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Dynamics of a system in general depends on its initial state and how the system is driven, but in many-body
systems the memory is usually averaged out during evolution. Here, interacting quantum systems without external
relaxations are shown to retain long-time memory effects in steady states. To identify memory effects, we first
show quasi-steady-state currents form in finite, isolated Bose- and Fermi-Hubbard models driven by interaction
imbalance and they become steady-state currents in the thermodynamic limit. By comparing the steady-state
currents from different initial states or ramping rates of the imbalance, long-time memory effects can be quantified.
While the memory effects of initial states are more ubiquitous, the memory effects of switching protocols are
mostly visible in interaction-induced transport in lattices. Our simulations suggest that the systems enter a regime
governed by a generalized Fick’s law and memory effects lead to initial-state-dependent diffusion coefficients.
We also identify conditions for enhancing memory effects and discuss possible experimental implications.
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I. INTRODUCTION

Although dynamic processes generally depend on the initial
conditions and evolution protocols, many-body systems tend
to average out, in the long-time limit, memory of initial
information. Take metals as an example; the fast relaxation
time quickly brings the electrons to a new equilibrium or steady
state after a perturbation [1–3]. Therefore, systems exhibiting
long-time or persistent memory effects, for instance, magnetic
hysteresis [4], shape-memory materials [5], and memory-
effect elements and circuitries [6,7], are considered interesting.
Moreover, artificial spin ice driven by a cyclic magnetic
field shows memory effects of reproducible microstates [8].
In a partial symmetry-breaking Hamiltonian, the symmetry
memory and symmetry gap show quantum memory effects
of initial states below a critical value [9]. Other examples
of memory effects in quantum systems include ferroelectric
semiconductor [10,11] and magnetic [12,13] materials.

Moreover, the concept of memory effects is related to
the existence of fundamental limits in many-body quantum
systems on the relaxation of current [14] and development
of thermal equilibrium [15]. For example, systems exhibiting
many-body localization [16–19] can fail to thermalize, show
ergodicity breaking [20], and retain local information about
the initial condition at long times [21]. The out-of-time-
order correlation functions [22–24] provide another useful
measure to diagnose the sensitivity of time-evolving quantities
to the initial condition and offer a tool to investigate fast
scrambling of information [25]. Cold-atom systems, with their
broadly tunable parameters, are suitable for elucidating key
mechanisms behind quantum transport [26]. Memory effects,
in the form of hysteresis, have been explored in cold-atom ex-
periments of atomic superfluids [27] and a theoretical proposal
of spin-orbit-coupled Fermi gases [28]. Energy dissipation
was included by vortex generation or external reservoirs
in those hysteresis studies. In addition, memory effects of
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open quantum systems coupled to classical and quantum
environments have also been intensely studied [29,30]. Here
we investigate memory effects in isolated quantum systems
without explicit relaxations.

In the absence of interactions, dynamical variables of
quantum systems, such as the mass current, are usually
found not to exhibit memory effects in steady states [31–
34]. To identify long-time memory effects, the density of a
tunable bound state may provide clues when the system is at
steady state [31]. A flat band coming from localized states
after a continuous transformation of the underlying lattice
geometry also reveals memory effects of the transformation
rate in the steady-state density distribution [35]. Moreover,
memory effects of entanglement and correlation can arise from
topological edge states as boundary conditions [36–38] or as
parameters [39] are changed. In addition, quench dynamics
of integrable systems can exhibit memory effects, where a
steady state emerges and depends strongly on the initial
condition [40–42]. In contrast, interacting quantum systems
can exhibit memory effects directly in the steady-state current
as illustrated in Luttinger liquids [43], where currents driven
by different quench procedures reach different steady-state
values.

Here we quantify long-time memory effects in the steady-
state current of isolated interacting quantum systems, includ-
ing both fermionic and bosonic gases. Since transport usually
singles out a particular direction, we consider one-dimensional
(1D) lattice systems where particle hopping due to tunneling
slows down the motion. To focus on intrinsic effects, the cur-
rent can be induced, for example, internally by switching on a
spatial interaction imbalance, so there is no need for an external
source and sink. In a finite system, the boundary reflects the
wave function and leads to a revival time which linearly scales
with the system size. However, a quasi-steady-state current
(QSSC) emerges before the revival time and allows us to
quantify memory effects by comparing the steady-state values
from different driving protocols. As the system size L scales
toward the thermodynamic limit, the revival time scales toward
infinity (L → ∞ and then t → ∞). The QSSCs then become
genuine steady-state currents and memory effects revealed by
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FIG. 1. Interaction-induced transport for probing (a) memory
effects of initial states and (b) memory effects of switching protocols.
(a) Two systems initially with different uniform interactions U small

(dashed green) and U large (dashed orange) are quenched to the
same interaction profile (solid blue). (b) Systems with the same
initial interaction (dashed green) experience the same interaction
imbalance (solid blue) switched on at different time scales. Inset:
Linear switching protocols with different ramping times (tr = t0, 7t0).
(c, d) Interaction-induced transport in the BHM. (c) Particle density
contour plot with L=60 sites, nB =1, U =J , and �U =J on the left
half of the lattice. The dashed line in (c) indicates the propagation
of the low-density region from the left edge and the red star marks
the time at which the density distortion affects the QSSC; as one can
see the QSSC decreases at the gray star in (d). The red (light-blue)
regime on the right (left) half of the system indicates the formation
of density plateaus. (d) Current flowing through the interface of the
interaction imbalance with different fillings and U =�U =J . The
stars in (c) and (d) indicate the same time (t =13t0).

the different values of currents persist in the long-time limit.
In isolated systems discussed here, the transient regime before
the system enters the quasi–steady state does not scale with the
system size. Therefore, the steady state in the thermodynamic
limit is similar to the quasi–steady state of a large but finite
system and memory effects can be identified by comparing the
steady-state currents.

Two types of memory effects are analyzed here, one from
different initial states and the other from different protocols of
inducing transport. To distinguish the two memory effects, we
use different ways to turn on the spatial interaction or potential
imbalance. For the first type of memory effects, we consider
systems with different initial ground states but quenched to
the same final interaction or potential profile as illustrated in
Fig. 1(a). For the second type, the same imbalance is switched
on linearly with different time scales (tr ) as shown in Fig. 1(b).
Here we present the results of interaction-induced transport in
lattices and discuss continuous models and potential-driven
transport. While memory effects of initial states are visible in
all of these settings, memory effects of switching protocols are
mostly visible only in interaction-induced transport in lattices.

The paper is organized as follows. Section II introduces
the models and simulation methods, and then we present

the results from interaction-induced transport. Section III
discusses memory effects of initial states and memory effects
of switching protocols. The continuous model is discussed
in Sec. IV and serves as a comparison. Section V presents
a connection between Fick’s law and our studies and the
diffusion coefficients extracted from the relation. Section VI is
devoted to potential-induced transport and its memory effects.
In Sec. VII we discuss experimental implications of cold
atoms, possible implementations, and how memory effects of
steady-state currents may be measured. A conclusion is give
in Sec. VIII.

II. INTERACTION-INDUCED TRANSPORT

A mass current can be induced by imposing an interaction
imbalance as illustrated in Figs. 1(a) and 1(b). We consider two
lattice models: The Hamiltonian of the Bose-Hubbard model
(BHM) is given by

HBHM = −J
∑
〈i,j〉

(b†i bj + H.c.) +
∑

i

U (i,t)

2
ni(ni − 1). (1)

Here b
†
i (bi) is the boson creation (annihilation) operator at

lattice site i, ni =b
†
i bi is the boson number operator at site i,

and 〈i,j 〉 represents nearest neighbors. We set h̄=1 and the
time unit is t0 = h̄/J . The Fermi-Hubbard model (FHM) has
the Hamiltonian

HFHM = −J
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.) +

∑
i

U (i,t)ni,↑ni,↓. (2)

The two components of fermions are usually two different
hyperfine states of the same species of atoms and we use
σ = ↑,↓ to label them. Here c

†
i,σ (ci,σ ) is the fermion creation

(annihilation) operator at lattice site i with spin σ , and
ni,σ =c

†
i,σ ci,σ is the fermion number operator at site i with spin

σ . The filling of the BHM is nB =∑
i ni/L. We consider nB up

to 1 for a system with L=60 sites and monitor the current at the
interaction-imbalance interface, so jB =2J Im〈b†L/2+1bL/2〉.
As for the FHM, we consider the spin-balanced case where
N↑ =∑

i ni,σ =N↓ with filling nF =Nσ /L up to 1/2, and the
current is the total current jF =2J Im〈∑σ c

†
L/2+1,σ cL/2,σ 〉.

Initially, an uniform interaction is applied throughout
the system and the ground state can be obtained by the
density matrix renormalization group [44–49]. Then a spatial
interaction imbalance is imposed on half of the system, as
illustrated in Fig. 1. A positive (negative) interaction imbalance
�U is applied to the left (right) half of the system so the
final Hamiltonian always has a higher interaction energy in
the left half of the system. The dynamics can be simulated
with the time-dependent density matrix renormalization group
[47,49–52] using the second-order Suzuki-Trotter formula
with time step δt = 0.005t0. During the simulation, the
maximum bond dimension is kept up to χ =1000 states and
we are able to maintain the maximal truncation error below
10−7. Most of the simulations are performed with system size
L=60. By comparing the results from different values of L,
we have ensured that L = 60 is large enough for the same
result to be qualitatively observed in the thermodynamic limit.

A typical example of the interaction-induced dynamics
is shown in Figs. 1(c) and 1(d). Right after the interaction
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(a) (c)

(d)(b)

FIG. 2. QSSCs in the BHM with nB =1/2 and FHM with
nF =1/6. Insets: The evolution of mass current, where the plateaus
indicate the QSSC, and dashed lines indicate the time window in
which the averages are taken. (a) BHM and (c) FHM with the same
uniform initial interaction U =J and different interaction imbalances.
(b) BHM and (d) FHM with different uniform initial interactions and
the same interaction imbalance, �U =J . A stronger initial interaction
suppresses the QSSC value. Error bars are the standard deviation from
the time average and they are within the symbol size if not shown.

imbalance is applied, the system passes through a transient
regime (t <4t0), and then the density in the left and right halves
starts to develop plateaus (t =10t0) as show in Figs. 1(c) and
9(a). The existence of the density plateaus is important for the
QSSC to emerge. As the plateaus develop, the density gradient
around the interface of the interaction imbalance will be
constant when the QSSC is observable. This indicates that the
system may be describable by coarse-grained kinetic equations
[53,54] connecting the density and current. We emphasize that
the transport is induced by changing the coupling strength in
the Hamiltonian only, and there is no external exchange of
energy or particle because the system is isolated.

The results of interaction-induced transport are summarized
in Figs. 2 and 3. QSSCs can be observed as the plateaus
in the insets in Figs. 2 and 3, and they will become
genuine steady states in the thermodynamic limit. While the
QSSC can be observed in interacting bosonic and fermionic
systems, its existence in noninteracting systems is less trivial.
Homogeneous noninteracting bosons do not support QSSCs
[55], and we observe no QSSC if half of the bosonic system
is noninteracting during the dynamics, which is discussed
later in this section. For fermions, QSSCs already exist in
the absence of interactions [32,56]. If nF <1/2 or nB <1, a
larger interaction imbalance results in a larger QSSC under the
same initial condition. On the other hand, the QSSC value gets
smaller but never reaches 0 as the initial interaction is stronger
while the interaction imbalance is fixed, as shown in Figs. 2(b)
and 2(d).

A. Additional features at higher filling

At or above nF =1/2 or nB =1, strong interactions lead
to additional phenomena. For example, negative differential
conductance (NDC), where the current decreases as the driving

(a) (c)

(d)

(b)

FIG. 3. Interaction-induced transport by a sudden interaction
imbalance of (a, b) the BHM with nB =1 and (c, d) the FHM
with nF =1/2. The system size is L=60 sites. Under a constant
initial interaction U =J , the QSSCs as a function of the interaction
imbalance are shown in (a) for the BHM and (c) for the FHM.
By quenching the systems with the same �U =J in the left half,
the QSSCs decrease with the initial interaction as shown in (b)
for the BHM and (d) for the FHM. The dashed line in (b) indicates
the critical interaction of the 1D superfluid–Mott insulator transition.
Insets: Current versus time for selected values labeled on the graph.
Dashed lines indicate the time window in which the average is taken.

force increases, has been discussed in fermions [32] and ob-
served in bosons [57]. In isolated systems, energy conservation
can lead to dynamically insulating phases [32,58]. Moreover,
the Mott insulating phase at nB =1 or nF =1/2 with moderate
initial interactions can be destroyed by a strong potential bias
[59–61] or interaction imbalance.

1. Bose-Hubbard model at unity filling

The main results of the BHM at unity filling are presented
in Figs. 3(a) and 3(b), where the symbols show the time
average of QSSCs and the statistical standard deviation within
a selected time window is indicated by the error bar. As a larger
interaction imbalance shrinks the duration of QSSCs due to the
boundary effect, we did not observe the NDC when filling was
lower than 1 within the parameter range we searched. For BHM
at unity filling in the thermodynamic limit, the Mott-superfluid
transition occurs at the critical interaction Uc ≈3.37J in one
dimension [62,63].

In Fig. 3(a), the system is initially a superfluid with U =J

and the QSSCs do not increase monotonically with �U , which
is different from the behavior at low fillings. The QSSCs
increase with the interaction imbalance when �U is small,
but the dependence changes once the interaction imbalance
is above 2.5J , beyond which the response (current) starts to
decrease as the driving (interaction imbalance) increases. Sim-
ilar phenomena are also discovered in theory [58,64] and cold-
atom experiments [57,64]. For filling larger than unity, the sys-
tems are expected to suffer NDC as well when the interaction
imbalance increases. The origin of NDC is because the inter-
action imbalance causes an energy difference between the two
sides of the system. Since the isolated system respects energy
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(a) (b)
(c)

FIG. 4. No QSSC can be observed if part of a bosonic system is noninteracting. (a) Currents through the middle of a lattice with L=60
sites and nB =1/2 versus time for two cases: initially noninteracting bosons experiencing an interaction imbalance (solid blue line) and initially
interacting bosons with part of the system quenched to noninteracting bosons (dashed green line). (b) Particle density profiles at selected times
for a system with an initial interaction U =3J and an imbalance �U =−3J applied to the right half. There are no steady structures in the
central (shaded) region compared to Fig. 9(a). (c) Evolution of the particle density for U =0 and �U =6J in the left half.

conservation, changes in the interaction energy have to be com-
pensated for by the kinetic energy. As the interaction difference
gets larger, it is harder for the two sides to exchange particles
in an energy-conserved fashion. Eventually, if the energy
difference between the two parts of the system greatly exceeds
the band width, a dynamically nonconducting state emerges
because it is not possible to exchange particles without violat-
ing energy conservation in an isolated system. The boundary
effect limits our simulations with strong interaction imbalance
as shown in the inset in Fig. 3, where the error bars become
larger due to the distortion of the wave function from the edge.

If the interaction energy is within the range of the band-
width, the system does not become dynamically insulating if
the initial state is in the superfluid regime. However, the QSSC
becomes smaller as the initial interaction increases with the
same quenched interaction imbalance. A finite QSSC is still
observable for a system with initial interaction U =4J >Uc

in the Mott insulator regime and experiencing an interaction
imbalance �U =J on the left as shown in Fig. 3(b). This
indicates a dynamic breakdown of the Mott insulating state
by an interaction imbalance. The reason for the breakdown
is that at the interface of the interaction imbalance it is
preferable to have a doublon-holon pair (with a hole on the
stronger-interaction side and two bosons at one site on the
weaker-interaction side) and lower the local interaction energy.
Creating this pair of excitations requires more energy as the
initial interaction increases, and eventually a fixed �U is no
longer sufficient to produce the pair. Thus, the QSSC vanishes
in the strong-interaction regime as shown in Fig. 3(b). The
destruction of the Mott insulating state has also been addressed
by applying a strong potential imbalance to a Mott insulator
[61,65] and the destruction can be understood by a many-body
Schwinger-Landau-Zener mechanism [59,60].

2. Fermi-Hubbard model at half-filling

For the FHM with a filling smaller than half, the transport
behavior is qualitatively the same as that of the BHM discussed
in Sec. II, except QSSCs exist in fermions even in the absence
of interactions [32]. The 1D FHM has a charge gap for any
nonzero interaction U >0 at half-filling in the thermodynamic
limit according to the exact solution [66]. Thus, both the
NDC and the dynamically insulating state are expected to
happen in the FHM at half-filling, and indeed they are shown

in Figs. 3(c) and 3(d). Similarly to the BHM, with small initial
interactions like U =J and U = 2J , it is possible to break
the Mott insulating state by a strong interaction imbalance
through the mechanism of a doublon and holon pair, similarly
to the BHM case. When the initial interaction or the energy
imbalance greatly exceeds the bandwidth, energy conservation
prevents exchange of particles with a large energy difference
and the system will remain an insulator.

B. Absence of QSSCs in noninteracting bosons

For bosonic systems, we found that QSSCs can only exist
when the interactions in both halves are finite. To check the
absence of QSSCs if part of the system is noninteracting,
we consider two cases here: One starts from a noninteracting
system and then the left half is quenched to a finite interaction.
The second is initially a uniform, interacting system and the
interaction in the right half is turned off. The results are shown
in Fig. 4(a), and there is no QSSC in either case. The reason that
noninteracting Bose gases cannot support QSSC is the infinite
compressibility, which allows bosons to pile up without limit if
there is no interaction energy. According to the kinetic equation
approach [53,54] shown in Eq. (5), the QSSCs depend on a
constant density gradient at the interface. If half of the system
is noninteracting, the bosons will keep stacking up and never
reach a plateau as shown in Fig. 4(b). This can also be observed
by comparing Figs. 4(c) and 1(c).

III. MEMORY EFFECTS

By comparing the QSSCs induced by different protocols,
we can quantify memory effects at steady state. Previous
studies of interaction-induced transport [32] using a mean-field
approximation failed to observe memory effects because
multiparticle correlations were ignored, but here we found
two main causes of memory effects: the initial state and the
protocol for switching on the interaction imbalance.

A. Memory effects of initial states

To analyze the memory effects of initial states, we intro-
duce different interaction imbalances so that different initial
configurations are suddenly changed to the same final config-
uration, and the system evolves accordingly. As illustrated in
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(a)

(c) (d)

(b)

FIG. 5. Memory effects of initial states for the BHM with
(a) nB =1/2 and (c) nB =1 and for the FHM with (b) nF =1/6 and
(d) nF =1/2. Squares correspond to the difference in the steady-state
currents from two initial interactions U large = 6J and U small, which
can be inferred from the (U large − U small)/J values, quenched to the
same final interaction profile. Circles show the fidelity F between the
two initial ground states.

Fig. 1(a), one can consider two initial configurations, one with
U (i)=U small and one with U (i)=U large, ∀i. The difference
between the two initial ground states can be quantified by the
fidelity F =|〈� large

0 |�small
0 〉|. Then sudden quenches at t =0

are applied to the two systems so that �U =U large − U small >0
is applied to the left half of the first system, and −�U is applied
to the right half of the second system. After the quenches,
both systems have the same interaction profile, with U large

(U small) in the left (right) half. Comparing the QSSCs of the
two systems then reveals the memory effect from initial states.

The difference in steady-state values of the currents and the
fidelities of the initial states are shown in Fig. 5(a) for bosons
with nB =1/2 and in Fig. 5(b) for fermions with nF =1/6.
Here, the current is averaged over a time period within the
steady-state regime, jB(F ) =

∑tf
t=ti �tjB(F )(t)/(tf − ti) with

�t =0.02t0, and the difference in averaged currents between

the two initial states are δjB(F ) =|j large
B(F ) − j small

B(F ) |. As one
can see, even though the final Hamiltonians are identical,
the steady-state currents do not necessarily agree. A larger
difference in the averaged currents indicates stronger memory
effects. In the same plot, the fidelity between the two initial
states shows that the steady-state memory effects are stronger
as the two initial states have less overlap. Interestingly, there
is no qualitative difference between the bosonic and the
fermionic results. The correlations from interactions, which
are missing in mean-field theory [32], are important for
correctly describing memory effects.

The BHM with nB =1 is a Mott insulator for the system
initially with U large =6J and the one initially with U small =5J ,
so the QSSC induced by �U =J is 0 and no memory effects
can be identified in Fig. 5(c). When using a smaller U small

(a stronger �U ) as the initial condition, the fidelity between
the two initial wave functions decreases, and memory effects

(a)

(b)

(d)(c)

FIG. 6. Memory effects of switching protocols for the BHM with
(a) nB =1/2 and (c) nB =1 and for the FHM with (b) nF =1/6 and
(d) nF =1/2. Memory effects of switching protocols are probed with
different finite ramping times tr = t0 and 7t0 for varying interaction
imbalances but a fixed initial interaction, U =J (red squares), and
for different initial interactions but the same interaction imbalance,
�U =3J (green circles). A larger difference in the averaged steady-
state currents indicates stronger memory effects. Starting with U =J ,
memory effects become stronger as the interaction imbalance
increases. Memory effects are suppressed when the initial interaction
is strong. For tr = t0 (7t0), the averages are taken between 5t0 and 10t0
(10t0 and 15t0).

start to emerge. After comparing different fillings with the
same parameter settings, we found that bosons at unity filling
exhibit stronger memory effects than bosons at low fillings.
Similar phenomena are also observed in the FHM as shown in
Fig. 5(d).

B. Memory effects of switching protocols

The second kind of memory effects arises from different
switching protocols, and here we focus on its dependence on
the ramping time when the interaction imbalance is switched
on linearly in time. Taking two systems with the same initial
and final configurations but with different ramping time scales
as illustrated in Fig. 1(b) and its inset, the memory effects
from different ramping time scales can then be identified from
the different QSSCs. The results are shown in Fig. 6, where
we chose two time scales tr = t0 and 7t0 and compare the
steady-state values. The figure shows the difference in average

currents between two time scales, δjB(F ) =|j 7t0
B(F ) − j

t0
B(F )|. We

have checked other values of tr between 5t0 and 7t0, and there
is no qualitative difference. We also found that, in general,
fermions exhibit stronger memory effects. On the other hand,
if the ramping of interaction imbalance becomes slower and
eventually reaches the adiabatic limit, i.e., tr →∞, there will
be no finite QSSCs, as the system remains in the equilibrium
state during time evolution.

Figure 6 offers clues on enhancing the memory effects
of switching protocols. With the initial interaction fixed, a
larger interaction imbalance tends to cause stronger memory
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effects regardless of the filling. For a finite system, a stronger
interaction imbalance can lead to stronger boundary effects and
limit the time a QSSC can be maintained. Thus, the memory
effects of switching protocols are more visible in interaction-
induced transport with a larger interaction imbalance and
smaller initial interaction.

For the BHM at unity filling and the FHM at half-filling,
the general conclusion still holds, as memory effects of
steady-state currents are amplified when applying a stronger
interaction imbalance with a weaker initial interaction. How-
ever, both the BHM and the FHM will suffer the dynamically
insulating state in the large interaction-imbalance regime, and
there we cannot find QSSCs or resolve memory effects in our
simulations. In the regimes where QSSCs can be sustained,
our results show that stronger memory effects can occur when
the BHM is at unity filling and the FHM is at half-filling as
shown in Figs. 6(c) and 6(d).

While memory effects of switching protocols are observ-
able in interaction-induced transport in both the BHM and
the FHM, they are more fragile in other settings, partly
because short-time correlations are usually averaged out. The
system enters the regime described by kinetic equations and is
insensitive to its transient behavior [53,54,67,68].

IV. CONTINUUM MODEL

To verify the ubiquity of memory effects, we also consider
weakly interacting bosons in the continuum. The zero-
temperature Bose-Einstein condensate and its dynamics may
be studied by the mean-field Gross-Pitaevskii equation (GPE)
[69,70]. It can be generalized to describe time-dependent
systems [71–73] and has been previously implemented in
modeling coherent transport [74,75]. In one dimension, the
time-dependent GPE can be written as

[
− h̄2

2m

d2

dx2
+ Vext(x) + Ũ (x,t)Nb|�|2

]
� = ih̄

∂

∂t
�, (3)

(a) (b)

FIG. 7. Dynamics of the GPE for Nb =10 bosons under (a) a
constant initial interaction Ũ =ER and (b) a constant interaction
imbalance �Ũ =ER . The results show decreasing QSSCs with
increasing initial interaction or decreasing interaction imbalance.
Statistical errors are within the symbol size and dashed lines indicates
the regime where the average is taken. Inset in (a): Averaged currents
for different interaction imbalances. Inset in (b): Amplitudes of the
condensate wave function near the center of the system (shaded
region) at time t =80t̃0 for two initial interactions, Ũ =ER (dashed
red line) and Ũ =4ER (solid blue line).

where �(r,t) is the condensate wave function, m is the
mass of the bosonic atom, and Nb is the number of bosons.
The coupling constant Ũ =4πh̄2as/m is determined by the
two-body s-wave scattering length as . In our simulation, the
external potential Vext(x) corresponds to a box potential which
confines the atoms. Here we solve the GPE with algorithms
involving real- and imaginary-time propagation based on a
split-step Crank-Nicolson method [71,76] and follow Ref. [77]
to normalize the wave function with

∫
dx|�(x)|2 =1.

A. Quasi-steady-state current

The initial state is the ground state of a system with size
l and a uniform interaction Ũ . The energy unit is the recoil
energy ER =π2h̄2/2ml2 and the time unit is t̃0 = h̄/ER . At
time t =0, the interaction imbalance is suddenly imposed with
�Ũ in the left half of the system, and we monitor the current
flowing through the middle, which can be calculated by

jGP(t) = d

dt

∫ L/2

0
dxNb|�(x,t)|2. (4)

In Fig. 7(a), the current reaches a plateau, indicating the
existence of a QSSC. The duration of the QSSC scales as
the system size increases, and the steady-state value allows
us to quantify memory effects unambiguously. We calculate
the averaged current jGP = ∑tf

t=ti �tjGP(t)/(tf − ti) in a time
window (ti ,tf ) where the QSSC lasts. Under the same initial in-
teraction, the QSSC increases as a larger interaction imbalance
is applied, as shown in the inset in Fig. 7(a). Macroscopically,
the current is driven by the pressure difference between the
two sides of the interaction imbalance. On the other hand,
the QSSC decreases as the initial interaction is stronger, as
shown in Fig. 7(b). This is because a larger interaction presents

(a)

(b)

FIG. 8. Memory effects of weakly interacting Bose gases de-
scribed by the GPE. (a) Two examples under different initial
conditions. Both cases reach the same final interaction configuration
with Ũ large in the left half and Ũ small in the right half. In case
(1), Ũ large =3ER (dashed-dotted purple line) and Ũ small =ER (thick
solid blue line) are compared. In case (2), Ũ large =1.5ER (dashed
green line) and Ũ small =0.5ER (thin solid red line) are compared.
The two examples show that the QSSCs depend on the initial
conditions. Inset: Initial profiles of the condensate wave functions
for Ũ =0.5ER (solid red line) and Ũ =1.5ER (dashed green line),
respectively. (b) Ramping of an interaction imbalance with finite time
scales tr = t̃0/2, 10t̃0 for systems with Nb =10 bosons for the two
cases Ũ =�Ũ/2=ER (top two lines) and Ũ =�Ũ =2ER (bottom
two lines). QSSC values from different ramping times cannot be
distinguished in either case.

033628-6



QUANTIFICATION OF THE MEMORY EFFECT OF . . . PHYSICAL REVIEW A 96, 033628 (2017)

a larger initial pressure and applying the same interaction
imbalance triggers a smaller percentage change in the pressure.
While the transport properties of the GPE are similar to that
of the BHM, the GPE does not exhibit the superfluid–Mott
insulator transition.

B. Memory effects of the continuum model

The memory effects of initial states can be observed in
the two examples of the GPE shown in Fig. 8(a). We note
that memory effects of initial states are more prominent in the
dilute limit (with a small Nb), as the two initial interactions
provide the more distinct density profiles shown in the inset
in Fig. 8(a). If the density is high (with a large Nb) and the
two interactions are too strong in the beginning, the resulting
initial states can be very similar and the memory effects will
be difficult to resolve. On the other hand, in Fig. 8 (b) we show
two examples which start with the same initial condition and
reach the same final configuration but with different ramping
times tr . In both examples, the steady-state values are the same
and there is no observable memory effect.

For the memory effects of switching schemes to survive, the
short-time correlations should not be averaged out completely.
This requires the Green’s function to depend sensitively on
short-time changes. However, this is probably not the case in
the continuum limit because the minimum difference in the
intrinsic time scale is determined by �t̃min ∼ h̄/�Emax, where
Emax may be identified as the width of the energy spectrum.
Since Emax has no upper bound in the continuum model but
is bounded by the bandwidth in lattice models, the Green’s
function always reduces to the “short-memory” approximation
in the continuum model because one t0 corresponds to many
�t̃min as the system evolves. As a consequence, short-time cor-
relations may survive and cause memory effects of switching
protocols in lattice models, but they are mostly averaged out
in the continuum.

V. FICK’S LAW AND GENERALIZED
DIFFUSION COEFFICIENT

In the absence of interactions, the transport is ballistic
and one may use the Landauer theory [54,78] to evaluate the
current if the system is connected to two particle reservoirs.
On the other hand, in interacting systems the numerous energy
levels may serve as a reservoir for the system itself [53]. After
averaging out the short-term correlations, one may obtain a
quantum kinetic equation for the density rather than the wave
function [53,67]. In one dimension, it has a form similar to
that of Fick’s law:

j (x,t) = −D(x,t)
∂

∂x
n(x,t). (5)

However, the diffusion coefficient D(x,t) can be a function of
the time and position and may be obtained from the space-time
integral of the real-time Green’s function G(x − x ′; t − t ′).

For instance, D(x,t) =
∫ t

−∞ w(t ′)dt ′
∫

G(x−x ′;t−t ′)dx

w(t)
∫

G(x−x ′;t−t ′)dx
, where w(t)

describes how the driving is introduced. The classical diffusion
limit may be obtained by using a slowly varying function in
the interval (−∞,t) for w(t) with the additional assumptions
of linearity, the long-wavelength restriction characteristic of

(a)

(c) (d)

(b)

FIG. 9. Evolution of density profiles and diffusion coefficients
of (a, c) the BHM with filling nB =1/2 and (b, d) the FHM with
nF =1/6 on a 60-site lattice. A constant density gradient appears
near the interface of the interaction imbalance (shaded region) when
the steady-state current lasts. (a) and (b) start with U =J and undergo
an interaction imbalance quench �U =J on the right half. (c) and
(d) fix �U =J (or U =J ) and vary U (or �U ). Here a0 is the lattice
constant.

simple fluids, and the time interval t − t ′ being of the order of
the mean free time.

At this point, the equation is still complicated, so it is
common to use the short-memory approximation. Thus, only
very recent information is relevant to the present behavior.
This approximation simplifies Eq. (5) to the classical diffusion
equation, where D(x,t) reduces to a constant and is identified
as the diffusion coefficient. Equation (5) is an approximation
of the full quantum description where short-time correlations
contribute to the coefficient D(x,t).

The steady states observed in our simulations suggest
that the systems may be described by kinetic equations
[53,54,67,68], where an effective description of the density
rather than the wave function can be applied. By analyzing
the evolution of density profiles following a suddenly induced
interaction imbalance, we identify a constant density gradient
across the interface of the interaction imbalance when the
steady-state current lasts, as illustrated in the shaded regions
in Figs. 9(a) and 9(b) for the BHM and FHM and in the inset
in Fig. 7(b) for the continuum model.

Fick’s law relates the mass current and density gradient
and implies diffusion-like behavior. Assuming that the isolated
systems in the quasi–steady states follow the kinetic equations,
we can estimate the diffusion coefficient defined by

DB(F ) = jB(F )

∇in
B(F )
i

. (6)

The averages are taken in the same time window, the spatial
gradient is taken along the lattice, and only the steady-state
density gradient at the interaction-imbalance interface is
considered. In Figs. 9(c) and 9(d), we show the diffusion
coefficients extracted from the BHM and FHM following a
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(a) (b)
(c)

FIG. 10. QSSC in potential-induced transport in the BHM with nB =1/2. The on-site potential energy in the left half of the system
experiences a sudden change of �V =J . (a) Current versus time for two systems with different initial interactions U = 3J (dashed line) and
U =5J (solid line). (b) Density profiles at different times and (c) density contour for a system with initial interaction U =5J .

sudden quench of interaction imbalance. Importantly, due to
memory effects of initial states, the diffusion coefficients are
sensitive to the initial conditions even if the final Hamiltonians
are the same. Therefore, in isolated interacting systems the
diffusion coefficients can inherit the long-time memory of
initial states.

The diffusion coefficient exhibits an interesting dependence
on the spin statistics. With a fixed initial interaction, the
diffusion coefficient increases with interaction imbalance in
both spin statistics, although the variation in the BHM is
very limited. On the other hand, with a fixed interaction
imbalance, the diffusion coefficient of the BHM (FHM)
increases (decreases) monotonically as the initial interaction
increases. Our results, however, do not exclude the possibilities
that the transport behavior is more complicated than the kinetic
equations or their generalizations.

We remark that Eq. (6) may be more common than
previously thought. For instance, the spreading of a single-
particle Gaussian wave packet has both time and initial state
dependence. The wave function of a single-particle Gaussian
wave is the packet [79]

ψ(x,t) =
[

1

σ [1 + i(t/τ )]
√

2π

] 1
2

exp

{
−1

4

(x − a)2

σ 2[1 + i(t/τ )]

}
.

(7)

The initial condition has a normal distribution with
mean 〈x〉=a and variance 〈(x − a)2〉=σ 2, and we
define τ =2mσ 2/h̄2. The probability distribution is
P (x,t) = |ψ(x,t)|2 = 1

σ (t)
√

2π
exp {− 1

2 [ x−a
σ (t) ]2}, where σ (t)=

σ
√

1 + (t/τ )2. This wave packet has a fixed mean (x =a, ∀t)
but a growing variance. The current density can be obtained
from Eq. (7) as

j = h̄

2mi
[ψ∗∇ψ − (∇ψ∗)ψ] = − h̄(t/τ )

2m
∇P (x,t). (8)

By using ∇P (x,t) = − x−a
σ 2(t)P (x,t) and comparing the result

with Eq. (5), we conclude that

D(t) = h̄3

4m2σ 2
t. (9)

The diffusion coefficient obtained here is a time-dependent
function instead of a constant.

VI. MEMORY EFFECTS IN POTENTIAL-INDUCED
TRANSPORT

Alternatively, one can use a potential imbalance to drive
a current while keeping the interaction uniform. The time-
dependent part of the Hamiltonian is an on-site potential,

HBHM(t) = HBHM +
∑

i

V (i,t)ni, (10)

for the BHM and

HFHM(t) = HFHM +
∑
i,σ

V (i,t)ni,σ (11)

for the FHM. HBHM and HFHM are defined in Eqs. (1) and
(2) with U (i,t) = U , ∀i,t . Initially, the potential energy is
uniform, V (i,t � 0) = 0, ∀i, and the system is in the ground
state. A current can be induced by introducing a step-function
imbalance in the potential energy so that V (i ∈ L,t � 0)=
�V =J as shown in Fig. 10. The QSSC emerges again in
potential-induced transport, so we are able to identify the
memory effects in this settings. We mention that the potential
bias is applied uniformly to the left half of the system, unlike
the constant potential gradient across the entire system as
implemented in the study of Bloch oscillations [80,81].

A downside of potential-induced transport is that in isolated
systems, energy conservation prevents exchange of particles if
the potential imbalance is larger than the bandwidth [32]. As a
consequence, the system enters a dynamically insulating state
if �V > 4J . Therefore, here we only demonstrate two values
of potential imbalance, �V =J and 2J .

From the values of QSSCs we can determine whether there
are memory effects of initial states or switching protocols
in potential-induced transport. The results are summarized in
Fig. 11. The QSSCs clearly depend on the initial interaction
U , and when U/J is small the QSSC increases with the
uniform interaction. By comparing two QSSCs with two
different interactions but with the same �V in Fig. 11(b),
the memory effects of initial states are clearly identified. In
contrast, Figs. 11(c) and 11(d) show that two systems with the
same initial uniform interaction U and potential imbalance �V

but with different ramping times have the same steady-state
QSSC values. In the available parameter space, we found
that memory effects of switching protocols are not resolvable
in potential-induced transport in lattices, mainly due to the
limited potential difference, which should be less than the
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(a)

(c) (d)

(b)

FIG. 11. Currents in potential-induced transport of the BHM with
L=60 sites and nB =1/2. (a) Currents at the interface of the potential
imbalance versus time for different uniform b interactions. Here
�V =J . (b) QSSCs from systems with different uniform interactions,
showing a clear dependence on the initial states. Insets: Results for
the FHM with nF =1/6 and similar parameters. (c, d) Averaged
steady-state values from different ramping times when the same
potential imbalance is switched on linearly in time. �V =2J in (c)
and �V =J in (d), and all symbols overlap within the error bars for
each U . Memory effects of switching protocols are not resolvable
here.

bandwidth. The same conclusions can be drawn for the FHM
and the results are shown in the insets in Figs. 11(b) and 11(d).

VII. EXPERIMENTAL IMPLICATIONS

The mass current can be experimentally obtained from
the time derivative of the density profile [82–86]. In order
to observe quasi–steady states, one may need at least 30 lattice
sites [87,88]. The memory effects of initial states can be
maximized by using two systems with very different initial
interactions so their initial ground states are distinct. For the
memory effects of switching protocols, one has to ramp the
interaction imbalance with different time scales, and our results
suggest that fermions at half-filling or bosons at unity filling
will exhibit stronger memory effects. However, the stronger
interaction energy limits the time window for measuring the
QSSC and this limitation is also discussed. The memory effects
presented here should survive in the thermodynamic limit
when the system size becomes infinity as long as no additional
relaxation is introduced. Since the BHM supports superfluids,
dissipation effects such as phase slip [89,90] may relax the
system and eventually wash out the memory effects found here.

Both fermionic and bosonic quantum atomic gases can be
trapped in 1D lattices [91–94], and the interactions between
atoms can be tuned by external magnetic fields or optical
means [95]. A spatial interaction imbalance can be produced
experimentally by a nonuniform magnetic field [95,96], or
optical control of atomic collisions [97–103]. Reference [97]
has demonstrated a spatial density modulation using an
optical Feshbach resonance of bosons, and one may also
use inhomogeneous confinement potentials to modulate the

interactions in real space [104–107]. The external magnetic
field can change the initial interaction [95], while the optical
control provides an interaction imbalance. Although it may
be possible to use a nonuniform magnetic field to induce
interaction imbalance, the challenge is to make the interface
separating regions with different interactions narrow compared
to the atomic cloud size. By making the spatially imbalanced
interaction time dependent, one can drive the system out
of equilibrium and probe memory effects. We remark that
allowing a finite width of the interaction-imbalance interface
does not lead to any qualitative difference in our findings if the
width is small, but as the temperature increases, the smooth
spreading of the particle distribution is expected to reduce
quantum memory effects.

VIII. CONCLUSION

Interaction-induced transport properties are shown to be a
versatile platform for studying quantum dynamics, in particu-
lar, steady-state memory effects. For dilute atomic gases, the
value of a QSSC increases (decreases) as a stronger interaction
imbalance (initial interaction) is applied to an isolated system.
For bosons with unity filling and fermions with half-filling, the
behavior is qualitatively the same, and breakdown of the Mott
insulating state has been found with both statistics. In contrast
to electronic systems, where external relaxation mechanisms
such as interactions with impurities and the background ionic
lattice bring the systems into a unique equilibrium or steady
state, in isolated quantum systems without relaxation long-
time memory effects can persist. Evidence of memory effects
in the quasi–steady states induced by interaction imbalance has
been presented here for both the BHM and the FHM. Memory
effects of the initial states are quite prevalent, but memory
effects of the switching protocols are mostly visible only
in lattice interaction-induced transport. The memory effects
discussed here in isolated quantum systems can be understood
in the following way: As the states evolve with different but
conserved energies, they result in different final steady states
even if the final Hamiltonian is the same. Similar effects are
also discussed in doublon dynamics in both theoretical and
experimental studies [108–111], where the highly occupied
states cannot be easily relaxed due to energy conservation.

Memory effects of steady-state currents in isolated quan-
tum systems can lead to nonconstant diffusion coefficients
if the kinetic-equation approach is used to describe the
steady-state behavior. Moreover, the steady-state current in
quantum systems may find future applications. For instance,
atomic superfluids in a ring-shaped potential may simulate
superconducting devices [112]. Exploiting memory effects of
steady-state currents in isolated systems may lead to alternative
designs of quantum devices as proposed in Ref. [35].
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