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Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
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The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter
or artificial systems opens a new era in modern physics. An interesting but rarely explored question is
whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two-
and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where
the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian
form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the
Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that
the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points
may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear
in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have
nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points
leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians
and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.
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I. INTRODUCTION

Discovery of new particles in nature or new quasiparticles
in condensed-matter systems is at the heart of modern physics
[1]. One of the remarkable examples is the discovery of
relativistic Dirac fermions emerged from graphene, which
has attracted great interest in physics [2]. Furthermore, it was
demonstrated that Weyl fermions, which are massless spin-1/2
particles according to quantum field theory and never before
observed as fundamental particles in nature, can emerge as
quasiparticles in condensed matter [3–9] or photonic crystals
[10,11]. Most interestingly, Dirac and Weyl fermions have
rich topological features [2–13]. However, quasiparticles with
higher spin numbers are also fundamentally important but
rarely studied in condensed-matter physics or artificial systems
[14–16]. Recently, a pioneer work in this direction theoreti-
cally predicted that “new fermions” (fermionic quasiparticle
excitations) beyond the Dirac-Weyl-Majorana classification
can emerge in some band structures with three- or morefold
degenerate points in the presence of time-reversal symmetry
[14]. Very recently, the observation of three-component new
fermions in the topological semimetal molybdenum phosphide
has been reported [17]. Although it may be difficult to
find these (and other) new fermions in condensed-matter
systems, they may also emerge from well-designed and tunable
ultracold atomic systems, especially since Dirac and Weyl
fermions have already been well studied in the field of cold
atoms [18–24].
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In this paper, we propose and analyze an exotic kind
of pseoduspin-1 fermions in two-dimensional (2D) square
and three-dimensional (3D) cubic optical lattices, dubbed
“Maxwell fermions” as they are analogous to massless spin-1
photons described by the Maxwell equations. We first rewrite
the Maxwell equations in an anisotropic medium in the form
of the Schrödinger equation and then construct 2D and 3D
tight-binding models, where the low-energy excitations are
described by the Maxwell Hamiltonian. With a tunable param-
eter, the systems can be varied in different quantum phases:
topological or normal Maxwell insulator, and topological
or normal Maxwell metal. The topological Maxwell metal
is characterized by threefold degenerate points, known as
Maxwell points, which have nontrivial monopole charges or
quantized Berry phases and the low-energy excitation near
the Maxwell point behaved like a photon described by the
Maxwell equations. In the 2D system, we find interesting
spin-momentum locking edge states in the Maxwell insulating
phase, which is in analogy with the circularly polarized
polarization of the photons. In the 3D system, the topological
properties of Maxwell fermions are similar to those of the Weyl
fermions in Weyl semimetals, and the Maxwell points have
monopole charges of ±2 with two Fermi arcs connecting them.
The experimental scheme for implementation (and detection)
of our models using three-component ultracold atoms in
optical lattices is presented. Although some threefold band
degeneracies were revealed in solid-state systems with the
body-centered lattice structure and time-reversal symmetry
in Ref. [14], our proposal is essentially different. First, our
threefold Maxwell points in 3D exist when the time-reversal
symmetry of the system is broken, in which case the threefold
band degeneracies in Ref. [14] will split into a number of
Weyl points. Thanks to the broken time-reversal symmetry, the
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minimal number of threefold degeneracies in our 3D system
can be two (which is thus a minimal model), instead of four
in Ref. [14]. In addition, we use three atomic internal states to
form the pseudospin-1 basis and thus only the simple cubic
lattice is used in our proposal, in contrast to the required
body-centered cubic lattices for spin-1/2 electrons in real
materials. This enables us to realize exotic threefold fermions
in a lattice of simplest geometry.

The paper is organized as follows. In Sec. II, we rewrite the
Maxwell equations in the Schrödinger form and then present
the general idea of realizing Maxwell fermionic quasiparticles
in lattice systems. Section III introduces the 2D square-lattice
model for realizing the Maxwell metals and insulators, and
explores the topological properties of the emergent Maxwell
fermions. In Sec. IV, we proceed to study the properties of
3D Maxwell fermions in the cubic-lattice model. In Sec. V,
we propose schemes for realization of the model Hamiltonian
and detection of the topological Chern numbers in the optical
lattices. Finally, a brief discussion and a short conclusion are
given in Sec. VI.

II. MAXWELL HAMILTONIAN AND MAXWELL
FERMIONS IN LATTICE SYSTEMS

In this section, we first rewrite the Maxwell equations in an
anisotropic medium in the form of the Schrödinger’s equation,
and then describe the general scheme for realizing the Maxwell
fermions in artificial lattice systems.

A. Maxwell equations in Schrödinger’s form

In a region absent of charges and currents, the well-known
Maxwell equations in matter are given by

∇ × E = −∂B
∂t

, ∇ · E = 0,

∇ × H = ∂D
∂t

, ∇ · B = 0, (1)

where the displacement field D = ε0εrE, with E being the
electric field, and the magnetic field B = μ0μrH, with H
being the magnetizing field. Here ε0 (μr ) is the permittivity
(permeability) of free space, and εr and μr are the relative
permittivity and permeability, respectively. In an anisotropic
medium, εr and μr are tensors rather than numbers. To simplify
the proceeding analysis, we assume that the tensors εr and
μr are simultaneously diagonalized, then the relationships
between D and E, B and H now become⎛

⎝Dx

Dy

Dz

⎞
⎠ = ε0

⎛
⎝εx 0 0

0 εy 0
0 0 εz

⎞
⎠

⎛
⎝Ex

Ey

Ez

⎞
⎠,

⎛
⎝Bx

By

Bz

⎞
⎠ = μ0

⎛
⎝μx 0 0

0 μy 0
0 0 μz

⎞
⎠

⎛
⎝Hx

Hy

Hz

⎞
⎠. (2)

Thus Eq. (1) can be rewritten as

εαβγ

∂Eγ

∂β
= −∂Bα

∂t
⇒ c√

εγ μα

εαβγ

∂Ẽγ

∂β
= −∂H̃α

∂t
,

εαβγ

∂Hγ

∂β
= ∂Dα

∂t
⇒ c√

εαμγ

εαβγ

∂H̃γ

∂β
= ∂Ẽα

∂t
, (3)

where Ẽα = √
ε0εαEα , H̃α = √

μ0μαHα , and c = 1/
√

ε0μ0.
Then we define the photon wave function as [25,26]

�(r,t) = Ẽ(r,t) + iH̃(r,t),

we have ∇ · � = 0, and

ih̄
∂�α

m

∂t
= ναγ (iεαβγ )

h̄

i

∂Ẽγ

∂β
+ iνγα(iεαβγ )

h̄

i

∂H̃γ

∂β
, (4)

where ναγ = c/
√

εαμγ , νγα = c/
√

εγ μα , and P̂β = −ih̄∂β .
When εαμγ = εγ μα , that is, ναγ = νγα [the condition for
obtaining a Hermitian Hamiltonian, see Eq. (6)], then we can
further rewrite Eq. (4) as

ih̄
∂�α

m

∂t
= ναγ (iεαβγ )P̂β�γ

m. (5)

We hence obtain the following Schrödinger’s equation:

ih̄
∂

∂t

⎛
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m

�
y
m

�z
m

⎞
⎟⎠ =

⎛
⎜⎝

0 −iνxyP̂z iνxzP̂y

iνyxP̂z 0 −iνyzP̂x

−iνzxP̂y iνzyP̂x 0

⎞
⎟⎠

⎛
⎜⎝

�x
m

�
y
m

�z
m

⎞
⎟⎠.

(6)

This corresponds to the Maxwell equations in the anisotropic
medium in the Schrödinger’s form

ih̄
∂

∂t
� = ĤM�, (7)

where the Hamiltonian is given by

ĤM = vxŜxP̂x + vyŜyP̂y + vzŜzP̂z. (8)

Here Ŝβ = (Ŝαγ )β = iεαβγ and εαβγ (α,β,γ = x,y,z) is the
Levi-Civita symbol. Noted that, vx = νyz = νzy , vy = νzx =
νxz, and vz = νxy = νyx are the necessary and sufficient
condition to obtain a Hermitian Hamiltonian in Eq. (6). A
typical case when εr = μr = 1, it returns to the free-space
situation and we obtain the related Hamiltonian of single
photon in vacuum as ĤM = cŜ · P̂. Here Ŝ = (Ŝx,Ŝy,Ŝz) are
the spin matrices for a particle of spin-1, which are defined as

Ŝx = Ŝ1 = i

⎛
⎝ε111 ε112 ε113

ε211 ε212 ε213

ε311 ε312 ε313

⎞
⎠ =

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠,

Ŝy = Ŝ2 = i

⎛
⎝ε121 ε122 ε123

ε221 ε222 ε223

ε321 ε322 ε323

⎞
⎠ =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

Ŝz = Ŝ3 = i

⎛
⎝ε131 ε132 ε133

ε231 ε232 ε233

ε331 ε332 ε333

⎞
⎠ =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (9)

One can check that [Ŝx,Ŝy] = iŜz, Ŝ × Ŝ = iŜ, and Ŝ2 = Ŝ2
x +

Ŝ2
y + Ŝ2

z = S(S + 1) with S = 1. These matrices are the three
generators of SU(3) group which have eight generators called
Gell-Mann matirces. Equation (8) is a relativistic Hamiltonian
to discuss a particle with pseudospin-1, which is analogous to
the Weyl equation for the massless relativistic fermions with
spin-1/2.
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B. Maxwell fermions in lattice systems

The Maxwell Hamiltonian in Eq. (8) originally describes a
massless relativistic boson (photon) with spin one. Moreover,
in quantum field theory, bosons are identical particles with zero
or integer spins, while fermions are particles with half integer
spins. So it seems that the Maxwell Hamiltonian cannot be
used to describe the fermionic particles. However, there is a
fundamental difference between particles in a lattice and those
at high-energy. Rather than constrained by Poincaré symmetry
in high-energy physics, quasiparticles in a lattice system are
constrained only by certain subgroups (space groups) of the
Poincaré symmetry [14]. So there is the potential to find
free fermionic excitations in lattice systems for which the
Hamiltonian is written in the form of Eq. (8). In the subsequent
sections, we demonstrate that the Bloch Hamiltonian of certain
well-designed lattice models can be written as

H(k) = R(k) · Ŝ, (10)

where R(k) = (Rx,Ry,Rz) denotes the Bloch vectors. Some
threefold degenerate points exist in the bands of the model
Hamiltonian where low-energy physics should be described by
the Schrödinger equation with the Hamiltonian (8), and thus
we call such quasiparticles Maxwell quasiparticles. Potential
candidates include atoms in the optical lattices, electrons in
certain crystals, and photons in photonic lattices. Here we
focus on the fermionic atoms in optical lattices. For these
fermionic atoms, the Maxwell quasiparticles are fermions
instead of bosons (spin-1 photons) in the original Maxwell
equations. In principle, Maxwell fermions can be realized
with two different schemes. First, we can use noninteracting
fermionic atoms in a square or cubic optical lattice and choose
three atomic internal states in the ground-state manifold to
encode the three spin states |s〉 (s =↑ ,0, ↓). Notably, the
use of the atomic internal degree of freedom enables us to
implement our model in a lattice of simplest geometry, i.e.,
a primitive square or cubic lattice. Alternatively, Maxwell
fermions can be realized by using single-component fermionic
atoms in optical lattices with three sublattices, where the
pseudospin-1 basis is replaced by the three sublattices in a
unit cell. For conceptual simplicity, we discuss the first scheme
in the main text, and the realization of the second scheme is
addressed in Appendix A.

III. MAXWELL FERMIONS IN 2D LATTICE SYSTEMS

In this section, we construct a 2D tight-binding model on
a square lattice and then investigate the intrinsic properties
of the emergent pseudospin-1 Maxwell fermions in different
topological phases.

A. 2D model

The 2D model Hamiltonian we considered is given by

Ĥ2D = t
∑

r

[Ĥrx + Ĥry + (
0â
†
r,0âr,↑ + H.c.)],

Ĥrx = −â
†
r−x,0(âr,↓ + iâr,↑) + â

†
r+x,0(âr,↓ − iâr,↑) + H.c.,

Ĥry = â
†
r−y,↑(âr,↓ + iâr,0) − â

†
r+y,↑(âr,↓ − iâr,0) + H.c.,

(11)

where Ĥrx and Ĥry represent the spin-flip hopping along the
x and y axis with the tunneling amplitude t , respectively. âr,s
is the fermionic annihilation operator on site r for the spin
state |s〉, and 
0 = 2iM with the tunable parameter M is the
strength of the on-site spin flip.

Under the periodic boundary condition, Hamiltonian (11)
can be rewritten as

Ĥ2D =
∑
k,ss ′

â
†
ks[H(k)]ss ′ âks ′ ,

where âks = 1/
√

V
∑

r e−ik·rârs is the annihilation operator in
momentum space k = (kx,ky). The Bloch Hamiltonian H(k)
has the form of Eq. (10), where the Bloch vector is given by

Rx = 2t sin kx,

Ry = 2t sin ky,

Rz = 2t(M − cos kx − cos ky), (12)

with the lattice spacing a ≡ 1 and h̄ ≡ 1 hereafter. The energy
spectrum of this system is given by E(k) = 0, ± |R(k)|, which
has a zero-energy flat band in the middle of the three bands.
In the following, we illustrate that this model has rich phase
diagrams: it is a normal insulator for |M| > 2 with Chern
number C = 0; it is a topological insulator for |M| < 2 except
for when M = 0 with Chern number |C| = 2; it is a topological
metal for |M| = 2 with a quantized Berry phase |γ | = 2π ; it
is a trivial metal for M = 0 with Berry phase γ = 0 (see
Appendix B).

B. 2D Maxwell fermions in Maxwell metals

The three bands touch at a single point when M is −2 or 2,
and touch at two points when M is zero. For M = 2, the three
bands touch at K+ = (0,0) in the energy spectrum shown in
Fig. 1(a). We expand the Bloch Hamiltonian in the vicinity
of the threefold degenerate point and obtain the following

FIG. 1. (a) Energy spectrum for M = 2; (b) the Berry curvature
Fxy(ky) for kx = 0 and M = 1.8,2,2.2; (c) the energy spectrum for
M = 0; (d) the Berry phase γ as a function of the parameter M , which
corresponds to the Chern number C1 = γ /2π when the 2D system is
in the insulating phase with M 	= 0,±2.
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effective Hamiltonian for the low-energy excitations in the
system

H+(q) = vqxŜx + vqyŜy, (13)

where v = 2t is the effective speed of light and q = k − K+.
This effective Hamiltonian takes the Maxwell Hamiltonian
ĤM in Eq. (8) in 2D, and thus the dynamics of the low-energy
excitations can be effectively described by the Maxwell
equations. In this sense, we name these low-energy excitations
Maxwell fermions and the threefold degeneracy point Maxwell
point. When the Fermi level lies near the Maxwell point, the
system can be named Maxwell metal, which is a metallic state
due to the existence of the zero-energy flat band.

It is interesting to note that the Maxwell point in the
2D lattice system has topological stability characterized by
a quantized Berry phase. To study the topological stability,
we calculate the Berry phase for a Maxwell fermion circling
around the Maxwell point

γ =
∮

c

dk · F(k), (14)

where the Berry curvature F(k) = ∇ × A(k) with the Berry
connection defined by the wave function |ψn(k)〉 in the nth
(n = 1,2,3) band A(k) = −i〈ψn(k)|∇k|ψn(k)〉. For this three-
band system described by the Bloch Hamiltonian H(k), the
lowest-band Berry curvature in the kx-ky space can be rewritten
as [27]

Fxy = − 1

R3
R · (

∂kx
R × ∂ky

R
)
. (15)

The distributions Fxy(ky) for fixed kx = 0 and typical pa-
rameters M = 1.8,2,2.2 are plotted in Fig. 1(b), and the
results show that Fxy is a Dirac-δ function at the Maxwell
point. The numerical integration of Fxy over the Brillouin
zone for M = 2 gives the Berry phase γ = 2π , which is
confirmed by analytical calculation. When M = −2, the single
Maxwell point moves to the Brillouin edge K− = (π,π ) with a
quantized Berry phase γ = −2π , and the low-energy effective
Hamiltonian becomes H−(q) = −H+(q). When M = 0 and
with the energy spectrum shown in Fig. 1(c), there are
two Maxwell points at (0,π ) and (π,0) with the effective
Hamiltonian

H0(q) = ±vqxŜx ∓ vqyŜy . (16)

In this case, the Berry phase for both Maxwell points is
γ = 0, which corresponds to a trivial metallic state. So
we can conclude that the single Maxwell point with linear
dispersion relationship carrying a ±2π Berry phase is a unique
topological property of this 2D Maxwell metallic state, which
is different from the Dirac points in monolayer or bilayer
graphene [28].

C. Maxwell edge modes in Maxwell insulators

The system is an insulator when M 	= 0, ± 2 since there
is a gap between any two subbands. Under this condition, we
can calculate the corresponding Chern number Cn for the three
bands with the band index n:

Cn = 1

2π

∫
BZ

dkxdkyFxy(kx,ky) = γ /2π. (17)

FIG. 2. Energy spectra and edge states in 2D lattices for (a) M =
4, (b) M = 2, (c) M = 1, (d) M = −1, and (e) M = −2. The inset
in (c) shows the density distributions of four typical edge modes. The
edge modes in (a)–(e) are plotted in red. The lattice site is Lx = 40
under the open boundary condition.

We find that nonzero Chern numbers C1 = −C3 = 2 sgn(M)
for |M| < 2 and C1 = C3 = 0 for |M| > 2, and thus the zero
Chern number C2(M) = 0 for the flat band (see Appendix B).
Figure 1(d) shows the Berry phase of the lowest band γ =
2πC1 as a function of the parameter M , which indicates
topological phase transition with band closing in this system
when M = −2,0,2.

To further study the topological properties, we numerically
calculate the energy spectrum of the system under the periodic
boundary condition along the y direction and under the open
boundary condition along the x direction with the length
Lx = 40. The results in Fig. 2 show the variation of the
energy spectra by changing the parameter M . For M = 4
[Fig. 2(a)], there is no edge mode between the two band gaps
in this trivial insulating state with the Chern number Cn = 0.
When |M| decreases to critical values M = ±2 [Figs. 2(b)
and 2(e)], the band gaps close and the system is in the
nontrivial Maxwell metallic phase with ±2π Berry phase
(corresponding to the Chern number ±1) and a branch of edge
modes connecting the lowest (third) band and the middle flat
band. For M = ±1 [Figs. 2(c) and 2(d)], the spectra contain
two pairs of asymmetric branches of edge modes connecting
the lowest (third) band and the middle flat band, which is
consistent with bulk-edge correspondence with the bulk Chern
number |C1,3| = 2. The density distributions of some edge
modes are shown in the inset of Fig. 2(c) for typical ky .

The edge modes in the topological insulator phase have
nontrivial properties. Without loss of generality, we explore
the edge modes in the first band gap for parameter M = 1.
We find a correspondence between the helicity of these edge
states and the polarization of photons, so we named them
Maxwell edge modes in this so-called Maxwell topological
insulator. In particular, we reveal that this system exhibits the
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FIG. 3. (a) Expectation value of Ŝy as a function of ky and x with
lattice sites Lx = 100 under the open boundary condition; (b) density
distribution of Ŝy(x) for ky = 0.1π and ky = −0.1π ; (c) schematic
diagram for Maxwell edge states |+〉 and |−〉 in the Maxwell
topological insulator with opposite momenta, both corresponding to
the right circularly polarized photons with helicity h = +1.

analogous quantum anomalous Hall effect [29], with the edge
modes being strong spin-momentum locking as eigenstates
of the spin operator Ŝy . This means that the two bunches of
quasiparticle streams on the two edges (in the x direction) can
be treated as the streams of polarized Maxwell quasiparticles
moving along the y axis.

In Fig. 3(a), we numerically calculate the expectation value
〈Ŝy〉 of the wave function with Lx = 100. The results show
that the distribution of 〈Ŝy(ky,x)〉 has two peaks localized at
both the left and right edges with an opposite sign. To be
more precise, we plot 〈Ŝy(x)〉 for ky = 0.1π and ky = −0.1π

in Fig. 3(b), respectively. The result indicates that only the
two edge states for each edge are the eigenstates of Ŝy . The
edge states on the left with positive eigenvalue are |+〉 =

1√
2
(1,0,i)T = 1√

2
(ex + iez)T , and the ones on the right edge

with negative eigenvalue are |−〉 = 1√
2
(1,0,−i)T = 1√

2
(ex −

iez)T , where ej (j = x,y,z) are the unit vectors of Cartesian
coordinates. So the effective Hamiltonian of edge states is
given by

Hedge = vykyŜy. (18)

This effective Hamiltonian is none other than the 1D Hamil-
tonian of circularly polarized photons. The helicity operator
defined as

ĥ = Ŝ · k
|k| = sgn(ky)Ŝy (19)

is the projection of the spin along the direction of the linear
momentum [15]. Thus the edge quasiparticle streams in this
Maxwell topological insulator can be treated as Maxwell
fermion streams with the same helicities h ≡ 〈ĥ〉 = +1 for
opposite momenta, which satisfies the helicity conservation
of massless photons in quantum field theory, as shown
in Fig. 3(c). In addition, the momentum k can also be
considered the wave vector of the plane electromagnetic wave
propagated along the y axis. Both edge states |+〉 (ky > 0)
and |−〉 (ky < 0) with the same helicities can be regarded

as right circularly polarized waves which constitute the two
independent transverse polarization vector ex and ez with
opposite momenta. We can see from Fig. 3(c) that the Maxwell
edge modes moving along the +y (−y) direction correspond to
the right circularly polarized waves rotating counterclockwise
(clockwise) in the xz plane (along the −y axis) propagated
along the +y (−y) direction. Likewise, when −2 < M < 0
with C = −2, the Maxwell edge modes on the left (right)
edge with h = −1 correspond to the left circularly polarized
waves propagated along the −y (+y) direction. Because
the electromagnetic waves are transverse waves, there is no
longitudinal component and no edge mode with helicity h = 0,
which corresponds to the unit wave vector of plane waves. So,
our Maxwell edge modes with strong spin-momentum locking
correspond perfectly to the circularly polarized photons.

IV. MAXWELL FERMIONS IN 3D LATTICE SYSTEMS

In this section, we generalize the proposed model and
results of Maxwell fermions to the 3D lattice system. We first
construct a 3D lattice model by adding a spin-flip hopping
term along the z axis into the previous 2D model Hamiltonian
in Eq. (11), and then study the topological properties of the
Maxwell fermions near the 3D Maxwell points.

A. 3D model

The generalized 3D tight-binding model on a simple cubic
lattice Hamiltonian is given by

Ĥ3D = Ĥ2D + t
∑

r

Ĥrz,

Ĥrz = −i(â†
r+z,0âr,↑ + â

†
r,0âr+z,↑) + H.c., (20)

where Ĥrz is the additional hopping term along the z axis. The
Bloch Hamiltonian of the 3D system takes the same form as
Eq. (10), and the Bloch vectors R(k) with k = (kx,ky,kz) are
given by

Rx = 2t sin kx, Ry = 2t sin ky,

Rz = 2t(M − cos kx − cos ky − cos kz). (21)

One can check that the spin-1 matrices satisfy the following
relationship under the inversion operation P̂ and the time-
reversal operation T̂ :

P̂ ŜxP̂
−1 = −Ŝx, T̂ Ŝx T̂

−1 = −Ŝx,

P̂ ŜyP̂
−1 = −Ŝy, T̂ Ŝy T̂

−1 = −Ŝy,

P̂ ŜzP̂
−1 = Ŝz, T̂ ŜzT̂

−1 = −Ŝz, (22)

where P̂ = diag(1,1, − 1) and T̂ = Î K̂ with Î = diag(1,1,1)
and K̂ being the complex conjugate operator. Thus the Bloch
Hamiltonian has an inversion symmetry represented by

P̂H(k)P̂ −1 = H(−k), (23)

but it does not have the time-reversal symmetry since

T̂H(k)T̂ −1 	= H(−k). (24)
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1− 1 33−

(a)

(b)

(d)

(c)

(e)

M

FIG. 4. (a) Phase diagrams with regimes I, II, III denote two pairs
of Maxwell points M1,± and M2,±, one pair of Maxwell points M±,
and normal band insulators, respectively. (b) The energy spectrum
as a function of ky and kz for kx = 0; (c) the vector distribution of
the Berry curvature F(k) at the kx = 0 plane. The figures in the red
circles show F(k) around the Maxwell points as a sink or source in
momentum space; (d) and (e) show Fermi arcs appear at E/t = −0.4
and E/t = −0.1 under the open boundary condition along the x

direction, respectively. The two black solid lines on the left represent
two Fermi arcs connecting the two red circles which are the bulk
states near the Maxwell points with opposite monopole charges at the
top surface. The two black dot lines on the right represent Fermi arcs
in the bottom surface. The two red lines in (e) also denote bulk states.
The parameter in (b)–(e) is M = 2.

In this system, the Maxwell points can be manipulated
through the tunable parameter M . The phase diagram with
respect to M is shown in Fig. 4(a): the system is a Maxwell
metal for |M| < 3, while it is a normal insulator for |M| > 3.
Moreover, there are two pairs of Maxwell points denoted
by M1,± = (0,π, ± arccos M) and M2,± = (π,0, ± arccos M)
for 0 � |M| < 1; there are a single pair of Maxwell points at
M± = [0,0, ± arccos(M − 2)] (M± = [π,π, ± arccos(M +
2)]) for 1 < M < 3 (−3 < M < −1). At the critical points of
M = ±3, the two Maxwell points merge and then disappear
by opening a gap when |M| > 3, corresponding to the normal
insulating phase.

The three bands E(k) = 0, ± |R(k)| can touch at certain
points to form threefold degeneracy points under the condition
of |M| � 3. Considering the typical case of M = 2, we find
that the band spectrum hosts two threefold degeneracy points
in the first Brillouin zone at M± = (0,0,±π

2 ), as shown in
Fig. 4(b). The low-energy effective Hamiltonian now becomes

HM± (q) = vqxŜx + vqyŜy ± vqzŜz, (25)

where v = 2t is the effective speed of light. This Hamiltonian
takes the form of the isotropic 3D Maxwell Hamiltonian in
Eq. (8), and thus these low-energy excitations are named 3D
Maxwell fermions.

B. Topological properties

To further study the topological properties of the 3D
Maxwell fermions, we plot the vector distribution of the Berry
curvature F(k) at the kx = 0 plane in Fig. 4(c). One can find
that the Maxwell points M± = (0,0, ± π

2 ) behave as a sink
and source of the Berry flux [see the 3D distribution of F(k)
near the two points]. Thus the Maxwell points behave like
magnetic monopoles in the momentum space with topological
charges defined by the Chern numbers (see Appendix B)

CM± = 1

2π

∮
S

dk · F(k) = ±2, (26)

which is twice that of a Weyl point in Weyl semimetals. Once
we fix kz as a parameter, Hkz

(kx,ky) can be viewed as a 2D
Maxwell insulator, with the kz-dependent Chern number Ckz

=
2 when kz ∈ (−π

2 , π
2 ) and Ckz

= 0 when otherwise. So there
are always two Fermi arcs of surface states connecting a pair of
Maxwell points with opposite topological charges, as shown
in Figs. 4(d) and 4(e), in contrast to one Fermi arc [3,4,6,7] in
Weyl semimetals. Here the surface and bulk states are plotted
in black and red, and the surface states that lie at the top
and bottom surfaces along the x direction are respectively
denoted by solid and dot lines. It is interesting to note that
the Fermi-arc surface states in this Maxwell metal diffuse to
the bulk states due to the zero-energy flat band, which leads
to nonzero energy Fermi arcs. In addition, the 3D Maxwell
points in Maxwell metals have linear momenta along all three
directions, in contrast to the quadratic form of double-Weyl
points [30].

We can change the positions of the Maxwell points inside
the Brillouin zone by changing the parameter M . Without loss
of generality, we discuss the merging process of the Maxwell
points for M > 0. For M = 0, there are two pairs of Maxwell
points at M1,± = (0,π, ± π

2 ) and M2,± = (π,0, ± π
2 ) with

monopole charges ∓2, as shown in Fig. 5(a). The two pairs
of Maxwell points move together along the kz axis as we
increase the parameter M . They then emerge at (0,π,0) and
(π,0,0), respectively, with a monopole charge of zero for
M = 1. Meanwhile, there are another pair of Maxwell points
both with a monopole charge of zero created at (0,0, ± π ), as
shown in Fig. 5(b). When we continuously increase M , two
Maxwell points located at (0,π,0) and (π,0,0) disappear by
opening gaps, and the single pair of Maxwell points denoted
by M± = [0,0, ± arccos(M − 2)] move to the (0,0,0) point
with a monopole charge of ±2, with the typical case for
M = 2 shown in Fig. 5(c). At the critical point M = 3 in
Fig. 5(d), the two Maxwell points with opposite monopole
charges emerge at (0,0,0) and then disappear by opening gaps
when M > 3.

Finally, in this section, we briefly discuss the topological
stability of the 3D Maxwell points. Unlike Weyl points that
are strongly robust [31], Maxwell points can only be stabilized
by certain symmetry. In our proposed lattice systems, the band
gaps will be opened and thus Maxwell points are gapped when
the inversion symmetry is broken by introducing a perturbation
term with one of the other five Gell-Mann matrices. This is
due to the fact that the Maxwell Hamiltonian only takes three
of the eight Gell-Mann matrices. So the topological stability
of Maxwell points are weaker than Weyl points. However,
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FIG. 5. Merging of 3D Maxwell points. (a) When M = 0, two
pairs of Maxwell points locate at (0,π, ± π

2 ) and (π,0, ± π

2 ) with
a monopole charge of ∓2. (b) When M = 1, four Maxwell points
appear at (0,π,0), (π,0,0), and (0,0, ± π ) with a zero monopole
charge. (c) Typical case of M = 2, where there are two Maxwell
points located at (0,0, ± π

2 ) with a monopole charge of ±2. (d)
Critical point when M = 3. The two Maxwell points with opposite
monopole charges emerge at (0,0,0) and then disappear by opening
band gaps for M > 3.

Maxwell points would still be stable as long as the system is
protected by certain symmetry, such as the inversion symmetry

in our 3D system. In this case, the perturbations under the same
symmetry would not open the band gaps and only change the
positions of Maxwell points in the Brillouin zone (see Fig. 5)
until the topological phase transition occurs.

V. PROPOSAL FOR EXPERIMENTAL REALIZATION
AND DETECTION

Now we proceed to propose a realistic scheme for realizing
the 2D and 3D model Hamiltonians with ultracold atoms in the
square and cubic optical lattices by using the Raman-assisted
tunneling method [32–38], respectively. We also suggest that
the Chern numbers can be revealed from the shift of the hybrid
Wannier center of an atomic cloud, based on a generalization
of topological pumping in the optical lattices [39–45].

A. Proposed realization in optical lattices

To realize the 2D model Hamiltonian in Eq. (11), we
consider noninteracting atoms in a titled square optical lattice
with the lattice spacing a and choose three atomic internal
states in the ground-state manifold to carry the spin states,
as shown Fig. 6(a). The other levels in the ground-state
manifold are irrelevant as they can be depopulated by the
optical pumping. The on-site spin-flip term 
0â

†
r,0âr,↑ can be

easily achieved by applying a radio-frequency field or Raman
beams for coupling the atomic internal states | ↑〉 and |0〉. The
major difficulty for implementing our model is to realize the
spin-flip hopping terms Ĥrx and Ĥry along each direction. By
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FIG. 6. Scheme for realizing the 2D model Hamiltonian. (a) Schematic diagram of the square optical lattice and the atomic hopping along
the two axis denoted by T±x and T±y . (b) The atomic hopping configuration in the 2D model Hamiltonian in Eq. (11). The three atomic internal
states |↑〉,|0〉,|↓〉 form the (pseudo)spin-1 basis, such that T±(x,y) represents spin-flip hopping and the 
0 term represents on-site spin flip. A
large linear tilt �x,y per lattice site along x,y direction is used to suppress the natural hopping and the hopping can then be restored by Raman
lasers. (c) The Raman coupling scheme for engineering the required spin-flip hopping along each axis. The detuning in each direction matches
the frequency offset of the corresponding Raman beams. (d) The Raman lasers with the corresponding polarization and propagation direction.
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defining the superposition states

|1x〉 = (| ↓〉 − i| ↑〉)/
√

2, |2x〉 = (| ↓〉 + i| ↑〉)/
√

2,

|1y〉 = (| ↓〉 − i|0〉)/
√

2, |2y〉 = (| ↓〉 + i|0〉)/
√

2, (27)

the two hopping terms can be diagrammatically visualized as

Tx = T+x + T−x

= ×
� |1x〉

√
2

� |0〉 + |0〉 −√
2

� |2x〉 ×
� + H.c.,

Ty = T+y + T−y

= ×
� |1y〉 −√

2
� | ↑〉 + | ↑〉

√
2

� |2y〉 ×
� + H.c., (28)

where
×
� indicates that the hopping is forbidden along

this direction. The hopping terms T+x and T+y are shown
in Fig. 6(b), which can be realized by using the Raman-
assisted tunneling with proper laser-frequency and polarization
selections [32–38]. First, the required broken parity (left-right)
symmetry is achieved by titling the lattice with a homogeneous
energy gradient along the two directions, which can be created
by the gravitational field or the gradient of a dc- or ac-Stark
shift. Here we require different linear energy shifts per site
�x,y along different directions, such as �x = 1.5�y . Then the
natural hopping is suppressed by the large tilt potential, and
the hopping terms are restored and engineered by applying
two-photon Raman coupling with the laser beams of proper
configurations [see Fig. 6(c)].

We consider the realization of the hopping term Ĥrx to
explain the Raman scheme, and first focus on the single
term T

(1)
+x = â

†
r+x,0(âr,↓ − iâr,↑) (here T+x = T

(1)
+x + H.c.) for

details. This term corresponds to an atom in the spin state
|1x〉 = (| ↓〉 − i| ↑〉)/√2 at site r hopping to site r + x while
changing the spin state to |0〉 with hopping strength

√
2t ,

which can be visualized as
×
� |1x〉

√
2

� |0〉. This hopping term
can be achieved by two Raman beams �x

1(x̂ − ŷ) = √
2�0e

ikz

polarized along (x̂ − ŷ) direction and �π
1 (ẑ) = �0e

ikx with
π polarization along ẑ direction. Here the population of the
excited state |e〉 which is estimated by |�0/δ|2 is negligible
due to the large single-photon detuning δ. The two-photon
detuning �x matching the linear energy shift of the lattice per
site ensures that it only allows |1x〉 hopping to the right, and
the other direction is forbidden by a large energy mismatch
2�x . We can address the spin states through the polarization
selection rule since the original spin basis | ↓〉,|0〉,| ↑〉 differs
in the magnetic quantum number by one successively. Thus a
π -polarized beam �π

1 excites the state |0〉 and a linear (x̂ − ŷ)-
polarized beam �x

1 excites the superposition state |1x〉 =
(| ↓〉 − i| ↑〉)/√2 as the polarization (x̂ − ŷ) ∼ (σ+ − iσ−).
These two beams together induce a Raman-assisted hopping
between |1x〉 and |0〉. The hopping amplitude and phase are
controlled by the corresponding Raman beam amplitude and
phase [32–38], which can be written as

tr,+x =
√

2|�0|2
δ

β eiδk·r,

β =
∫

dx w∗(x + a)e−ikxw(x)
∫

dy w∗(y)w(y). (29)

Here δk = (−k,0) and we have used factorization of the
Wannier function w(r′) = w(x ′)w(y ′) in the square lattice. If
we adjust the interfering angle of the lattice beams to satisfy the
condition ka = 2π , the site dependent phase term can always
be reduced to eiδk·r = 1. In this case, we can obtain the required
hopping strength tx = √

2t with t = β|�0|2/δ. We note that
these two Raman lasers simultaneously induce the Hermitian
conjugate process of the hopping T

(1)
+x , which is the desired

spin-flip tunneling from |0〉 to |1x〉 along the +x direction.
Similarly, the second hopping term T−x can be realized by
the two Raman beams �π

1 (ẑ) = �0e
ikx and �x

2(x̂ + ŷ) =
−√

2�0e
ikz polarized along (x̂ + ŷ) direction, which couple

the state |0〉 and |2x〉 since (x̂ + ŷ) ∼ (σ+ + iσ−). Thus the
hopping along the x axis can thus be realized by three Raman
beams with the configuration shown in Fig. 6(c).

The hopping terms Ĥry along the y axis can be realized
in a similar way. Along this direction, the hopping term
T+y = −â

†
r+y,↑(âr,↓ − iâr,0) + H.c. can be realized by three

Raman beams �
y

1(σ−) = �0e
iky , which excites the state | ↑〉,

and �
y

2(σ+) = −√
2�0e

ikz and �π
2 (ẑ) = i

√
2�0e

−iky , which
together effectively excite the state |1y〉 = (| ↓〉 − i|0〉)/√2.
The hopping term T−y = â

†
r−y,↑(âr,↓ + iâr,0) + H.c. can be

realized by two additional Raman beams �
y

3(σ+) = √
2�0e

ikz

and �π
3 (ẑ) = i

√
2�0e

−iky which effectively excite the state
|2y〉 = (| ↓〉 + i|0〉)/√2. Here a wave-vector difference δk′ =
(0, − 2k) leads to the same hopping strength ty = tx along
this axis. The laser configurations for realizing the desired
hopping terms along the y axis are also shown in Fig. 6(c).
The total laser beams with the polarization and propagation
directions for realizing all the hopping terms in the 2D model
Hamiltonian in Eq. (11) are shown in Fig. 6(d). Note that the
detuning in each direction matches the frequency offset of the
corresponding Raman beams. It is also important to forbid the
undesired tunneling terms that require different linear energy
shifts per site along the two axis, which can be achieved by
adjusting the direction of the gradient field to be in different
angles with respect to the axes of the square optical lattice.

The proposed Raman scheme can be directly extended to
realize the 3D model Hamiltonian in Eq. (20). In this case, one
can prepare the noninteracting atoms in a titled cubic optical
lattice, as shown in Fig. 7(a). Here we require different linear
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FIG. 7. (a) Schematic diagram of the simple cubic optical lattice
and the atomic hopping. (b) The Raman coupling for realizing the
hopping term Tz along the z axis.
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energy shifts per site �x,y,z along different directions, such
as �x = 1.5�y = 2�z. The additional hopping Ĥrz along the
z axis can be implemented with the similar Raman coupling.
Along the z axis, the hopping term can be diagrammatically
visualized as

Tz = ×
� | ↑〉 −i

� |0〉 + |0〉 −i
� | ↑〉 ×

� + H.c. (30)

Combined with the laser �π
1 that couples the state |0〉, two

additional Raman beams �z
1(σ−) = −i�0e

ikz and �z
2(σ−) =

−i�0e
−ikz that couple the state | ↑〉 can be used to induce the

hopping
×
� | ↑〉 −i

� |0〉 and |0〉 −i
� | ↑〉 ×

�, respectively. The
laser configurations for realizing the desired hopping term
along the z axis are shown in Fig. 7(b), and thus all the hopping
terms along each direction in the 3D model Hamiltonian can
be realized.

Although the implementation of the 2D and 3D model
Hamiltonians involves a number of Raman beams, all of the
lasers can be drawn from the same one with the small relative
frequency shift induced by an acoustic optical modulator. In
addition, one can lock the relative frequency differences of
these beams by the driving fields of the modulator such that the
absolute frequencies and their fluctuations are not important. In
typical experiments, for instance, by using 40K atoms of mass
m in an optical lattice with the lattice constant a = 2π/k =
764 nm, the gravity induces a potential gradient per lattice
site � = mga/h̄ ≈ 2π × 0.75 kHz. Gravity can provide the
required gradients along three directions with an appropriate
choice of the relative axes of the frame to satisfy �z : �y :

�x = 1 : 1.5 : 2 and � =
√

�2
x + �2

y + �2
z , such that �z ≈

2π × 1 kHz. For a lattice with potential depth V0 ≈ 20Er ,
where Er = h̄2k2/2m is the recoil energy, the overlap ratio
β ≈ 0.01, and the natural tunneling rate tN/h̄ ∼ 10−3Er/h̄ ≈
2π × 8.5 Hz. For Raman beams with �0/2π ≈ 130 MHz
and the single-photon detuning δ/2π ≈ 1.7 THz, one has
|�0|2/δ ≈ 2π × 10 kHz and the Raman-assisted hopping rate
t/h̄ ≈ 2π × 0.1 kHz. Thus the population of the excited state
|e〉 which is estimated by |�0/δ|2 is negligible due to the large
single-photon detuning δ. During the typical experimental
time of the order of 10/t , the undesired off-resonant hopping
probabilities with upper bounded by t2

N/�2
x ∼ 0.01 and the

effective spontaneous emission rate estimated by |�0/δ|2
s

with the decay rate of the excited state 
s ≈ 2π × 6 MHz
would be negligible [38]. We note that using several Raman
lasers will lead to considerable heating effects in realistic
experiments [37], which is the main disadvantage in our
proposal. The cold-atom system can be effectively described
by the proposed model Hamiltonian as long as the duration
of an experiment is short compared to the heating time (the
typical lifetime of an atomic gas), which is about 100 ms
in experiments containing the heating induced by the Raman
couplings [35,37].

B. Proposed detections

The 2D and 3D Maxwell points in the band structures that
have related topological phase transition can be detected by the
Bragg spectroscopy or Bloch-Zener oscillations, similar to the
methods used for detecting Dirac and Weyl points in optical
lattices [18–20,24]. In addition, the Berry curvature and thus

the quantized Berry phases and the Chern numbers can be
measured by the newly developed technique of tomography of
Bloch bands in optical lattices [46,47], and the Chern numbers
can also be revealed from the shift of an atomic cloud’s center
of mass [48]. Below we propose that the Chern numbers can
also be revealed from the shift of the hybrid Wannier center
of an atomic cloud, based on a generalization of topological
pumping in optical lattices [39–45].

The 2D Maxwell insulator can be viewed as a fictitious
one-dimensional insulator subjected to an external parameter
ky by using the dimension reduction method [42]. Thus its
Chern number can be defined by the polarization

P = 1

2π

∫ π

−π

A(k)dkx (31)

for the geometry of the underlying band structure. According
to the modern theory of polarization, the Chern number defined
in kx-ky space can be obtained from the change in polarization
induced by adiabatically changing the parameter ky by 2π :

C =
∫ π

−π

∂P (ky)

∂ky

dky. (32)

For measuring P (ky), one can use another fact that the
polarization can alternatively be written as the center of mass
of the Wannier function constructed for the single occupied
band. In this system, the polarization P (ky) can be expressed
by means of the centers of the hybrid Wannier functions, which
are localized in the x axis retaining Bloch character in the ky

dimension. The variation of the polarization and thus the Chern
number are directly related to the shift of the hybrid Wannier
center along the x axis in the lattice. The shift of hybrid
Wannier center by adiabatically changing ky is proportional
to the Chern number, which is a manifestation of topological
pumping with ky being the adiabatic pumping parameter

In the 2D lattice system, to construct and calculate the
hybrid Wannier center, we can consider the Bloch Hamilto-
nian with parameter ky and recover it to the tight-binding
Hamiltonian along the x axis. The hybrid Wannier center can
be written as [42]

〈nx(ky)〉 =
∑

ix
ixρ(ix,ky)∑

ix
ρ(ix,ky)

, (33)

where ρ(ix,ky) is the density distribution of hybrid Wannier
center and denotes the atomic densities resolved along the x

direction as a function of ky . The density distribution can be
written as

ρ(ix,ky) =
∑

occupied states

〈ix,ky |ix,ky〉, (34)

where |ix,ky〉 is the hybrid eigenstate of the system. In cold-
atom experiments, the atomic density distribution ρ(ix,ky)
can be directly measured by the hybrid time-of-flight images,
which is referring to an in situ measurement of the density
distribution of the atomic cloud in the x direction during
free expansion along the y direction. In the measurement,
the optical lattice is switched off along the y and z directions
while keeping the system unchanged in the x direction. One
can map out the crystal momentum distribution along ky in
the time-of-flight images and a real space density resolution
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FIG. 8. Hybrid Wannier centers in a tight-binding chain of length
Lx = 50 at 1/3 filling as a function of the adiabatic pumping
parameter ky for different parameters M . (a),(d) Without jump of
〈nx(ky)〉, which is consistent with the expected Chern number of the
lowest band C = 0 for M > 2 and M < −2 in the 2D trivial insulator
phase. In (b) and (c), 〈nx(ky)〉 both show the jump of a two unit cell
for M = 1 and M = −1, corresponding to the nontrivial Maxwell
insulator phase with C = 2 and C = −2, respectively.

in the x direction can be done at the same time. Thus one can
directly extract Chern number from this hybrid time-of-fight
image in the cold-atom system.

We perform numerical simulations to demonstrate the
feasibility of the detection scheme. We numerically calculate
〈nx(ky)〉 in a tight-binding chain of length Lx = 50 at 1/3
filling (assuming the Fermi energy EF = 0), and the results
for typical parameters are shown in Fig. 8. For the case in
Figs. 8(a) and 8(d) when M = 4 and M = −4, respectively,
〈nx(ky)〉 shows no jump, which is consistent with the expected
Chern number of the lowest band C = 0 for the trivial cases.
The results for M = 1 in Fig. 8(b) show two discontinuous
jumps of one unit cell, indicating that a particle is pumped
across the system [40,41], the Chern number of the lowest
band for this case is C = 2, and the result in Fig. 8(c) is similar
to Fig. 8(b) but with the opposite jump direction, indicating
C = −2 when M = −1. This establishes a direct and clear
connection between the shift of the hybrid density center and
the topological invariant.

This method can be extended to detect the 3D Maxwell
system. The 3D system can be further treated as a collection
of kz-modified 2D trivial or nontrivial Maxwell insulators with
the kz-dependent Chern number Ckz

defined in the kx-ky plane
as different slices of out-of-plane quasimomentum kz:

Ckz
=

∫ π

−π

∂P (ky,kz)

∂ky

dky, (35)

with the modified polarization P (ky,kz) for the reduced one-
dimensional insulators. In this case, the corresponding hybrid
Wannier center is given by

〈nx(ky,kz)〉 =
∑

ix
ixρ(ix,ky,kz)∑

ix
ρ(ix,ky,kz)

, (36)

FIG. 9. Hybrid Wannier centers in a tight-binding chain of length
Lx = 50 at 1/3 filling as a function of the adiabatic pumping
parameter ky for different parameters M and kz. (a) The profile
〈nx(ky,kz)〉 for the parameter M = 2, where 〈nx(ky)〉 (do not)
shows double jumps in one unit cell for kz (outside) within the
region (− π

2 , π

2 ), with typical examples shown in (b). (c) The profile
〈nx(ky,kz)〉 for M = 4 shows no jump of 〈nx(ky)〉 for the whole
kz regime, with typical examples shown in (d). The corresponding
kz-dependent Chern number Ckz

is also plotted both in (a) with the
white dashed lines denoting the critical value between the trivial
regimes with Ckz

= 0 and nontrivial regimes with Ckz
= 2.

which can also be measured by the hybrid time-of-flight
images. The typical numerical results of 〈nx(ky,kz)〉 in a
tight-binding chain of length Lx = 50 at 1/3 filling are shown
in Fig. 9. For M = 2 in Figs. 9(a) and 9(b), the two 3D
Maxwell points at kz = ±π

2 separate the band insulators with
Ckz

= 0 and the topological insulators with Ckz
= 2. As shown

in Fig. 9(a), the hybrid Wannier center 〈nx(ky)〉 exhibits two
discontinuous jumps of one unit cell within the region kz ∈
(−π

2 , π
2 ) and the jumps disappear outside this region. To show

this more clearly, we plot 〈nx(ky)〉 for kz = 0 and kz = 0.6π

as two examples in Fig. 9(b). The double one-unit-cell jumps
driven by ky indicate that two particles are pumped across
the system, as expected for Ckz

= 2. For comparisons, we also
show the results of 〈nx(ky)〉 for M = 4 without jump for all
kz regimes in Figs. 9(c) and 9(d), which is consistent with the
expected Ckz

= 0 when M > 3 for the band insulators.

VI. DISCUSSION AND CONCLUSION

The properties of the topological Maxwell quasiparticles
that are analogous to the Dirac and Weyl fermions can be
further investigated, for example, the relativistic wave dynam-
ics with Klein tunneling [49] and Zitterbewegung oscillations
[50], and the unconventional transport properties [51]. All of
these properties can have unique features. For instance, there
is one oscillation frequency in the Zitterbewegung effects
of the Dirac and Weyl fermions, but there are two different
oscillation frequencies in the Zitterbewegung oscillations of
Maxwell fermions [52]. Another idea is to generalize our 2D
model in the presence of the time-reversal symmetry to test
if the quantum spin Hall effect of the 2D Maxwell fermions
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may occur. In that case, one can use the cold-atom system
to simulate the quantum spin Hall effect of light [53], which
has not yet been realized in experiments. Furthermore, the
realization of Maxwell fermions will open the possibility to
many applications, such as observing the above exotic topo-
logical fermions beyond Dirac and Weyl fermions, simulating
the quantum behaviors of photons in matter, and simulating
phenomena and solving problems related to quantum field
theory. Therefore, our Maxwell fermions can shed new light
on the understanding of Maxwell equations in quantum field
theory and the topological excitations in condensed-matter
physics or artificial systems.

In summary, we have systematically explored the topologi-
cal Maxwell quasiparticles emerged in Maxwell metals and
Maxwell insulators. The proposed models can be realized
in optical lattices and the predicted exotic properties of
these topological quasiparticles can be detected in cold-atom
experiments.
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APPENDIX A: REALIZATION OF 2D MAXWELL
POINTS IN AN OPTICAL LIEB LATTICE

In this part, we show that the 2D Maxwell points and
the associated Maxwell quasiparticles may be alternatively
realized by using single-component fermionic atoms in optical
lattices with three sublattices, such as an optical Lieb lattice
[54]. In experiments, the optical Lieb lattice for cold atoms
has been constructed by superimposing three types of optical
lattices, with the tunable optical potential [54]

V (x,y) = −V x
long cos2(kLx) − V

y

long cos2(kLy)

−V x
short cos2(2kLx) − V

y

short cos2(2kLy)

−Vdiag cos2

[
2kL(x − y) + π

2

]
. (A1)

Here kL = 2π/λ is a wave number of a long lattice with a
depth Vlong, a short lattice Vshort is formed by laser beams at
wavelength λ/2, and a diagonal lattice Vdiag with the wave
number

√
2kL is realized by interference of the mutually

orthogonal laser beams at λ along the x and y directions.
The optical Lieb lattice system is shown in Fig. 10(a), with
three sublattices A, B, C forming a unit cell. By tuning the
lattice depths {Vlong,Vshort,Vdiag}, one can change the energy of
the sublattices [54].

In this system, the pseudospin-1 basis is replaced by the
three sublattices in a unit cell, and thus the three spin states
are given by |A〉 ⇔ | ↑〉,|B〉 ⇔ |0〉,|C〉 ⇔ | ↓〉. In this lattice,
the spin-flip hopping |B〉 ↔ |C〉 and |A〉 ↔ |C〉 under the
operators Ŝx and Ŝy along the x and y axis become naturally the
nearest-neighbor hopping in that axis, with the corresponding
hopping amplitudes shown in Fig. 10(a). With the similar
Raman-assisted hopping method, the hopping along the x

C B C

C B C

A A
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y
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2tM

FIG. 10. (a) Schematic diagram of realizing 2D Maxwell
fermions in an optical Lieb lattice. A unit cell indicated by dashed
line is composed of three sites labeled by A, B, C, with the lattice
constant a. The three sublattices form the pseudospin-1 basis, and
the spin-flip hopping along each direction with the corresponding
hopping amplitude is shown. This hopping can be realized by the
Raman-assisted hopping method with the help of the linear title
potentials �xx and �yy and the application of laser beams, similar
to the scheme in the square optical lattice. (b) Two pairs of Raman
beams for inducing the desired hopping along x and y directions;
(c) a pair of Raman beams for inducing the desired hopping along
x + y direction and a two-photon detuning for inducing the constant
term 2tMŜz; (d) the total lasers with the corresponding propagation
direction.

axis and the y axis can be realized by two pairs of laser
beams, �x

± = �0e
±ik1x and �

y
± = ±�0e

±ik1y , under the large
linear title potentials �xx and �yy, respectively, as shown
in Fig. 10(b). The detuning in each direction matches the
frequency offset of the corresponding Raman beams as we
can choose the title energies �x ≈ 2.5�y with �y � t0 being
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assumed. In this system, since only one atomic internal state
is used in the Raman transitions, then one can address the
atoms only through the energy selection without involving
the laser polarization [32,33]. Under the two pairs of laser
beams, the momenta transferred in the Raman transition along
the x and y directions are δk1 = −2k1x̂ and δk2 = −2k2ŷ,
respectively. Thus the corresponding site-dependent hopping
phases along x and y directions are e−2ik1x = e−2ik1jxa and
e−2ik2y = e−2ik2jya , with the lattice site index (jx,jy). We can
choose the parameters k1 = k2 = π/2a to induce the hopping
phases e−iπjx = e−iπjy = 0,π staggered along the x and y

directions, which lead to the desired hopping |B〉 ↔ |C〉 and
|A〉 ↔ |C〉 in the corresponding axis.

The spin-flip hopping |A〉 ↔ |B〉 under the operator Ŝz in
this lattice becomes next-nearest-neighbor hopping along the
x + y or x − y axis, with the corresponding hopping amplitude
along the x + y axis shown in Fig. 10(a). This hopping can be
achieved by additional Raman transition by using the third
pair lasers �

x+y
+ = �0e

ik3(x+y) and �
x+y
− = −i�0e

−ik3(x+y)

with a different matching energy �x + �y = 3.5�y , as shown
in Fig. 10(c). Here a two-photon detuning in the transition
can be used to induce the constant term 2tMŜz, without
adding other coupling beams in this system. We choose the
parameter k3 = π/a, then the site-dependent phase along the
x + y direction can always be reduced to e−2ik3(jx+jy )a = 1,
such that the hopping constant −it along this direction is
achieved by the two Raman beams. If the hopping |A〉 ↔ |B〉
along the x − y axis is wanted, one can also add the Raman
transition with the matching energy �x − �y = 1.5�y . The
laser configuration of this system is shown in Fig. 10(d). Under
these conditions, the Bloch Hamiltonian of the 2D Maxwell
systems now becomes

H(k) = Rx(k)Ŝx + Ry(k)Ŝy + Rz(k)Ŝz,

Rx = 2t sin kx,

Ry = 2t sin ky,

Rz = 2t[M − cos(kx + ky)]. (A2)

Here the spin-1 matrices Ŝx,y,z acts on the three sublattices
and the lattice constant a ≡ 1. In this case, one can obtain the
Maxwell points and the associated Maxwell quasiparticles,
similar to the case discussed in the main text. For instance,
when the parameter M = 1, there is a Maxwell point at K =
(0,0) with the low-energy effective Hamiltonian Heff(q) ≈
vqxŜx + vqyŜy , where v = 2t is the effective speed of light
and q = k − K.

APPENDIX B: DERIVATION OF THE
TOPOLOGICAL INVARIANTS

As we know, the Berry curvature is given by F = ∇ × A,
where the Berry connection is given by A = −i〈ψ |∇ψ〉. For
the Bloch Hamiltonian of the 2D model in the main text H =
R(k) · S, the Berry connection A = (Ax,Ay,0) for the lowest
band with the energy E = −R is given by [27]

Aμ = − R3

R
(
R2 − R2

3

)
(

R2
∂R1

∂kμ

− R1
∂R2

∂kμ

)
. (B1)

The corresponding Berry curvature is F = (0,0,Fxy) with Fxy

being given by

Fxy = ∂Ay

∂kx

− ∂Ax

∂ky

= − 1

R3
εabcRa

∂Rb

∂kx

∂Rc

∂ky

= − 1

R3
R ·

(
∂R
∂kx

× ∂R
∂ky

)
, (B2)

where the Bloch vectors are Rx = 2t sin kx , Ry = 2t sin ky ,
and Rz = 2t(M − cos kx − cos ky). A straightforward calcu-
lation gives the following form:

Fxy = cos kx + cos ky − M cos kx cos ky

[sin2 kx + sin2 ky + (M − cos kx − cos ky)2]3/2
. (B3)

We can thus obtain the Chern number for this band

C = 1

2π

∮
S

dk · F(k)

= 1

2π

∮
S

d2k Fxy

=
{

2 sgn(M), (0 < |M| < 2),
0, (|M| > 2)h.

(B4)

For M = ±2, we respectively expand the Hamiltonian
around K+ = (0,0) and K− = (π,π ), and obtain the low-
energy effective Hamiltonian

H±(q) = ±(vqxŜx + vqyŜy − 2tmŜz), (B5)

where m = 2 ∓ M , v = 2t , and q = k − K± with |q| � |k|.
We can obtain the effective Berry curvature

Fxy = ± m

(q2 + m2)3/2
, (B6)

where q =
√

q2
x + q2

y . Thus the Berry phase γ integrated
around the Maxwell point K± for the Fermi surface can be
derived by

γ =
∮

FS

dk · A(k) = ±
∮

FS

d2q
m

(q2 + m2)3/2

= ±
∫ 2π

0
dθ

∫ kF

0

m

(q2 + m2)3/2
q dq

= ±2π

∫ kF

0

m

(q2 + m2)3/2
q dq, (B7)

where kF is the Fermi momentum and the parameter m → 0.
Let q = m tan ϕ; then we have 1 + tan2 ϕ = sec2 ϕ and dq =
m sec2 ϕ dϕ. Substituting these relationships into the above
equation, we obtain γ as a function of m:

γ = ±2π

∫ kF

0

m

(q2 + m2)3/2
q dq

= ±2π

∫ ϕF

0

m2 tan ϕ

m3 sec3 ϕ
m sec2 ϕ dϕ
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= ±2π

∫ ϕF

0
sin ϕ dϕ

= ±2π

(
1 − m√

k2
F + m2

)
. (B8)

Thus, for m = 0, we obtain γ = ±2π for M = ±2.
For M = 0, we respectively expand the Hamiltonian around

K(0,π) = (0,π ) and K(π,0) = (π,0), and obtain the low-energy
effective Hamiltonian

H0(q) = ±(vqxŜx − vqyŜy + 2tm0Ŝz), (B9)

where m0 = ±M in this case, and q = k − K(0,π)/(π,0), |q| �
|k|. We can obtain the Berry connection

Ax = ± m0qy

q2
√

q2 + m2
0

,

Ay = ± m0qx

q2
√

q2 + m2
0

. (B10)

Thus the Berry phase γ integrated around the Maxwell point
K(0,π)/(π,0) for Fermi surface can be derived as

γ =
∮

FS

dk · A(k) =
∫ 2π

0
kF dθ Aθ

=
∫ 2π

0
kF dθ

(
Ay

qx

kF

− Ax

qy

kF

)

= ± m0√
k2
F + m2

0

∫ 2π

0
(cos2 θ − sin2 θ )dθ

= ± m0√
k2
F + m2

0

∫ 2π

0
dθ cos(2θ )

= 0, (B11)

where we have used the relationships qx = kF cos θ and qy =
kF sin θ .

Below we calculate the monopole charge of the 3D Maxwell
points. For the effective Hamiltonian around the Maxwell point
M+ = (0,0, π

2 ) in the main text, we use a more simplified form

H (q) = qxŜx + qyŜy + qzŜz (B12)

and then we obtain the three energies given by ε± =
±|q|, ε0 = 0. Going to polar coordinates (qx,qy,qz) =
|q|(sin θ cos ϕ, sin θ sin ϕ, cos θ ), the corresponding eigen-
functions are

ψ± = 1√
2

⎛
⎝±i sin ϕ − cos θ cos ϕ

∓i cos ϕ − cos θ sin ϕ

sin θ

⎞
⎠,

ψ0 =
⎛
⎝sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎠. (B13)

The relationship for Berry curvature in different coordinates is

F i = εijkFjk = εijkFθϕ

∂(θ,ϕ)

∂(Rj ,Rk)
,

Fθϕ = ∂θAϕ − ∂ϕAθ , (B14)

where Aθ = i〈ψ |∇θ |ψ〉, and Aϕ = i〈ψ |∇ϕ|ψ〉. To each of
these eigenfunctions, the associated U(1) Berry curvature is
given by

F(k)± = ∇ × i〈ψ±|∇|ψ±〉 = ∓ k
|k|3 ,

F(k)0 = ∇ × i〈ψ0|∇|ψ0〉 = 0. (B15)

The integral of F(k)± over any surface enclosing the Maxwell
point M+ is

C± = 1

2π

∮
S

dk · F(k)± = ∓2. (B16)

Therefore, the monopole charge of the Maxwell point M+ for
the lowest band is C = +2. The monopole charge of the other
Maxwell point M− for the lowest band is obtained as C = −2.
Fortunately, we can obtain the formula of Berry curvature
F(k) for the lowest band by using (B1) and (B2), which are
given by

Fx = sin kx cos ky sin kz/G(k),

F y = cos kx sin ky sin kz/G(k),

F z = (Mη − cos kx − cos ky − η cos kz)/G(k), (B17)

where η = cos kx cos ky and G(k) = [sin2 kx + sin2 ky +
(M − cos kx − cos ky − cos kz)2]

3
2 . Thus one can easily get

the Berry curvature F(q) around the Maxwell points.
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