∞ and L → ∞.
We emphasize that the breaking of translation invariance

in systems with even Nσ is a direct consequence of the
fact that the ground-state wave function of the noninteracting
system is not an eigenstate of the center-of-mass momentum
operator P̂tot; it is, however, an eigenstate of P̂ 2

tot. For odd
Nσ , on the other hand, the ground-state wave function is an
eigenstate of P̂tot with zero eigenvalue.2 Since the ground-state

2As the Hamiltonian and parity operators commute with each other,
the ground-state wave function (including the center-of-mass motion)
can be chosen to be an eigenstate of the parity operator. Note that
the part of the ground-state wave function describing the relative
motion of the fermions has even parity whereas the parity of the
center-of-mass wave function can be chosen at will. In our numerical
implementation, conventions effectively correspond to choosing the
center-of-mass wave function to have odd parity for even Nσ . For odd
Nσ , we choose the center-of-mass wave function to have odd parity
if (Nσ − 1)/2 is odd, and otherwise even.

wave function of the fully interacting system is effectively
generated by exciting the ground-state wave function of the
noninteracting system according to the momentum-conserving
interaction, we conclude that translation invariance of the
ground-state wave function is preserved in our QMC studies
for systems with odd Nσ but is violated for systems with
even Nσ ; see also Ref. [39] for a discussion of this issue for
systems in (anti)periodic boxes. We return to this below when
discussing our results for the one-body density matrix.

From the one-body density matrix in Eq. (8), the momentum
distribution ñl,l′ of the noninteracting system is readily
obtained. We find

ñ
(σ )
l,l′ = δl,l′θ (N̄σ − |l|) + 1

2δ(Nσ mod 2),0(δl,(N̄σ +1) − δl,−(N̄σ +1))

× (δl′,(N̄σ +1) − δl′,−(N̄σ +1)), (10)

where θ (x) = 1 for x � 0 and θ (x) = 0 otherwise.
In Fig. 2, we show our results for the diagonal part of

the momentum distribution nk ≡ ñ
(↑)
l,l = ñ

(↓)
l,l as a function of

k/kF for various particle numbers and coupling strengths γ .
For small values of the coupling, 0 < γ � 1, we observe
that the momentum distribution is still well described by
the noninteracting momentum distribution given in Eq. (10),
independent of the total particle number N . For stronger
couplings, γ � 2, the system is then dominated by the
formation of tightly bound dimers where the crossover to this
regime from the weakly coupled regime dominated by Cooper
pairing occurs at γ ∼ 2; see our discussion in Sec. III A. In the
regime associated with γ � 2, the momentum distributions
clearly deviate from their noninteracting counterparts. More
specifically, even states with very low momenta are now
excited above the Fermi point kF. Loosely speaking, the
momentum distributions effectively start to flatten out when
the coupling is increased beyond γ ∼ 1 and therefore these
distributions lose their characteristic feature of a sharp drop
present in the weak-coupling limit.

In order to further quantify the change in the momentum
distributions when the coupling is increased, we analyze its
scaling behavior close to the Fermi point kF. For spin-balanced
systems, n = 2n↑ = 2n↓ and n|x − x ′| 
 1, the one-body
density matrix in the thermodynamic limit is known to scale
as follows [40–42]:

ρ1(x,x ′) ≡ ρ
(σ )
1 (x,x ′) ∼ sin(πn|x − x ′|)

(n|x − x ′|)1/η+η/4
, (11)

where n = 2kF/π . A comparison with the exact solution (9)
for the free gas (i.e., γ = 0) immediately yields η = 2.

From Eq. (11), we obtain the scaling behavior of the single-
particle momentum distribution (close) below the Fermi point
kF in the thermodynamic limit; see also Ref. [43]:

n(k) ∼ (kF − |k|)1/η+η/4−1. (12)

The scaling exponent η is directly related to the sound velocity
vs of density fluctuations in our 1D Fermi gas. Indeed, we have
vs/vF = 2/η with vF = kF being the Fermi velocity [40,41].
With η = 2, we find vs/vF = 1 for the free gas as expected.

For weak attractive interactions [37], γ → 0+, the sound
velocity is given by

vs

vF
= 1 − γ

π2
+ γ 2

2π4
(ln|γ | − 2) + · · · , (13)
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FIG. 2. Diagonal part of the momentum distribution nk as a
function of k/kF for various N . The insets show the asymptotic
behavior on a double logarithmic scale, where solid lines represent
linear fits of the data.

whereas it reads

vs

vF
= 1

2
+ 1

2γ
+ 3

4γ 2
− 3

4γ 3
+ · · · (14)

in the limit 1/γ → 0, i.e., in the strong-coupling limit [36].
Assuming that the sound velocity is a monotonic function
of the coupling γ , we conclude from these expansions that η

varies between η = 2 at γ = 0 and η = 4 in the limit 1/γ → 0.
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FIG. 3. Estimates for the sound velocity vs/vF as a function of
the inverse coupling, where vF is the Fermi velocity. Error bars
reflect propagated uncertainties in η from a fit of the form (12) to
the momentum distribution at low momenta.

Recall our conventions for the sign of the coupling γ ; see
Eq. (1).

In this work, we exploit the scaling law (12) to estimate
the sound velocity from a fit of our numerical data in the low-
momentum regime k � kF to the ansatz ξ0(kF − |k|)ξ1 based
on the two parameters ξ0 and ξ1. Of course, a high-precision
determination of the low-momentum scaling behavior and
the associated sound velocity requires us to study larger
particle numbers and even larger box sizes than considered
in our present work in order to push the system closer to the
thermodynamic limit.3 Still, our present results for the sound
velocity obtained from such a fit procedure already appear to
be in reasonable agreement with the existing results for this
quantity [38], in particular with the weak- and strong-coupling
expansion given above; see Fig. 3. More specifically, we
observe that the sound velocity remains close to the Fermi
velocity for γ � 2. For γ � 2, the sound velocity then starts
to decrease rapidly, suggesting that the systems enters the
crossover regime between the “phase” dominated by Cooper
pairing at small attractive couplings to a phase governed by
the formation of a gas of tightly bound bosonic molecules, in
accordance with earlier studies [38].

We note that, as in the case of the ground-state energy, a
fast convergence of our results to the thermodynamic limit is
observed. In general, however, the convergence is faster for
odd Nσ as terms violating translation invariance are absent in
this case; see Eq. (8) and our discussion below.

3In principle, the speed of sound can also be computed directly
from the derivative of the chemical potential with respect to the
density. However, the computation of the chemical potential defined
as a derivative of the ground-state energy with respect to the particle
number requires the computation of the ground-state energy of spin-
imbalanced systems which is beyond the scope of the present work.
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Let us now turn to the scaling behavior of the momentum
distribution at high momenta, which determines Tan’s contact
density C/(Lk4

F).4 For the latter, we extracted estimates from
the asymptotic behavior of the momentum distribution [45],

C ≡ lim
|k|→∞

k4nk, (15)

by performing a linear fit of our results for nk for momenta
with |k| > kF on a double-logarithmic scale; see also insets
of Fig. 2. In our fits, we have only taken results for momenta
with |k| > 2kF into account. Above this scale, we observe that
the fits only exhibit a weak dependence on the actual fit range.
Note that, for very dilute systems (i.e., small particle numbers)
the high momentum part is subject to noise which explains the
seemingly odd behavior at large momenta.

A priori, it is not evident where the above large-momentum
asymptotics sets in. It was found in previous studies in three
dimensions at unitarity [46] that the onset scale is close to
k/kF ∼ 2. In a QMC study of the corresponding 2D system
[31], it was observed that the onset scale increases with
the coupling strength. At least in one dimension, a rough
estimate for this onset scale may be obtained by comparing the
“diameter” d = 2/(γ n) of the bosonic bound state associated
with the two-fermion problem with the de Broglie wavelength
of a given fermion λ = 2π/k. The typical momentum of
a fermion within the bound state may be estimated to be
of the order of k0 = 2π/d. This momentum scale should
be compared to the momentum k of a given fermion. If
k � k0 = 2γ kF, then the fermion is not sensitive to the details
of the short-range physics of our system but only to the
long-range aspects. The long-range physics in our model is
indeed immediately affected by an increase of the coupling,
as indicated by our study of the scaling exponent η of the
single-particle momentum distribution determining the decay
of the one-body density matrix in the long-range limit. If
k � k0 = 2γ kF, then the fermion is sensitive to the details
of the short-range physics of our 1D system. The latter case
is associated with the dynamics which, e.g., determines Tan’s
contact density.

In accordance with this simple argument, we indeed find in
our numerical studies that the k−4 decay law sets in at higher
scales k/kF when the coupling γ is increased for a fixed particle
number; see also the insets of Fig. 2. In Table I, results for the
contact density for various couplings and particle numbers are
provided. We note agreement with results previously obtained
in Ref. [10] for even Nσ using a different definition of Tan’s
contact along with the Feynman-Hellmann theorem.

Finally, we discuss our results for the one-body density
matrix ρ1 ≡ ρ

(↑)
1 = ρ

(↓)
1 being nothing but the Fourier trans-

form of the momentum distribution nk,k′ ≡ n
(↑)
k,k′ = n

(↓)
k,k′ ; see

Eq. (6). In Fig. 4, we present our results for ρ1 as a function
of the dimensionless coordinates kFx and kFx

′ in a periodic
box for N = 2 + 2,3 + 3,4 + 4,5 + 5 fermions (from left to
right) and γ = 0,0.2,3.0 (from top to bottom). The color
coding is associated with the actual value of the one-body

4A detailed discussion of Tan’s relations for 1D systems can be
found in Ref. [44].

TABLE I. Estimates for the contact density C/(Lk4
F) for different

values of the dimensionless coupling γ and the total particle number
N = N↑ + N↓ as obtained from linear fits to the large-momentum
tails of the momentum distributions on a double-logarithmic scale as
presented in the insets of Fig. 2.

N γ C/(Lk4
F) (this work) C/(Lk4

F) (Ref. [10])

2+2 0.2 0.003(1) 0.00204(3)
1.0 0.02(2) 0.063(2)
2.0 0.36(2) 0.35(1)
3.0 1.01(2) 1.03(3)
4.0 2.3(3) 2.36(2)

4+4 0.2 0.0013(2) 0.00182(5)
1.0 0.059(6) 0.0582(6)
2.0 0.330(5) 0.324(4)
3.0 0.99(3) 0.99(1)
4.0 2.17(9) 2.24(2)

6+6 0.2 0.0012(4) 0.00178(3)
1.0 0.055(2) 0.0563(6)
2.0 0.33(1) 0.311(4)
3.0 0.94(2) 0.94(1)
4.0 2.20(8) 2.14(2)

density matrix ρ1 at the point (x,x ′). The results for finite γ

represent numerical data from our QMC calculations, whereas
the result for the noninteracting system (γ = 0) was obtained
analytically; see Eq. (8).

The results shown in Fig. 4 exemplify our findings for
other particle numbers. As suggested by the analytic solution
(8) for the noninteracting limit, we observe that the number
of oscillations at fixed coupling and box size increases with
increasing particle number. The scale for these oscillations is
set by the density. The main maxima of the one-body density
matrix are found along the lines with |x − x ′| = νL, where
ν ∈ Z. However, as already indicated above, we also clearly
see that translation invariance is broken for even Nσ , whereas
it is manifest for odd Nσ . This invariance is progressively
restored as the particle number is increased. The mild violation
of translation invariance for γ = 3.0 and odd Nσ in Fig. 4 is due
to statistical uncertainties in our QMC calculations at strong
couplings.

In Fig. 4, we also find that the width of the band associated
with the lines of main maxima at |x − x ′| = νL is decreased
with increasing coupling strength and the oscillations tend
to flatten, leading to an increased localization of the one-body
density matrix. This observation is consistent with the fact that
the dynamics is governed by the formation of tightly bound
bosonic molecules in the strong-coupling limit. Indeed, given
our results for the single-particle momentum distribution, the
increased localization of the one-body density matrix for
increasing coupling strength does not come unexpected at all.
It is, rather, a direct consequence of the fact that the single-
particle momentum distribution is increasingly smeared out
when γ is increased for fixed particle number. Quantitatively,
this is measured by the increase of the critical exponent η

associated with the long-range scaling of the one-body density
matrix, see Eq. (11), when γ is increased.
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FIG. 4. One-body density matrix ρ1(x,x ′) as a function of the dimensionless coordinates kFx and kFx
′ for N = 2 + 2,3 + 3,4 + 4,5 + 5

fermions (from left to right) and γ = 0,0.2,3.0 (from top to bottom) in a periodic box with extent kFL where L is fixed. The analytic result for
the noninteracting limit (γ = 0) is given in Eq. (8). The color coding is associated with the value of the one-body density matrix ρ1(x,x ′). The
violation of translation invariance is clearly visible in the results for even Nσ but is continuously weakened for increasing Nσ ; see main text for
a detailed discussion.

C. Pair-correlation function

In addition to the one-body density matrix, we have
calculated the pair-correlation function, also known as the
on-site two-body density matrix. In one-dimensional systems,
this function has attracted a lot of interest, for instance in the
search for inhomogeneous ground states [13]. It is defined as

ρpair(x,x ′) = 〈ψ̂†
↑(x)ψ̂†

↓(x)ψ̂↑(x ′)ψ̂↓(x ′)〉. (16)

This expression can be rewritten in terms of the ground-state
N -body wave function �:

ρpair(x,x ′) = N↑N↓
∫ L/2

−L/2
dy3 · · ·

×
∫ L/2

−L/2
dyN�∗(x,x,y3, . . . ,yN )

× �(x ′,x ′,y3, . . . ,yN ). (17)

Note that ∫ L/2

−L/2
dx ρpair(x,x) = N↑N↓

L
, (18)

where N↑N↓ is the number of all possible combinations of one
spin-up fermion with one spin-down fermion in a system with
N = N↑ + N↓ fermions.

The pair-correlation function determines the overlap of
a state in which a pair of one spin-up and one spin-down
fermion has been removed from the ground state at point x ′
with a state in which such a pair has been removed at point
x. Correspondingly, the so-called pair-momentum distribution
ñ

(pair)
k,k′ , which is the Fourier transform of the pair-correlation

function, determines the overlap of a state in which a pair of
one spin-up and one spin-down fermion with momentum k′
has been removed from the ground state with a state in which
such a pair with momentum k has been removed:

ρpair(x,x ′) =
∑
k,k′

ϕ∗
k (x)ñ(pair)

k,k′ ϕk′(x ′). (19)
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FIG. 5. Pair-correlation function for N = 7 + 7 fermions and
different values of the coupling.

From Eq. (18), it follows immediately that
∑

k

ñ
(pair)
k,k′ = N↑N↓

L
. (20)

Note that, by definition, the pair-momentum distribution is
related to the propagator of a pair of vanishing size.

In the noninteracting limit, the pair-correlation function is
simply the product of the one-body density matrices associated
with the spin-up and spin-down fermions:

ρpair(x,x ′) = ρ
(↑)
1 (x,x ′)ρ(↓)

1 (x,x ′). (21)

We immediately conclude that the pair-correlation function in
a periodic box also suffers from terms violating translation
invariance for even Nσ . Thus, the convergence to the thermo-
dynamic limit is in general expected to be faster for odd Nσ .
For our discussion of the pair-correlation function in this work,
we shall focus on the latter case from now on. The associated
pair-momentum distribution of the noninteracting system then
reads

ñ
(pair)
k,k′ = δk,k′

L

∞∑
j=−∞

θ (N̄↑ − |j |)θ (N̄↓ − |j + k|). (22)

We note that ñ
(pair)
0,0 = N↓/L for N̄↑ � N̄↓ and vice versa for

N̄↑ < N̄↓. Without loss of generality, we may now assume
N̄↑ � N̄↓ to obtain

ñ
(pair)
k,k′ = δk,k′

L
[(2N̄↓ + 1)θ (|N̄↑ − N̄↓| − |k|)

+ (N̄↑ + N̄↓ + 1 − |k|)θ (|k| − |N̄↑ − N̄↓|)
×Pθ (N̄↑ + N̄↓ − |k|)]. (23)

From this expression, we observe that, for spin-balanced
systems, the pair momentum distribution assumes a global
maximum for k = k′ = 0 (see also Fig. 5). Phenomenolog-
ically, this implies that removing an on-site pair with zero
momentum is most favorable. This observation is in line with
standard BCS theory where pairing of spin-up and spin-down
fermions both located on the Fermi surface but with opposite
momenta is most favorable in the presence of an infinitesimally

weak but finite attractive coupling, eventually leading to a
destabilization of the Fermi surfaces.

We note that, for spin-imbalanced systems, the pair-
momentum distribution of the noninteracting system re-
mains constant up to momenta QLOFF ∼ |kF,↑ − kF,↓| and
then decreases monotonically, where LOFF refers to Larkin,
Ovchinnikov, Fulde, and Ferrell [47,48]. For interacting spin-
imbalanced systems, the pair-momentum distribution has even
been found to develop maxima at ±QLOFF; see Refs. [13,14].
Since QLOFF is associated with the center-of-mass momentum
of the formed on-site pairs, the observation of such maxima
may be viewed as a precursor for the formation of LOFF-type
ground states, where QLOFF sets the scale for the periodic
structure of the ground state in the many-body phase diagram
[47,48]. A priori, however, the mere existence of such maxima
in the pair-correlation function does not necessarily entail that
pairs with momenta QLOFF describe the lowest-lying two-body
states in the spectrum and that a condensate is formed out of
these states; see, e.g., Ref. [15]. Still, (pronounced) maxima at
±QLOFF may be viewed as an indication that the formation of
pairs with momenta QLOFF is favored.

In Fig. 5, as a concrete example for the pair-momentum dis-
tribution, we show our results for n

(pair)
k = ñ

(pair)
k,k as a function

of the momentum k for a spin-balanced system of N = 7 + 7
fermions. For increasing coupling γ , we observe that the
pair-momentum distribution progressively narrows, resulting
in an increase of the maximum at vanishing momenta. This
may be viewed as an indicator that preformed on-site pairs are
favored to occupy the state of zero center-of-mass momentum.
Indeed, we do not expect the formation of an inhomogeneous
(LOFF-type) ground state for the spin-balanced Fermi gas
studied in this work.

Finally we note that the observed progressive formation of
a narrow maximum in the momentum distribution associated
with the formation of on-site pairs is also consistent with the
observation that the system is expected to undergo a smooth
crossover from Cooper pairing at small attractive couplings to
a gas of bosonic molecules at γ ∼ 2; see our discussion above.

D. Particle-partition entanglement

Knowledge of the one- and two-body density matrices,
as presented above, enables the calculation of the particle-
partition entanglement entropy. In this section, we show the
evolution, with particle number, of the one-particle bipartite
entanglement entropy. We define the n-particle Rényi entan-
glement entropy via

Sα(n) = 1

1 − α
ln tr[ρα

n ], (24)

where α > 1 is typically an integer but could in principle
take any value in between. The limit α → 1 yields the von
Neumann version of the entanglement entropy:

S1(n) = −tr[ρn ln ρn]. (25)

In this work we will focus on n = 1, as higher-particle density
matrices become progressively noisier (and therefore more
challenging to calculate stochastically) as n is increased.

In Fig. 6, we show our results for the von Neumann entropy
S1 and the second Rényi entropy S2 at n = 1 as a function of
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FIG. 6. Particle-partition entanglement entropy Sα of 1D
fermions as a function of Nσ = N/2 for increasing attractive coupling
γ , at fixed partition n = 1. The solid lines connect the data for the von
Neumann entropy S1, whereas the dashed lines connect the results for
the second Rényi entropy S2. Note that ln Nσ has been subtracted in
order to more clearly display the mild oscillations and the differences
between the various data sets. The approximately constant trend of
the data in all cases shows that the ln Nσ law is shifted upwards by
interaction effects, but otherwise remains valid.

Nσ = N/2. For the noninteracting case, we compare with the
answer for spinless fermions [26] and find a similar behavior
for very weakly coupled systems. Our results for the strongly
interacting case show mild oscillations as a function of Nσ

relative to the ln Nσ law obeyed by the noninteracting case.
However, recall that our results for small even values of
Nσ are contaminated with contributions that break translation
invariance due to the presence of the boundaries.

To characterize the next-to-leading order behavior, a finite-
size scaling law for fermions was proposed for n � Nσ in
Refs. [26]:

Sα(n,Nσ ) = ln

(
Nσ

n

)
+ λ(α)

n + O(N−δ) (26)

with δ > 0. Our QMC calculations agree very well with this
form, which further confirms the derivations of Ref. [26].
Dropping higher-order corrections in Eq. (26), we estimate the
N -independent offsets λ

(α)
1 for α = 1 and α = 2 by fitting our

numerical data for the respective entropies to the scaling law
(26). The results for the Nσ -independent offsets for different
values of the coupling can be found in Table II. Note that
the one-body density matrix narrows progressively such that
ρ1(x,x ′) ∼ ρ1(x,x)δx,x ′ ∼ ρ1(0,0)δx,x ′ with increasing cou-

TABLE II. Next-to-leading order coefficient λ
(α)
1 for the von

Neumann and Rényi entropies for different values of the coupling γ .

γ λ
(1)
1 λ

(2)
1

0.2 0.0011(9) 0.0003(4)
1.0 0.06(1) 0.022(4)
2.0 0.257(9) 0.123(7)
3.0 0.51(2) 0.30(2)
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FIG. 7. Particle-partition entanglement entropy Sα of 1D
fermions as a function of α for three fixed particle numbers N =
3 + 3,5 + 5,7 + 7 at γ = 3.0 and fixed partition n = 1. The von
Neumann result is shown at α = 1. Solid lines reflect an exponential
fit, indicating an exponential decay of the Rényi entropy for α � 2.0.
To underline this behavior, the same data are shown on a log scale in
the inset.

pling. As can be seen in Table II, λ(α)
n becomes larger relative

to the non-interacting system for increasing coupling which
may be traced back to the dominance of the diagonal elements
ρ1(x,x) of the one-body density matrix in this case. In other
words, the entropies increase by interaction effects. Within our
accuracy, the next-to-next-to-leading order corrections are not
resolved; see also Fig. 6.

The procedure to obtain the uncertainties associated with
our results for the entanglement entropy was carried out in
a specifically designed way, as the diagonalization of the
one-body density matrix makes error propagation cumbersome
and generally unreliable. The procedure we utilized instead
consisted of taking 100 samples of the one-body density
matrix around its QMC average with the associated statistical
uncertainty (assumed to be gaussian), and then calculating the
entanglement entropy for every sample so obtained. Averaging
over those samples allowed us to estimate the statistical
uncertainties propagated from the one-body density matrix
to the entanglement entropies.

In Fig. 7, we present our results for Sα as a function of α

for fixed particle numbers N = 3 + 3,5 + 5,7 + 7 at γ = 2.0
and fixed partition n = 1. As in calculations of spatial
entanglement in higher dimensions [49], we find that the
large-α limit of Sα is reached rather quickly, as the variation
between α = 2 and α = 5 is within 5% of the value at α = 2
for every case we explored. In fact, we observe an exponential
decay of the form

Sα = S∞ + S0 e−α/α0 , (27)

which can be appreciated in the inset of Fig. 7.

IV. CONCLUSIONS

Motivated by experimental and computational advances,
we continued here our lattice QMC benchmarking of Fermi
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FIG. 8. Top panels: Momentum distribution nk as a function of k/kF for values of the lattice size Nx = 20, 30, 40, 60, and 80. The left
panel shows the very weakly coupled case of γ = 0.2. Strongly coupled systems at γ = 3.0 are shown in the right panel. In the latter case,
finite-volume effects are clearly more pronounced, albeit still comparatively small. Bottom panels: Momentum distribution nk as a function of
the lattice size Nx for k/kF = 0,1.25,3.5 (from left to right) for γ = 0.2 and γ = 3.0.

gases in one dimension. Specifically, we applied lattice QMC
methods to the calculation of the one-body density matrix and
the associated single-particle momentum distribution, as well
as the pair-correlation function and its associated momentum
distribution. From the single-particle momentum distribution,
we extracted estimates for the speed of sound as well as Tan’s
contact. We studied systems at a fixed lattice size of Nx =
80 and presented results for systems with varying particle
content across a wide range of attractive couplings. We found
that systems with small, even particle numbers per species
display significant finite-size effects. This can be traced back
to the fact that the ground state in this case breaks translation
invariance in a periodic box, unlike systems with odd particle
numbers per species. The latter appear to converge rapidly to
the thermodynamic limit.

In general, our results are in line with earlier studies of
two-component gases of fermions in one dimension with
an attractive contact interaction between the components.
In particular, we have illustrated the excellent agreement of
our results for the ground-state energy with the exact results
from the Bethe ansatz. Moreover, we have found very good
agreement for the contact parameter calculated differently in a
previous study [10]. Even more, our first comparatively crude
estimates for the speed of sound are in accordance with the
well-known exact results of this quantity [36–38]. Also in

accordance with previous studies [32,38], we find that, in the
weakly coupled regime with γ � 1, the calculated correlation
functions, and therefore also the momentum distributions, are
still well approximated by the ones of the noninteracting
system. The dynamics in this regime still appears to be
dominated by the presence of the Fermi points. In the strongly
coupled regime with γ � 1, we then find that the single-
particle momentum distributions start to flatten out and the
pair-momentum distribution develops a pronounced maximum
at vanishing pair momentum relative to the corresponding
distribution of the noninteracting system. Our estimates for the
sound velocity reveal that the system undergoes a crossover
from the weakly coupled regime, where the sound velocity
remains close to the Fermi velocity, to a strongly coupled
regime for γ � 2, where the sound velocity drops drastically.
In detailed analytic studies of the many-body phase diagram
[32,36–38], this behavior was traced back to the fact that the
dynamics of the system is governed by Cooper-type pairing in
the weak-coupling limit and by the formation of tight bosonic
molecules in the strong-coupling limit.

Finally, we have used our results for the one-body density
matrix to provide testable predictions for the Rényi -partition
entanglement entropies Sα for a partition of (n = 1,n′ =
Nσ − 1) particles. Our calculations, for varying couplings,
orders α, and total particle numbers N , display a logarithmic
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FIG. 9. Top panels: Momentum distribution nk as a function of k/kF for different values of the extent of the imaginary time axis
βεF = 0.65, 1.0, 1.5, 2.5, and 4.0. The weakly interacting system with γ = 0.2 (top left panel) is immediately converged. In the strongly
coupled case at γ = 4.0 (top right panel), the results converge slower as a function of βεF. Bottom panels: Momentum distribution nk as a
function of βεF for k/kF = 0,1.25,3.5 (from left to right) for γ = 0.2 and γ = 3.0.

growth with Nσ and mild oscillations on top of that growth,
which further confirms the results of recent analytic studies.
Additionally, we explored the α dependence of Sα(N ) for
several N and found that it decays exponentially to the limiting
value S∞(N ) with an approximately N -independent decay
amplitude and rate.

One of the goals of the present work is to benchmark
our lattice QMC approach for the computation of ground-
state properties with known exact results. Indeed, we have
found very good agreement with the exact results for the
observables considered here. Our present study therefore sets
the methodological stage for future studies of correlation
functions of Fermi gases in higher dimensions, where exact
results for, e.g., correlation functions are urgently needed. In
particular, for studies of systems with a finite spin and mass
imbalance, the computation of general correlation functions is
of interest as the formation of an inhomogeneous (LOFF-type)
ground state is expected to leave its imprint on these quantities.
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APPENDIX: SYSTEMATICS

In this Appendix we discuss the behavior of our results as
a function of the lattice size Nx and the imaginary projection
time β. Although, in principle, one should compute quantities
in the limit of infinite Nx and β to guarantee full convergence
to the respective physical limit, it is often sufficient to carry
out calculations at finite, but large, parameter values, as shown
below. Comparisons between different systems are shown for
a representative system with N = 8 + 8 particles with strong
and weak interactions. As mentioned in the main text, the
shown error bars reflect statistical uncertainties of ∼5000
samples. The associated typical autocorrelation times for the
energy are of the order of 10−2. In our discussion below, decor-
relation between points at different k/kF in the momentum
distribution is tacitly assumed. However, an explicit detailed
analysis of the autocorrelation times for this quantity has not
been performed and therefore the true error bar on the results
may be (slightly) underestimated as the autocorrelation time
may have been underestimated for this quantity.
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1. Finite lattice size

In the present work, we employ periodic boundary
conditions in our calculations. We shall now address the effect
of finite lattice sizes in case of such boundary conditions in
order to have a more complete overview of possible systematic
errors. To this end, we exploit the fact that, in the infinite-
volume limit, physical observables5 should only depend on the
value of the dimensionless coupling γ = g/n. This implies
that our results for a given fixed value of the dimensionless
coupling γ should not exhibit an explicit dependence on the
density n = N/L, if the box size L has been chosen sufficiently
large. In the top panels of Fig. 8, we show the momentum
distribution nk for lattice sizes of Nx = 20, 30, 40, 60, and 80
for fixed γ = 0.2 and γ = 3.0. Recall that Nx = L/� where
� is the lattice spacing. In the bottom panels of Fig. 8, we
illustrate the scaling behavior of nk with the lattice size Nx for
k/kF = 0,1.2,3.5 (from left to right), again for fixed γ = 0.2
and γ = 3.0. We clearly observe that weakly coupled systems,
exemplified by the momentum distribution with γ = 0.2, show
a indiscernible dependence on the lattice size and therefore
associated errors are almost absent, as evident from Fig. 8.
For the strongly coupled case at γ = 3.0, finite-size effects
are more pronounced, most prominently for momenta k close
to the Fermi point kF. However, even close to the Fermi point,
the volume dependence is already very weak for Nx � 60.
Given these results, we do not employ an extrapolation to the

5More precisely, observables rendered dimensionless with suitably
chosen powers of the density (or, equivalently, the Fermi momentum).

infinite-volume limit but consider Nx = 80 to be sufficiently
converged, which is therefore the value used throughout this
work.

Obviously, the momentum distribution is not the only
quantity influenced by finite-size effects. Our results for the
one- and two-body density matrices, however, feature the same
type of convergence and will not be considered separately at
this point. We add that we also find agreement with previous
studies of the ground-state energy in one dimension [10].

2. Finite imaginary time

As mentioned in the text, we evaluate the projection up to
a finite value of β, corresponding to a finite effective inverse
temperature. Since our approach exploits an initial guess state
(in our case taken to be a Slater determinant) and projects
to the ground state, we need to make sure that the obtained
results are fully converged to the limit β → ∞. In Fig. 9, we
show this effect for two systems in the weakly and strongly
interacting regime. Again, as expected, the essentially free case
at γ = 0.2 shows no dependence on β and is converged almost
immediately; see also the bottom panels of Fig. 9 where nk is
shown as a function of βεF. For strongly interacting systems,
larger projection times are required to observe convergence.
As depicted in the bottom panels of Fig. 9, we observe that
the dependence on βεF starts to become weak for βεF � 2.5,
even for the most strongly coupled systems considered in this
work. Therefore, we have not employed an extrapolation to
infinite βεF but have rather used βεF � 2.5 to obtain the results
presented in the main part of this work.
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[7] T. Sowiński, T. Grass, O. Dutta, and M. Lewenstein, Phys. Rev.
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