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Quantum phase transitions of light in a dissipative Dicke-Bose-Hubbard model
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The impact that the environment has on the quantum phase transition of light in the Dicke-Bose-Hubbard model
is investigated. Based on the quasibosonic approach, mean-field theory, and perturbation theory, the formulation
of the Hamiltonian, the eigenenergies, and the superfluid order parameter are obtained analytically. Compared
with the ideal cases, the order parameter of the system evolves with time as the photons naturally decay in their
environment. When the system starts with the superfluid state, the dissipation makes the photons more likely
to localize, and a greater hopping energy of photons is required to restore the long-range phase coherence of
the localized state of the system. Furthermore, the Mott lobes depend crucially on the numbers of atoms and
photons (which disappear) of each site, and the system tends to be classical with the number of atoms increasing;
however, the atomic number is far lower than that expected under ideal circumstances. As there is an inevitable
interaction between the coupled-cavity array and its surrounding environment in the actual experiments, the
system is intrinsically dissipative. The results obtained here provide a more realistic image for characterizing the
dissipative nature of quantum phase transitions in lossy platforms, which will offer valuable insight into quantum
simulation of a dissipative system and which are helpful in guiding experimentalists in open quantum systems.
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I. INTRODUCTION

Quantum simulation has become a research frontier and an
indispensable tool in quantum information science [1–3]; its
remarkable development in experimental realization has led to
significant advances in the field of quantum optics and atomic
physics [4–9]. Among the recent developments, the system
of coupled-cavity arrays embedded with cold atoms has been
intensively investigated as a platform to realize and simulate
quantum many-body phenomena because of its extremely
high tunability, individual addressability, and flexibility in
its geometric design [10–14]. A wide range of condensed-
matter systems have been theoretically investigated and many
proposals for probing them have been proposed including
the quantum phase transition [15,16], spin glasses [17,18],
photonic crystals [19], the emergence of gauge fields [20], the
quantum Hall effects [21], the Pfaffian-like topological state
[22], and the supersolid [23,24].

The simplest physical model of light-matter coupling
in a coupled-cavity-array system is the Jaynes-Cummings-
Hubbard model, which presents an array of optical cav-
ities that each contain a single two-level atom (TLA) in
the photon-blockade regime [13,14]. A modified Jaynes-
Cummings-Hubbard model based on an array of cavities where
each cavity contains an embedded three-level atom has been
proposed recently; this model circumvents the drawbacks
of the excited-state spontaneous emission and provides a
tunable extension of two-polariton bound states of the standard
Jaynes-Cummings-Hubbard model [25,26]. As the number of
atoms in each cavity increases, the collective effects due to
interactions among atoms give rise to intriguing many-body
phenomena. In quantum optics the Dicke model is a paradigm
of collective behavior [27] that describes the interaction of
ensembles of TLAs that are collectively coupled to the single
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mode of radiation of a cavity [28]. Numerous investigations of
interesting physical effects and their experimental realization
[29], such as the superradiation phase [30–32], the superradiant
Mott insulator [33], and the dynamical phase transition [34],
are discussed. As a first step, a Dicke-Bose-Hubbard (DBH)
model that includes more than one identical coupled cavity and
N identical TLAs in each cavity has been conducted to study
the quantum phase transitions of light without considering the
counterrotating terms [35]. The transfer of excitations under
a large range of operative conditions is also demonstrated
and explored by tuning the control parameters in the DBH
model [28]. Both the emergence of a polaritonic glassy phase
[36] and the quantum phase transitions from the superfluid to
the Bose-glass and the Mott-insulator states [37] have also
been studied. Most recently, the localization-delocalization
quantum phase transition of photons of the DBH model
including counterrotating terms has been presented [38]. The
model shows that under the influence of the counterrotating
terms, the Mott lobes are fully suppressed.

As is well known, a realistic quantum optical system
can rarely be isolated from its surroundings completely,
particularly in an experiment; rather it is usually coupled to
its external environment with an infinite number of degrees
of freedom. To date, an investigation of the quantum phase
transition of photons in a dissipative DBH model is still
lacking. To treat the interplay between the coupled-cavity
array and its environment in a more general setting, we
developed a quasibosonic approach to describe the quantum
phase transition and photon transport in an open quantum
optical system [39,40]. Without the requirement of considering
the finite environment’s degrees of freedom, the quasibosonic
method is a great concept that has a computational advantage.
In the present paper, we use the quasibosonic approach to
obtain an effective Hamiltonian of the dissipative DBH model.
The coordinates of a bath can be eliminated and the system
can be considered an ensemble of quasibosons in less time
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than its decay rate. Next, the eigenenergies and the superfluid
order parameter of the system are also derived analytically
for two TLAs on resonance, and we numerically demonstrate
the phase diagram of an arbitrary number of TLAs. We hope
that the theoretical analysis presented here will be an essential
reference for future experiments to explore the quantum effects
for multiatom systems.

The paper is organized as follows. In Sec. II, the dissipative
DBH model is introduced based on the quasibosonic approach.
Section III is devoted to deriving the eigenvalues and eigen-
states for two atoms in each cavity. The analytical solutions of
the superfluid order parameter for dressed states are given, and
the properties of the quantum phase transition are discussed in
Sec. IV. The extension to an arbitrary number of TLAs is also
given in this section. Section V gives the conclusion.

II. THE DISSIPATIVE DICKE-BOSE-HUBBARD MODEL

The system considered is depicted in Fig. 1. The Hamil-
tonian of the DBH model considering the coupling to its
environment is given by (with h̄ = 1) [35]

H =
∑

i

HDM
i − κ

∑
ij

a
†
i aj − μ

∑
i

Ni + HR,

HDM
i = ωaJ

+
i J−

i + ωca
†
i ai + β(aiJ

+
i + a

†
i J

−
i ),

HR =
∑

i

∑
ωk

ωkr
†
k rk + HCR + HAR,

HCR =
∑

i

∑
ωk

[ηc(ωk)r†ka + H.c.],

HAR =
∑

i

∑
ωk

[ηa(ωk)r†kJ
− + H.c.], (2.1)

where the indices i and j are individual cavity ranges over all
sites, and a

†
i and ai are the photon creation and annihilation

operators, respectively. J±
i = ∑

j δ±
j are the atomic collec-

tive raising and lowering angular momentum operators, and
the total number of excitations is Ni = a

†
i ai + J+

i J−
i . The

transition energy of the TLA is ωa , and ωc is the frequency
of the cavity field. All the atoms couple to cavities with the
same coupling β [41]. We assume that the hopping energy
of photons κij = κ between sites i and j and the chemical
potential in the grand-canonical ensemble μi = μ are the same
for all cavities. The coupling Hamiltonian of the system with
the environment and the Hamiltonian of the environment are
described as HR . ωk is a bath model, and r

†
k (rk) is the creation

(annihilation) operator of the environment in the kth model.
HCR is the interaction of the cavity with the environment. The
interaction of the atoms with the environment is denoted as
HAR .

Considering the influence of the environment, the de-
coherence of every cavity and the two-level atom would
result in the incoherent or dissipative propagation of the
incident photon; thus nonequilibrium dynamics for the open
quantum many-body system will arise. In general, simulations
of nonequilibrium many-body effects for a finite freedom of
the system can be performed using the master equation and
the mean-field decoupling approximation [42–45]. However
it is a formidable task to solve a fairly large parameter space

FIG. 1. (a) A schematic of a two-dimensional coupled-cavity-
array setup. Each cavity contains N identical two-level atoms (dark
gray globes) which couple resonantly to the cavity field (light gray
globes). The dotted blue lines represent the interaction with the
environment. The dotted red wavy arrow (γc) indicates the cavity
decay, and the solid red wavy arrow (γa) is the decay of atoms.
(b) Energy level diagram of the cavity-atom system on the nth site.
The system is on resonance, i.e., ω̃c = ω̃a = ω̃. The on-site repulsion
Un can be defined as Un = E|−,n+1〉 − E|−,n〉 − ω, which impedes the
absorption for the next photon.

because of the infinite freedom of the environment. To address
this problem, our group proposed a quasibosonic approach to
eliminate the infinite freedom of the environment, in which
the operators of the environment can be treated as a c-number
and then the dissipative system can be solved easily [39,40].
One can obtain an effective Hamiltonian for the system based
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on the quasibosonic approach:

H =
∑

i

HDM
i − κ

∑
ij

ã
†
i ãj − μ

∑
i

Ñi ,

HDM
i = ω̃aJ̃

+
i J̃−

i + ω̃cã
†
i ãi + β(ãi J̃

+
i + ã

†
i J̃

−
i ), (2.2)

where ω̃a = ωa − iγa , ω̃c = ωc − iγc. γa and γc are decay
rates of atoms and cavities, respectively. ã†

i (ãi) is a quasiboson
creation (annihilation) operator. J̃+

i (J̃−
i ) is the dressed

atomic raising (lowering) angular momentum operator. The
dissipation becomes an inherent property for the DBH model
considered here.

A superfluid order parameter ψ , with the mean-field
assumption ψ ≡ 〈ãi〉, is usually introduced to gain insight into
the role of dissipation in the quantum phase transition. For
ψ �= 0, the system is in the superfluid phase. When ψ = 0,
the system is in the Mott-insulator phase. In the present
case, the expected value of ãi is in general complex with the
formation 〈ãi〉 = ψ − iψγ . ψγ is a solvable small quantity as a
function of decay rates of the system, and vanishes in the limit
of ideal cases. Using the decoupling approximation ã

†
i ãj =

〈ã†
i 〉ãj + 〈ãj 〉ã†

i − 〈ã†
i 〉〈ãj 〉, the mean-field Hamiltonian of

Eq. (2.2) can be written as

HMF =
∑

i

HMF
i ,

HMF
i = HDM

i − κψ(ã†
i + ãi) + κ|ψ |2 − μ

∑
i

Ñi . (2.3)

This mean-field Hamiltonian is assumed to be the same for
every site.

III. EIGENVALUES AND EIGENSTATES OF THE
DISSIPATIVE DICKE-BOSE-HUBBARD MODEL

In the following, the case of two TLAs in each cavity is
investigated as an example to provide a detailed illustration.
The extension for an arbitrary number of two-level atoms is
given in Sec. IV, which can be easily calculated by using the
same approach. Followed by the proposal by Lei et al., the
bare states of the system are |0,e⊗2〉|n − 2〉, |g,e〉|n − 1〉, and
|g⊗2,0〉|n〉 with photon number n running from 0, 1, 2, 3 to ∞
[35]. For the two TLAs system, the case in which two atoms
are in the excited state can be denoted as |0,e⊗2〉, only one
atom in the excited state is denoted by |g,e〉, and |g⊗2,0〉 is
for the case in which the two atoms are in the ground state.
Here a total of 3n bare state bases form a group for the whole
Hilbert space. Based on these states, the matrix elements for
HMF

n can be obtained:

HMF
n =

∣∣∣∣∣∣∣
2ω̃a + (n − 2)ω̃c − nμ

√
2(n − 1)β 0√

2(n − 1)β 2ω̃a + (n − 1)ω̃c − (n + 1)μ
√

2nβ

0
√

2nβ nω̃c − nμ

∣∣∣∣∣∣∣ + κ|ψ |2 (3.1)

with ω̃c = ω̃a = ω̃ (ω̃ = ω − iγ ), γ = γa + γc. The eigenvalues can be obtained by diagonalizing the matrix in Eq. (3.1), and
the corresponding eigenstates can be found:

E
(0)
|0,n〉 = nω̃, (3.2)

E
(0)
|±,n〉 =

(2n + 1)ω̃ ± βR
(
n, ω̃

β

)
2

, (3.3)

|0,n〉 = −√
n − 1|0,e⊗2〉|n − 2〉 + √

n|g⊗2,0〉|n〉√
2n − 1

, (3.4)

| ± ,n〉 =
√

n|0,e⊗2〉|n − 2〉 + 1
2
√

2

[
ω̃
β

± R
(
n, ω̃

β

)]|g,e〉|n − 1〉 + √
n − 1|g⊗2,0〉|n〉√

2n − 1 + {
1

2
√

2

[
ω̃
β

± R
(
n, ω̃

β

)]}2
. (3.5)

Here R(n, ω̃
β

) =
√

8(2n − 1) + ( ω̃
β

)2 is the effective Rabi fre-

quency. The energy levels split into three branches correspond-
ing to the upper branch E

(0)
|+,n〉, center branch E

(0)
|0,n〉, and the

lower branch E
(0)
|−,n〉, as shown in Fig. 1(b).

IV. THE QUANTUM PHASE TRANSITION

In this section, we use the perturbation theory to obtain
the superfluid order parameter and study the quantum phase
transition by changing the controlling parameters. We have

assumed that cavities are coupled weakly to each other; thus,
the interaction term between cavities can be considered as a
perturbation term when the two-level atom system is coupled
strongly to the cavity field. The effective Hamiltonian Eq. (2.3)
thus reads

HMF
i = HDM

i + H ′
i ,

H ′
i = −κψ(ã†

i + ãi) + χ |ψ |2 − μÑi, (4.1)

which is valid on each site; we therefore drop the subscript
i in the following. Considering the analogy of the transition
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from the Mott-insulator to superfluid state between the Jaynes-
Cummings model and the Bose-Hubbard model and the
fact that the analytical results obtained by the second- and
fourth-order perturbations are in good agreement with the
exact-diagonalization numerical calculation [46], we derive
the analytical solution of the system in terms of the second-
order perturbation for simplicity. Equation (3.2) and Fig. 1(b)
show that a center energy level E|0,n〉 is required to perform the
translation; thus, the on-site repulsion Un based on the center
branch state |0,n〉 is independent of the atom-cavity coupling
β, which is different from the one defined by the state | ± ,n〉.
To study the quantum phase transition in detail, the superfluid
order parameter must be calculated separately for different
cases.

Preparing in the center branch of the dressed state.
According to the definition of the superfluid order parameter
ψ = 〈
n(t)|ãi |
n(t)〉, |
n(t)〉 can be obtained based on the
second-order perturbation theory. We first obtain the second-
order corrections of energy eigenvalues E

(2)
|0,n〉 and (normalized)

eigenstates φ̃
(2)
|0,n〉 with respect to the dressed basis Eq. (3.4):

E
(2)
|0,n〉 = (n − 1)(2n − 2)2κ2ψ2

(2n − 1)(2n − 3)(ε − iγ )

+ 4n3κ2ψ2

(2n − 1)(2n + 1)(−ε + iγ )
, (4.2)

φ̃
(2)
|0,n〉 =

√
n − 1(2n − 2)(−κψ)√

(2n − 1)(2n − 3)(ε − iγ )
|n − 1〉

+ 2n
√

n(−κψ)√
(2n − 1)(2n + 1)(ε − iγ )

|n + 1〉, (4.3)

where ε = ω − μ. Therefore, the eigenvalue of the dissipative
system based on the second-order perturbation theory is

E|0,n〉 ≡ Es + iEγ (4.4)

with

Es = nε + κ|ψ |2 + (−8n3 + 12n2 + 4n − 4)κ2ψ2ε

(2n − 1)(2n − 3)(2n + 1)(ε2 + γ 2)
,

Eγ = nγ + (−8n3 + 12n2 + 4n − 4)iκ2ψ2γ

(2n − 1)(2n − 3)(2n + 1)(ε2 + γ 2)
.

When the system is in the Mott-insulator state, ψ = 0, we
have Eγ = nγ . When ψ �= 0, one can take Eγ ≈ nγ because
we assume that the coupling strength κ between cavities is
weak. Up to second order, the expression for the (normalized)
eigenstates is

φ|0,n〉 = 1√
Ñ

φ̃|0,n〉,

φ̃|0,n〉 =
√

n − 1(2n − 2)(−κψ)√
(2n − 1)(2n − 3)(ε − iγ )

|n − 1〉 + |n〉

+ 2n
√

n(−κψ)√
(2n − 1)(2n + 1)(ε − iγ )

|n + 1〉,

Ñ = 1 + (n − 1)(2n − 2)2κ2ψ2

(2n − 1)(2n − 3)(ε2 + γ 2)

+ 4n3κ2ψ2

(2n − 1)(2n + 1)(ε2 + γ 2)
; (4.5)

Ñ is the normalized constant. For the open system considered
here, the superfluid order parameter ψ is time-dependent.
According to Eq. (4.5), the (normalized) eigenstate is a
function of time; however, its time derivative can be ignored
because of the second-order correction. Thus, the approxima-
tive time-dependent wave function of the system can be written
as


n(t) = f (t)φ|0,n〉.

Using the Schrödinger equation, one can find


n(t) = φ|0,n〉e−iE|0,n〉t . (4.6)

Therefore, the superfluid order parameter ψ for the state |0,n〉
can be obtained:

ψ1 = e−nγ t

√
(8n3 − 12n2 − 4n + 4)ε

(16n4 − 32n3 + 12n2 + 4n − 4)κ
− (2n − 1)(2n + 1)(2n − 3)(ε2 + γ 2)

(16n4 − 32n3 + 12n2 + 4n − 4)κ2e−2nγ t
. (4.7)

Equation (4.7) shows that ψ1 is a function of the parameters κ , γ , t , and μ (in the present case, μ is a constant). The superfluid
order parameter evolves and decays with time with a decay rate proportional to the number of photons n.

Preparing in the negative branch of the dressed state. Assume that each site is prepared in the negative branch of the
dressed state | − ,n〉. We can find the second-order deviations using a similar procedure, although the calculations become
quite tedious when using our current formulation. The superfluid order parameter ψ2 can be obtained by solving the following
equation:

ψ2 = Re

⎧⎨
⎩e−2γ nt

Ñ
′

⎡
⎣ 2

[
2
√

n(n − 1)(n − 2) +
√

n−1
8

(
ω+iγ

β
− R

†
n−1

)(
ω−iγ

β
− Rn

)]2
(−κψ2)

[2ε + 2iγ − β(R†
n − R

†
n−1)]

[
2n − 1 + 1

8

(
ω−iγ

β
− Rn−1

)2][
2n − 3 + 1

8

(
ω+iγ

β
− R

†
n−1

)2]

+
2
[
2
√

n(n − 1)(n + 1) +
√

n

8

(
ω+iγ

β
− R

†
n

)(
ω−iγ

β
− Rn+1

)]2
(−κψ2)

[−2ε + 2iγ − β(Rn − Rn+1)]
[
2n − 1 + 1

8

(
ω+iγ

β
− R

†
n

)2][
2n + 1 + 1

8

(
ω−iγ

β
− Rn+1

)2]
⎤
⎦

⎫⎬
⎭; (4.8)
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Ñ
′ (see the Appendix) is the normalized constant. In

what follows, we use Eqs. (4.7) and (4.8) to numerically
investigate the features of the quantum phase transition
arising from the competition between the on-site repul-
sion Un and the hopping rate under the influences of the
environment.

Analyses. These are illustrated in Fig. 2. First, we start with
a superfluid phase. The time evolution of the superfluid order
parameter ψ for different hopping rates κ and decay rates γ

is shown. Comparing Figs. 2(a) and 2(b) with 2(c) and 2(d),
a clear quantum phase transition is found for different initial
states. The ideal cases are also given in Fig. 2 for comparison,
which shows that the system is still in the coherent state that
was prepared initially. The evolution of the dissipative system
clearly reflects the expected decay of the coherence, which is
the most obvious characteristic different from ideal cases. For
a small t , although ψ decreases slightly, the system remains
in a superfluid state. At a sufficiently large t , the effects of the
environment become large, and the coherence of the system
is initially destroyed in a pronounced manner and is then
gradually reduced. Thus, ψ decays rapidly and the system
undergoes a phase transition into a Mott-insulating phase.
With the increase of the photon number n, the long-range
order parameter will decrease rapidly, as shown in Figs. 3(b)
and 3(d), because the decay time is proportional to n. The
critical point tc is a function of the control parameters and can
be found by setting ψ = 0 in Eqs. (4.7) and (4.8), which yields
tc = 1

2nγ
ln (4n2−4n−4)κ

(2n+1)(2n−3)ε . It follows that, for certain cavity decay
rates κ , one may change the other control parameters according
to tc to enable the dissipative system to maintain coherence
for a relatively long time. Obviously, when the external
environment is considered, the decoherence of every resonator
and the TLAs would result in the decay of the superfluid order
parameter. In the experiment, dynamical decoupling [47] and
feedback control [48] have been proposed to hamper the decay
of the cavity field and TLAs and thus improve the coherence
time.

In contrast, as shown in Fig. 3, we seek to determine how a
Mott-insulator state in the beginning can restore the coherence
by changing the intercavity hopping rate κ for a dissipative
system. For a small κ , there are not enough excitations for
hopping between cavities. By raising the hopping rate to a
certain value κc = (8n3−12n2−2n+3)εe2nγ t

(8n3−12n2−4n+4) , the system will restore
its long-range coherence and a phase transition from the
Mott-insulator to the superfluid phase appears. According to
Eqs. (4.7) and (4.8), the photon hopping rate is also found to
decrease because of the effect of the environment; thus the
long-range coherence can only occur when the increase of
the photon hopping rate is faster than its decay. Figures 3(a)
and 3(c) also demonstrate that the influence of environment
accumulates over time. With an increase in time, a large
hopping rate is required to restore the coherence. Because
the system and the environment have been recognized as a
whole system in the effective Hamiltonian, the dissipation is
the inherent nature of the system. Therefore, for t = 0, the
system is also dissipative, and the hopping rate required for
the phase transition to occur is higher than the rate expected in
the ideal case. In addition, increasing the number of pho-
tons to n, the dissipation of the system is also enhanced

FIG. 2. The decrease of the superfluidity on each site for a
initial superfluid state. (a) and (b) are for the state |0,n〉, but (c)
and (d) are for the state | − ,n〉. The resonance frequency ω = 10,
ε = 0.7836. The superfluid order parameter decays continuously and
beyond tc the system behaves as a Mott-insulator-like state. In (a)
and (c), the parameters are n = 3, (γ /β,κ/β) = (0,1) (dot-dashed
blue line), (0.02,1) (light gray solid line), (0.05,1) (dashed red line),
and (0.02,1.2) (dark gray solid line). In (b) and (d) γ /β = 0.02,
κ/β = 1.2, with different n: n = 3 (dark gray solid line), n = 9 (light
gray solid line), and n = 12 (dashed red line). The long-range order
decays rapidly when n increases.
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FIG. 3. The restoring of long-range coherence from the Mott-
insulator state. (a) and (b) are for the state |0,n〉, (c) and (d) are
for the state | − ,n〉. The system can reach a superfluid phase with
continuously increasing intercavity coupled rate κ . In (a) and (c), the
parameters are n = 3, (γ /β,t) = (0,0) (dashed blue line), (0.05,0)
(dark gray solid line), (0.05,0.3) (light gray solid line), and (0.05,0.5)
(dot-dashed red line). In (b) and (d) γ /β = 0.05, t = 0.3, with
different n: n = 3 (dashed red line), n = 9 (dark gray solid line),
and n = 12 (light gray solid line). With an increase of n, a larger
value of the intercavity hopping is needed.

FIG. 4. The superfluid order parameters as a function of the
relative chemical potential and the hopping rates for arbitrary number
of TLAs. (a), (c), and (e) are for the ideal cases; others are for the
dissipative cases. We have chosen n = 8 and γ = 0.2. The change of
Mott-insulator and superfluid phase boundary can be seen clearly.

correspondingly; a higher hopping energy is thus required to
induce a phase transition, as shown in Figs. 3(b) and 3(d).

Compared with the results in our previous paper [40], the
quantum phase transition for the two two-level atoms case
has two distinct characteristics. (1) The time for maintaining
coherence and the hopping rate for restoring coherence are
different. (2) Each site can be prepared both in the negative and
the positive branch of the dressed state. Furthermore, the site
can also be prepared in the center branch of the dressed state.
When each site is prepared in the center branch of the dressed
state, the initial superfluidity will not decay for the ideal
cases, while the initially prepared Mott insulator in the same
dressed state will restore coherence with the increasing of the
hopping rate. One may use the effective repulsive potential Un

to understand this difference between the Jaynes-Cummings-
Hubbard and Dicke-Bose-Hubbard models. Our numerical
results show that the dissipation induces a renormalization
on the effective repulsive potential and leads to a larger
effective repulsive potential in the Dicke-Bose-Hubbard model
than in the Jaynes-Cummings-Hubbard model for the same
controlling parameters.

In what follows, we extend the model to an arbitrary number
of TLA cases. The dressed-state basis can be written by the
general method to diagonalize the effective DBH Hamiltonian
(1.1) by numerical computation. The phase diagrams of the
dissipative DBH model are plotted in Fig. 4. For comparison,
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FIG. 5. Effective repulsive potential Un versus different atomic
number N , with parameters β = 1,n = 14,ω = 10. The dashed red
line is for the ideal case, and the solid blue line is for the dissipative
case (γ = 0.2).

we also show the ideal cases. In the dissipative cases, we
choose t = 0, which implies that the dissipative system is
nearly in equilibrium. As shown in Fig. 4, as interaction with
the environment destroys the coherence of the system, the
Mott lobes becomes smaller and the area of the coherent phase
decreases. Besides, one may find that the Mott-lobe structures
depend crucially on the numbers of atoms and photons of
each site. More interestingly, with the increase of the photon
number n and keeping the number of two-level atoms constant
in each cavity, more and more Mott lobes emerge. Next, the
realization of the superfluid state requires a large hopping rate
to derive the localized photons in each cavity. It can also be
found that, in a regime with a small hopping rate κ , fewer TLAs
could cause the system to become a localized phase compared
with the ideal cases. With an increase in the number of TLAs,
the coherent state may disappear rapidly for the dissipative
system. The renormalized effective repulsive potential with
the increase of atomic numbers for both cases is shown in
Fig. 5. It can be found that with an increase of the number of
TLAs, the effects of the dissipation will become more obvious,
and the effective repulsive potential gets bigger than the one
for the ideal case for the same number of atoms. Thus, for
a strong dissipation, the pronounced repulsive potential and
the enhanced collective decay rate make the superfluid order

parameter gradually decay, which leads the coherent state to
disappear rapidly and the system tends to be more localized
for the dissipative system. Then, the Mott-insulating region
increases accordingly.

Most recently, a promising scheme to implement the two-
mode Dicke-lattice model in circuit quantum electrodynamics
has been proposed [49]. In general, the circuit quantum
electrodynamics (CQED) lattices are inherently open systems;
the dissipation leads to the inevitable loss of photons and
the atomic decay from CQED. The scheme is motivated
by the recent experimental observation of the dissipative phase
transition in a one-dimensional chain of 72 microwave cavities
with each coupled to a superconducting qubit [50]. In the above
analysis, the numerical results are plotted under the condition
that all the parameters follow the experimental parameters
regime. We hope that the desired quantum phase transition
with different parameters predicted here can be observed based
on the above scheme.

V. CONCLUSION

Based on the quasibosonic approach, a realistic situation
of a DBH model coupled to its environment was considered.
The analytical solution of the superfluid order parameter for
two TLAs per cavity was derived. The transition behaviors
of the superfluid to Mott-insulating phase and the restoring
coherence were discussed. The phase diagram for an arbitrary
number of TLAs was also investigated. As the number of TLAs
increases, Mott lobes may disappear and such a system tends to
be classical. Most importantly, the atomic number is far lower
than that under ideal circumstances. This work can provide
parameters for reference to simulate strongly correlated many-
body systems in the actual operation.
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APPENDIX

Assume that each site is prepared in the negative branch
of the dressed state | − ,n〉, and it can be obtained by
diagonalizing the matrix in Eq. (3.1):

| − ,n〉 =
√

n|0,e⊗2〉|n − 2〉 + 1
2
√

2

[
ω̃
β

− R
(
n, ω̃

β

)]|g,e〉|n − 1〉 + √
n − 1|g⊗2,0〉|n〉√

2n − 1 + {
1

2
√

2

[
ω̃
β

− R
(
n, ω̃

β

)]}2
. (A1)

Based on the second-order perturbation theory, the expression for the second-order corrections of eigenstates can be obtained:

φ̃|−,n〉 =
2
√

n(n − 1)(n − 2) +
√

n−1
8

(
ω+iγ

β
− R

†
n

)(
ω−iγ

β
− Rn−1

)
[2ε − 2iγ − β(Rn − Rn−1)]

√[
2n − 1 + 1

8

(
ω+iγ

β
− R

†
n

)2][
2n − 3 + 1

8 (ω−iγ

β
− Rn−1)2

] |n − 1〉

+ |n〉 +
2
√

n(n − 1)(n + 1) +
√

n

8

(
ω+iγ

β
− R

†
n

)(
ω−iγ

β
− Rn+1

)
[−2ε + 2iγ − β(Rn − Rn+1)]

√[
2n − 1 + 1

8

(
ω+iγ

β
− R

†
n

)2][
2n + 1 + 1

8

(
ω−iγ

β
− Rn+1

)2] |n + 1〉, (A2)
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where Rn =
√

8(2n − 1) + ( ω̃
β

)2. In order to simplify the above formula, we can assume that the expression follows A and B.

The normalized eigenstate is φ|−,n〉 = 1√
N

′ φ̃|−,n〉. Thus the expression of the normalized constant Ñ
′ = 〈φ̃|−,n〉|φ̃|−,n〉〉 can be

expressed as follows:

A =
2
√

n(n − 1)(n − 2) +
√

n−1
8

(
ω+iγ

β
− R

†
n

)(
ω−iγ

β
− Rn−1

)
[2ε − 2iγ − β(Rn − Rn−1)]

√[
2n − 1 + 1

8

(
ω+iγ

β
− R

†
n

)2][
2n − 3 + 1

8

(
ω−iγ

β
− Rn−1

)2] ,

B =
2
√

n(n − 1)(n + 1) +
√

n

8

(
ω+iγ

β
− R

†
n

)(
ω−iγ

β
− Rn+1

)
[−2ε + 2iγ − β(Rn − Rn+1)]

√[
2n − 1 + 1

8

(
ω+iγ

β
− R

†
n

)2][
2n + 1 + 1

8

(
ω−iγ

β
− Rn+1

)2] ,

Ñ
′ = 4κ2ψ2AA† + 4κ2ψ2BB†. (A3)

The conjugates of A and B are A† and B†, respectively. Using the Schrödinger equation, one can find the time-dependent
eigenstates 
n(t) = φ|−,n〉e−iE|−,n〉t . Therefore, the superfluid order parameter can also be derived by ψ2 = 〈
n(t)|ãi |
n(t)〉.
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