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A new generation of cold atom experiments trapping atomic mixtures in species-selective optical potentials
opens up the intriguing possibility to create systems in which different atoms live in different spatial dimensions.
Inspired by this, we investigate a mixed-dimensional Bose polaron consisting of an impurity particle moving in a
two-dimensional (2D) layer immersed in a 3D Bose-Einstein condensate (BEC), using a theory that includes the
mixed-dimensional vacuum scattering between the impurity and the bosons exactly. We show that similarly to
the pure 3D case, this system exhibits a well-defined polaron state for attractive boson-impurity interaction that
evolves smoothly into a mixed-dimensional dimer for strong attraction, as well as a well-defined polaron state
for weak repulsive interaction, which becomes overdamped for strong interaction. We furthermore find that the
properties of the polaron depend only weakly on the gas parameter of the BEC as long as the Bogoliubov theory
remains a valid description for the BEC. This indicates that higher-order correlations between the impurity and
the bosons are suppressed by the mixed-dimensional geometry in comparison to a pure 3D system, which led us to
speculate that the mixed-dimensional polaron has universal properties in the unitarity limit of the impurity-boson
interaction.
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I. INTRODUCTION

The problem of a mobile impurity particle in a quantum
reservoir plays a central role in physical systems across many
energy scales, ranging from 3He-4He mixtures [1] and polarons
in condensed matter systems [2,3], to elementary particles
surrounded by the Higgs field giving them their mass [4]. Our
understanding of the impurity physics has improved signifi-
cantly with the experimental realization of highly population-
imbalanced atomic gases, where the minority atoms play the
role of the impurities, and the majority atoms constitute the
quantum environment. A powerful feature of atomic gases
is that the interaction between the impurity atom and the
surrounding gas can be tuned experimentally using Feshbach
resonances [5]. This opens up the possibility to systematically
study the effects of strong correlations between the impurity
and the environment. The first experiments realized impurity
atoms in a degenerate Fermi gas [6–9], coined the Fermi
polaron, for which we now have accurate theories even in the
case of strong interactions [10–20]. The Bose polaron, i.e., an
impurity atom in a Bose-Einstein condensate (BEC), has been
realized in a one-dimensional (1D) geometry [21] as well as in
three dimensions [22,23]. Whereas early theories for the Bose
polaron were based on the so-called Fröhlich model [24–27],
perturbation theory explicitly shows that this model breaks
down at third order in the interaction strength [28]. Using a
microscopic theory, the results of a diagrammatic calculation
[29], a variational ansatz including Efimov physics [30] or the
dressing by many Bogoliubov modes [31], and Monte Carlo
calculations [32,33] all give results consistent with the exper-
imental data. Most recently, it was shown that even Efimov
physics can be detected in the Bose polaron spectrum [34].

An exciting development is the creation of novel mixed-
dimensional systems using cold atoms in species selective
optical lattices [35–40]. The mixed-dimensional geometry
gives rise to new effects already at the few-body level such
as a strong enhancement of the interaction between atoms by

confinement-induced resonances [41]. At the many-body level,
these systems have been predicted to give rise to a plethora of
interesting phenomena including strong induced interactions
[42], enhanced Kondo coupling [43] and unconventional
superfluid phases [44,45], some of which with nontrivial
topological properties [46–49]. Since the polaron problem has
proven to be a powerful probe into strong correlations, it is of
interest to examine this problem in a mixed-dimensional setup.

In this paper, we examine a mixed-dimensional Bose
polaron, where the impurity particle is confined to move
in a 2D plane immersed in a 3D BEC (see Fig. 1). Using
a diagrammatic ladder approximation, which includes the
mixed-dimensional 2D-3D vacuum scattering between the
impurity and the bosons exactly, we calculate the quasiparticle
properties of the polaron as a function of the impurity-boson in-
teraction strength and the gas parameter of the BEC. We show
that the impurity problem has the same qualitative features as
that for the pure 3D case. There is a well-defined quasiparticle
for attractive impurity-boson interaction (attractive polaron),
which smoothly evolves into a mixed-dimensional dimer state
consisting of a boson in 3D bound to the impurity in the
plane for strong interaction. For repulsive impurity-boson
interaction, there is also a well-defined quasiparticle state
(repulsive polaron), which becomes overdamped for strong
interaction. The theory predicts that the dependence of the
properties of the polaron on the gas parameter of the BEC
is weaker than in the pure 3D case. This indicates that the
polaron has universal properties in the unitarity limit of the
impurity-boson interaction. We argue that this could be due to
the fact that the effects of the impurity on the bosons are limited
by the mixed-dimensional geometry such that higher-order
correlations are suppressed.

II. MODEL

We consider a single impurity atom of mass m confined in
the 2D xy plane by a strong harmonic trap mω2
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FIG. 1. Sketch of the system: 2D impurity particle (blue) im-
mersed in a 3D Bose-Einstein condensate (red).

the z direction. Since only one impurity is considered, our
results of course do not depend on the statistics of the impurity.
For concreteness, we take the impurity to be a fermion. The
impurity atom is immersed in a weakly interacting 3D Bose gas
of atoms with mass mB (see Fig. 1). The bosons form a BEC
with density n0, which is accurately described by Bogoliubov
theory since we assume n

1/3
0 aB � 1, where aB is the boson

scattering length. The Hamiltonian of the system is

H =
∑
p⊥

p2
⊥

2m
a†

p⊥ap⊥ +
∑

p

Epγ
†
p γp + Hint, (1)

where a
†
p⊥ creates an impurity with 2D momentum p⊥ =

(px,py), and γ
†
p creates Bogoliubov mode in the BEC with

3D momentum p and energy Ep = √
εp(εp + 2nBgB). Here

εp = p2/2mB and gB = 4πaB/mB . Throughout this paper, we
set h̄ = kB = 1. For clarity we will use the ⊥ sign to denote
vectors in the plane in order to distinguish them from the 3D
vectors. The interaction between the bosons and the impurity
is

Hint = 1

V
∑
pp′

⊥q

e−(qzlz/2)2
V (q)b†p+qa

†
p′

⊥−q⊥
ap′

⊥bp, (2)

where q = (q⊥,qz), lz = 1/
√

mωz is the harmonic oscillator
length for the vertical trap and V (q) is the boson-fermion
interaction potential. The latter will later be eliminated in favor
of the effective 2D-3D scattering length aeff . The operator b

†
p

creates a boson with momentum p, and it is related to the
Bogoliubov mode creation operators by the usual relation bp =
upγp − vpγ

†
−p with u2

p = [(εp + gBnB)/Ep + 1]/2 and v2
p =

[(εp + gBnB)/Ep − 1]/2. We have in Eq. (2) assumed that due
to the strong confinement, the impurity resides in the lowest
harmonic oscillator state φ0(z) = exp {−z2/2l2

z }/π1/4√lz in
the z direction. The exponential factor in Eq. (2) comes from
the Fourier transform of φ0(z). Note that only transverse
momentum is conserved during boson-impurity collisions due
to the confinement of the impurity in the vertical direction.

III. SELF-ENERGY

We employ the ladder approximation to calculate the self-
energy of the Bose polaron [29]. For the Fermi polaron, this
approximation has proven to be surprisingly accurate even for
strong interactions [10–14,16,17]. The accuracy of the ladder
approximation is less clear for the Bose polaron since there is
no Pauli principle, which suppresses more than one fermion

(a) Σ

Σ

=

=

T

Σ0

+

+

T

Σ1

(b) T = g + Tg

FIG. 2. Diagrams used in the ladder approximation for the
impurity. A solid line represents an impurity propagator, a dashed
line denotes a boson propagator, and a dotted line denotes a boson
emitted or absorbed by the BEC. (a) The polaron self-energy given
by the sum of the diagrams �0 and �1. (b) The T matrix giving the
scattering between the impurity and a boson.

from being close to the impurity. The ladder approximation
neglects such higher-order correlations, which, for instance,
can lead to the formation of a three-body Efimov state
consisting of the impurity atom and two bosons. In Ref. [30],
it was shown that these Efimov correlations are important
when the scattering length a−, for which the first Efimov
trimer occurs, is comparable to or smaller than the interparticle
distance in the BEC, whereas their effects are small for larger
a−. It has also been shown that the Efimov effect is suppressed
in reduced dimensions as compared to the pure 3D case
[50]. We therefore assume that higher-order correlations are
suppressed in the mixed-dimensional geometry, and we resort
to the ladder approximation in the following.

Within the ladder approximation, the polaron self-energy
for momentum-frequency (k⊥,iωn) is given by [see Fig. 2(a)]

�(k⊥,iωn) = �0(k⊥,iωn) + �1(k⊥,iωn), (3)

where

�0(k⊥,iωn) = nBT (k⊥,iωn) (4)

describes the scattering of bosons out of the condensate by
the impurity with T the mixed-dimension scattering matrix
(see below). The calculations are all performed using finite
temperature field theory with ωn = (2n + 1)πT a fermionic
Matsubara frequency where T is the temperature and n is an
integer. Once all frequency summations are performed, we let
the temperature go to zero since this limit is the focus of the
present paper. The self-energy coming from the scattering of
bosons not in the condensate is

�1(k⊥,iωn) = −T
∑

ν

∫
d3p

(2π )3
G11(p,iων)

× T (k⊥ + p⊥,iωn + iων), (5)

where ων = 2νπT is a bosonic Matsubara frequency with ν

being an integer. The normal Bogoliubov Green’s function for
the bosons is

G11(q,iων) = u2
q

iων − Eq
− v2

q

iων + Eq
. (6)

033625-2



MIXED-DIMENSIONAL BOSE POLARON PHYSICAL REVIEW A 96, 033625 (2017)

The 2D-3D scattering matrix between the impurity and a boson
can be written as (see Fig. 2(b)) [46]

T (P⊥,iωm) = 1

g−1 − 	(P⊥,iωm)
. (7)

Here g = 2πaeff/
√

mBmr , mr = mmB/(m + mB) is the re-
duced mass, aeff is the effective 2D-3D scattering length and
	(P⊥,iωn) is the pair propagator. The effective scattering
length is a function of the 3D boson-impurity scattering length
and the trap harmonic oscillator length lz along the z direction.
This leads to several confinement-induced resonances, which
can be exploited to tune the 2D-3D interaction strength [41].

The mixed-dimensional pair propagator is given by

	(P⊥,iωm) = −T
∑

ν

∫
d3p

(2π )3
G11(p,iων)

×G0(P⊥ − p⊥,iωm − iων), (8)

where G0(q,iωn) = [iωn − ξq]−1 is the bare impurity prop-
agator with ξq = q2/2m − μ the bare energy relative to
the impurity chemical potential. We keep a finite chemical
potential μ for the impurity when we derive the analytic
expressions for all the relevant physical quantities. In the end,
after all the Matsubara sums have been performed, we only
retain those terms that survive the limit μ → ∞. Taking this
limit ensures that the system has a vanishing concentration
of impurities. This is a systematic way to obtain correct
results relevant for a single impurity problem. Performing the
Matsubara summation we arrive at

	(P⊥,iωm) =
∫

d3p

(2π )3

[
u2

p(1 + fp)

iωm − Ep − ξP⊥−p⊥

+ v2
pfp

iωm + Ep − ξP⊥−p⊥
+ 2mB

p2 + p2
⊥/α

]
, (9)

where fp = [exp(Ep/T ) − 1]−1 is the Bose distribution func-
tion and α = m/mB is the ratio of the impurity and boson
masses. The last term in the brackets in Eq. (9) comes
from the regularization of the pair propagator by identifying
the molecular pole of the T matrix at zero center-of-mass
momentum in vacuum with ωM = −1/2mra

2
eff for aeff > 0

[46].
Equations (3)–(9) have the usual structure of the ladder

approximation for a 3D Fermi polaron apart from two
differences: First, the scattering medium is a BEC, which
involves processes describing the scattering of bosons into and
out of the condensate; second, the mixed-dimension 2D-3D
scattering geometry has no intrinsic rotational symmetry,
which complicates the evaluation of the resulting integrals
significantly compared to the usual 3D case, as we shall discuss
below.

IV. QUASIPARTICLE PROPERTIES

The quasiparticle properties of the mixed dimension po-
laron are encapsulated in the single-particle retarded Green’s
function

G(k⊥,ω) = 1

ω + i0+ − �(k⊥,ω)
, (10)

where �(k⊥,ω) is the retarded polaron self-energy obtained
from performing the analytical continuation iωn + μ →
ω + i0+. To characterize the quasiparticle, we calculate its
dispersion, residue, and effective mass. The quasiparticle
dispersion εk⊥ for a given momentum k⊥ is found by solving
the self-consistent equation

εk⊥ = k2
⊥

2m
+ Re�(k⊥,εk⊥ ), (11)

where we assume that the damping (determined by the
imaginary part of �) of the polaron is small. The quasiparticle
residue is

Zk⊥ = 1

1 − ∂ωRe�(k⊥,ω)|ω=εk⊥

, (12)

and the effective mass is

m∗
k⊥ = Z−1

k⊥

m−1 + k−1
⊥ ∂k⊥Re�(k⊥,ω)|ω=εk⊥

. (13)

It should be noted that � only depends on the length of k⊥,
denoted k⊥ above. We shall also calculate the spectral function
of the polaron defined as

A(k⊥,ω) = −2ImG(k⊥,ω). (14)

V. NUMERICAL CALCULATION

The mixed-dimensional geometry turns out to significantly
complicate the numerical calculation of the polaron self-
energy. The reason is that the scattering of the impurity on
a boson does not conserve momentum along the z direction
and therefore has no rotational symmetry, which can be used to
reduce the number of convoluted integrals in the self-energy.
This means that in order to make progress, we have to
use simplifications for the calculation of �1(k⊥,ω) given by
Eq. (5), which involves six convoluted integrals. For �1(k⊥,ω)
we shall approximate the mixed-dimension pair propagator by
that for a noninteracting Bose gas. Since we focus on the case
of zero temperature, the pair propagator is then given by the
vacuum expression

	vac(P⊥,iωm) = −i

√
mBmr√

2π

√
iωm + μ − P2

⊥
2M

, (15)

where M = m + mB and the complex square root is taken
in the upper half-plane. Physically, this approximation corre-
sponds to assuming that the boson-impurity scattering is unaf-
fected by the BEC medium, which is a good approximation for
momenta p � 1/ξB , where ξB = 1/

√
8πn0aB is the coherence

length of the BEC. With this approximation, the numerical
evaluation of �1(k⊥,ω) becomes feasible. In the following,
we shall suppress the momentum label k⊥ for the polaron,
as we only consider the case of a zero-momentum polaron
k⊥ = 0. We refer the reader to the Appendix for details of the
numerical procedure.

VI. RESULTS

In this section, we present numerical results for the
quasiparticle properties of the Bose polaron. In Fig. 3, we
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FIG. 3. The quasiparticle energy for zero momentum as a
function of the inverse Fermi-Bose interaction strength.

plot the polaron energy ε/εn for zero momentum as a
function of the inverse coupling strength 1/knaeff at zero
temperature. We have defined the momentum and energy
scales as kn = (6π2nB)1/3 and εn = k2

n/2mB , respectively.
The energy is calculated for various gas parameters n

1/3
0 aB

of the BEC, and for the mass ratios α = m/mB = 1 and
α = 40/87 relevant for the experiments in Refs. [22] and [23].
The corresponding quasiparticle residue and effective mass are
plotted in Figs. 4–5. As for the 3D case, we see that there are
two polaronic branches: One at negative energy ε < 0, which
is called attractive polaron, and one at positive energy ε > 0,
which is called the repulsive polaron.

For weak attractive interactions 1/knaeff � −4, the energy
of the attractive polaron is close to the mean-field result gnB ,
where nB is the total density of the bosons, the residue is
Z 	 1, and the effective mass is m∗ 	 m. As the attraction is
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FIG. 4. The quasiparticle residue for zero momentum as a
function of the inverse Fermi-Bose interaction strength.
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FIG. 5. The effective mass for zero momentum as a function of
the inverse Fermi-Bose interaction strength.

increased, the polaron energy decreases, but it is significantly
higher than the mean-field prediction. Contrary to the mean-
field prediction, the polaron energy is finite at unitarity
1/knaeff = 0, where we find the following quasiparticle prop-
erties: ε/εn 	 −0.54, Z 	 0.7, m∗/m 	 1.17 for α = 1 and
ε/εn 	 −0.75, Z 	 0.7, m∗/m 	 1.26 for α = 40/87. These
results are universal in the sense that they depend only weakly
on the BEC gas parameter in the range 0.01 � n

1/3
0 aB � 0.2

within the theory, as can be seen from Figs. 3–5. This should be
contrasted with the case of a 3D Bose polaron, where a stronger
dependence was found using the same ladder approximation
[29]. The predicted universality of the polaron energy at
unitarity could be an artifact of the ladder approximation.
Indeed, there is presently no quantitatively reliable theory
for whether the Bose polaron exists in the strongly correlated
unitarity regime. In the pure 3D case, one particular variational
ansatz including the dressing of the impurity with more than
one Bogoliubov mode predicts that the Bose polaron does
not exist at unitarity [31], whereas another variational ansatz,
which goes beyond the one Bogoliubov mode approximation
including the correct three-body Efimov correlations, predicts
the polaron can be perfectly well defined at unitarity provided
the Efimov state is larger than the interparticle spacing [30].
So far, Monte Carlo calculations have not provided an answer
to this interesting question and the experimental results are
ambiguous. We speculate that the results reported in this paper
are more reliable, since the impurity living in two dimensions
affects the bosons living in three dimensions less. Thus, higher-
order correlations neglected by the ladder approximation
might be less important in the present mixed-dimensional
geometry. This is supported by the fact that three-body Efimov
physics is suppressed in mixed-dimensional setups as noted
above [50]. Our theory does not predict any instability as
aB → 0 in contrast to Monte Carlo calculations for the 3D
Bose polaron, where it was associated to the clustering of
many bosons around to the impurity [32]. Similar effects for
the 3D Bose polaron were found in Ref. [51]. Eventually,
the attractive polaron energy approaches the dimer energy
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FIG. 6. The spectral function of the zero-momentum polaron as
a function of frequency and inverse Fermi-Bose interaction strength.

−1/2mra
2
eff on the BEC side (aeff > 0) of the resonance, the

residue approaches zero, and the effective mass approaches
m∗ = m + mB . This reflects the fact the impurity has formed
a mixed-dimensional dimer state with one boson from the
BEC, in analogy with what happens for the 3D polaron.

The repulsive polaron is well defined for weak repulsive
interactions 1/knaeff 
 1 with an energy close to the mean-
field result gnB , a residue Z 	 1, and an effective mass
m∗ 	 m. As the repulsion increases, the energy and effective
mass increase, whereas the residue decreases. We find that
the polaron becomes ill defined for strong repulsion 0 <

1/knaeff � 0.8, where the numerics cannot find the residue
and effective mass due to a large imaginary part of the
self-energy.

To investigate this further, we plot in Fig. 6 the spectral
function A(ω) of the polaron as a function of 1/knaeff for
zero temperature and a BEC gas parameter n

1/3
0 aB = 0.1. As

expected, the attractive polaron gives rise to a sharp peak with
a width given by the small imaginary part iδ/εn � i10−5,
which is added by hand to the frequency in the numerical
calculations. We see that there is also a continuum of spectral
weight for ω > 0. This continuum corresponds to states
consisting of an impurity with transverse momentum p⊥ and a
Bogoliubov mode with momentum p = (−p⊥,pz). Since the
ladder approximation treats the scattered impurity as a bare
particle, the energy of these continuum states are predicted
to be ω = p2

⊥/2m + Ep with a threshold at ω = 0. This is,
however, not physical since the scattered impurity also forms a
polaron, and a more elaborate theory including self-consistent
impurity propagators in all diagrams would yield a continuum
starting just above the polaron quasiparticle peak on the
attractive side aeff < 0 of the resonance [29].

We see from Fig. 6 that the polaron peak on the repulsive
side aeff > 0 is strongly damped as the interaction is increased
towards the unitarity limit. This is because it sits right in the
middle of the continuum described above. It is due to this
strong damping that the repulsive polaron residue and effective
mass cannot be calculated for 1/knaeff � 0.8 as can be seen

from Figs. 4–5. This result for the damping is, however, not
quantitatively reliable since the continuum is not treated in
a self-consistent manner as noted above. Also, we have not
included three-body decay of the repulsive polaron into the
dimer state [16,52,53]. Nevertheless, we expect the nonzero
damping of the repulsive polaron predicted by the ladder
approximation to be qualitatively correct, since it does contain
the two-body decay into a Bogoliubov mode and a scattered
impurity in an approximate way, which likely is dominant in
analogy with the 3D case [16].

VII. CONCLUSIONS

In conclusion, we analyzed a mixed-dimensional Bose
polaron, where the impurity particle moves in a 2D plane im-
mersed in a 3D BEC. Using a diagrammatic ladder approxima-
tion that includes the mixed-dimensional 2D-3D vacuum scat-
tering between the impurity and the bosons exactly, the mixed-
dimensional polaron was shown to exhibit the same qualitative
features as the pure 3D Bose-polaron. In particular, there
is a well-defined polaron state for attractive impurity-boson
interaction that smoothly develops into a mixed-dimensional
dimer for strong attraction, and there is a well-defined polaron
state for weak repulsive interaction, which becomes strongly
damped as the repulsion increases. As opposed to the 3D case,
our calculations predict that the properties of the polaron are
almost independent of the gas parameter of the BEC as long
as it is small so that Bogoliubov theory applies. It follows that
the polaron has universal properties in the unitarity limit of
the impurity-boson interaction. We speculate that higher-order
correlations, which could change this result, are suppressed
in the mixed-dimensional geometry. The fact that we predict
well-defined quasiparticles in mixed-dimensional systems
indicates that these systems should be well described by Fermi
liquid theory, which will be interesting to investigate in the
future.
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APPENDIX

In this Appendix we derive the expressions we implemented
numerically to obtain the results discussed in the paper. We will
also comment on the approximations used in order to obtain
an efficient numerical code.

First we derive expressions for �0(k⊥,ω) and �1(k⊥,ω)
that sum to be the polaron self-energy �(k⊥,ω), the key
ingredient in all further computations. From the self-energy
we may directly evaluate the spectral function A(k⊥,ω) from
Eq. (14) and obtain the quasiparticle energy εk⊥ as the solution
to Eq. (11). The quasiparticle residue Zk⊥ and the effective
mass m∗

k⊥ given by Eqs. (12)–(13) require the derivatives of
the self-energy.
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1. �0 and its derivatives

Computation of �0(k⊥,ω) as given in Eq. (4) requires the pair propagator given in Eq. (9) with iωm + μ → ω + i0+. In this
section we consider the following:

�0(0,ω) = nB

g−1 − 	(0,ω)
(A1)

∂ω�0(0,ω) = 1

nB

[�0(0,ω)]2∂ω	(0,ω) (A2)

k−1
⊥ ∂k⊥�0(k⊥,ω)|k⊥=0 = 1

nB

[�0(0,ω)]2k−1
⊥ ∂k⊥	(k⊥,ω)|k⊥=0. (A3)

We start by simplifying the pair propagator by taking the zero-temperature limit, i.e., by setting the Bose distribution function
fp = 0. In spherical coordinates the pair propagator becomes:

	(k⊥,ω) = 2mB

(2π )3

∫ ∞

0
dp p2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

×
[(

p2 + g̃B

2Ẽp

+ 1

2

)
1

2mBω − Ẽp − α−1(p2 sin2 θ + k2
⊥ − 2pk⊥ sin θ cos φ) + i0+ + 1

p2(1 + α−1 sin2 θ )

]
(A4)

with Ẽp ≡
√

p2(p2 + 2g̃B) and g̃B ≡ 2mBgBnB . The integral over φ is trivial when k⊥ = 0, but it can be performed also in the
case k⊥ �= 0. In the latter case, we let z0 = [2mBω − Ẽp − α−1(p2 sin2 θ + k2

⊥) + i0+]/(2α−1pk⊥ sin θ ) located in the upper

half complex plane. The φ integral takes the form
∫ 2π

0 dφ (z0 + cos φ)−1 = 2π/(
√

z0 − 1
√

z0 + 1), where the complex square
roots should be taken in the upper half-plane. The integral over θ can be simplified by defining x = − cos θ and substituting∫ π

0 dθ sin θ → 2
∫ 1

0 dx, yielding for the pair propagator:

	(k⊥,ω) = 2mB

2π2

∫ ∞

0
dp

∫ 1

0
dx

[(
p2 + g̃B

2Ẽp

+ 1

2

)
p2

√
z+

√
z−

+ 1

1 + α−1(1 − x2)

]

= 2mB

2π2

∫ ∞

0
dp

[(
p2 + g̃B

2Ẽp

+ 1

2

) ∫ 1

0
dx

p2

√
z+

√
z−

+ arcsinh(α−1/2)√
α−1(α−1 + 1)

]
(A5)

with z± = 2mBω − Ẽp − α−1(p
√

1 − x2 ± k⊥)2 + i0+. In the case k⊥ = 0 the expression reduces to

	(0,ω) = 2mB

2π2

∫ ∞

0
dp

[(
p2 + g̃B

2Ẽp

+ 1

2

) ∫ 1

0
dx

p2

2mBω − Ẽp − α−1p2(1 − x2) + i0+ + arcsinh(α−1/2)√
α−1(α−1 + 1)

]

= 2mB

2π2

∫ ∞

0
dp

[(
p2 + g̃B

2Ẽp

+ 1

2

)
P

∫ 1

0
dx

p2

2mBω − Ẽp − α−1p2(1 − x2)
+ arcsinh(α−1/2)√

α−1(α−1 + 1)

]

− iπ
2mB

2π2

∫ ∞

0
dp p2

(
p2 + g̃B

2Ẽp

+ 1

2

)∫ 1

0
dx δ(2mBω − Ẽp − α−1p2(1 − x2)). (A6)

The second equality separates the real and imaginary part of the integral. Here P denotes the Cauchy principal value integral
and δ(x) is the Dirac δ function. In practice we use the first line in Eq. (A6) to calculate the real part of the integral by setting
0+ to a positive number, which is sufficiently small. We let z1 = (2mBω − Ẽp − α−1p2 + i0+)α/p2 and take the x integral as∫ 1

0 dx (z1 + x2)−1 = arccot(
√

z1)/
√

z1 with the complex square root taken in the upper half-plane. Hence

Re	(0,ω) = 2mB

2π2

∫ ∞

0
dp

[(
p2 + g̃B

2Ẽp

+ 1

2

)
Re

(
α arccot(

√
z1)√

z1

)
+ arcsinh(α−1/2)√

α−1(α−1 + 1)

]
. (A7)

For the imaginary part of the pair propagator, we define a new variable u = 1 − x2 and the function uδ(p) = (2mBω − Ẽp)α/p2,
which allows us to express

Im	(0,ω) = −2mB

2π

∫ ∞

0
dp

(
p2 + g̃B

2Ẽp

+ 1

2

) ∫ 1

0
du

α

2
√

1 − u
δ(uδ(p) − u). (A8)

The Dirac δ function is only nonvanishing along the u integration interval for those values of p where 0 < uδ(p) < 1. Notice
that this implies that Im	(0,ω) = 0 for ω � 0. In the case ω > 0 we have to determine the values of p in the integration interval
that fulfill 0 < uδ(p) < 1. Formally we may define this set as V = {p ∈ (0; ∞) : uδ(p) ∈ (0; 1)}. Since the Dirac δ function
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contributes only when p ∈ V , we have

Im	(0,ω) = −2mB

2π

∫
V

dp

(
p2 + g̃B

2Ẽp

+ 1

2

)
α

2
√

1 − uδ(p)
. (A9)

We now prove that V is an interval. First, notice that uδ(p) → ∞ as p → 0 and uδ(p) → −α < 0 as p → ∞. Since uδ is
continuous the inequality 0 < uδ(p) < 1 is indeed fulfilled somewhere along the p integration. Second, we notice from explicit
computation that the equation duδ/dp = 0 has at most one real solution on (0; ∞), which must correspond to a global minimum.
Thus, uδ decreases monotonically in the region where 0 < uδ(p) < 1. We conclude that V = (pmin; pmax) with the end points
uniquely defined by uδ(pmin) = 1 and uδ(pmax) = 0. Explicitly we have

pmin =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
−g̃Bα2−ωα−α

√
(g̃2

B+ω2)α2+2g̃Bωα

α2−1 if α < 1√
ω2

2(g̃B+ω) if α = 1√
−g̃Bα2−ωα+α

√
(g̃2

B+ω2)α2+2g̃Bωα

α2−1 if α > 1

and pmax =
√

−g̃B +
√

g̃2
B + ω2. (A10)

The imaginary part of the pair propagator takes the final form:

Im	(0,ω) =
{

0 if ω � 0

− 2mB

2π

∫ pmax

pmin
dp

(
p2+g̃B

2Ẽp
+ 1

2

)
α

2
√

1−(2mBω−Ẽp)α/p2
if ω > 0. (A11)

We now turn to the derivatives of the pair propagator appearing in Eqs. (A2)–(A3). From Eq. (A5) we find

∂ω	(k⊥,ω) = (2mB)2

2π2

∫ ∞

0
dp

(
p2 + g̃B

2Ẽp

+ 1

2

) ∫ 1

0
dx

[ −p2

2(z+)3/2√z−
+ −p2

2(z−)3/2√z+

]
, (A12)

which simplifies in the case k⊥ = 0 using z− = z+ and
∫ 1

0 dx (z1 + x2)−2 = [
√

z1/(z1 + 1) + arccot(
√

z1)]/(2z
3/2
1 ), where the

complex square root should be taken in the upper half-plane (note that z
3/2
1 = z1

√
z1). We find

∂ω	(0,ω) = − (2mB)2

2π2

∫ ∞

0
dp

(
p2 + g̃B

2Ẽp

+ 1

2

)
α2

2z
3/2
1 p2

[ √
z1

z1 + 1
+ arccot(

√
z1)

]
. (A13)

Similarly we find

k−1
⊥ ∂k⊥	(k⊥,ω) = 2mB

2π2

∫ ∞

0
dp

(
p2 + g̃B

2Ẽp

+ 1

2

)

×
∫ 1

0
dx

−p22α−1k⊥(α−1(k⊥ − p
√

1 − x2)(k⊥ + p
√

1 − x2) − 2mBω + Ẽp − i0+)

z
3/2
+ z

3/2
−

. (A14)

Notice that we may safely put k⊥ = 0 in the above expression and evaluate the x integral:

k−1
⊥ ∂k⊥	(k⊥,ω)|k⊥=0

= 2mB

π2

∫ ∞

0
dp

(
p2 + g̃B

2Ẽp

+ 1

2

)
p2

α

∫ 1

0
dx

2mBω − Ẽp + i0+ + α−1p2(1 − x2)

[2mBω − Ẽp + i0+ − α−1p2(1 − x2)]3
(A15)

= 2mB

4π2α

∫ ∞

0
dp

(
p2 + g̃B

2Ẽp

+ 1

2

)
p2

[
3

(2mBω − Ẽp + i0+ − α−1p2)2
+

√
α(2mBω − Ẽp + i0+ + 2α−1p2)arccot(z1)

p(2mBω − Ẽp + i0+ − α−1p2)5/2

]
.

(A16)

This concludes the derivations of the numerical integrals we implemented in order to compute Eqs. (A1)–(A3).

2. �1 and its derivatives

In this section we will compute �1(0,ω) and the derivatives ∂ω�1(0,ω) and k−1
⊥ ∂k⊥�1(k⊥,ω)|k⊥=0. From Eq. (5), with

iωn + μ → ω + i0+, we have

�1(k⊥,ω) = −T
∑

ν

∫
d3p

(2π )3

(
u2

p

iων − Ep
− v2

p

iων + Ep

)
1

g−1 − 	(p⊥ + k⊥,iωn + iων)

∣∣∣∣
iωn+μ→ω+i0+

(A17)

=
∫

d3p

(2π )3

v2
p

g−1 − 	(p⊥ + k⊥,ω − Ep)
, (A18)
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where the last line is found from performing the sum over Matsubara frequencies and letting the temperature T → 0. Here we
exploit that the chemical potential μ is minus infinity such that any poles and branch cuts of the T matrix are pushed to infinity.

We have to simplify the expression above in order to get a numerical feasible implementation. Therefore, we approximate the
pair propagator by that for a noninteraction Bose gas at zero temperature 	vac. This amounts to setting gB = 0 and fp = 0 in
Eq. (9). We now show that it reduces to the expression in Eq. (15). Notice that these approximations are only applied to the pair
propagator, as setting the temperature to zero in the entire expression for �1 would make it vanish, and this we are definitely not
interested in. The pair propagator takes the form

	vac(p⊥,ω − Ep) =
∫

d3p̃

(2π )3

[
1

ω − Ep − p̃2/2mB − (k⊥ + p⊥ + p̃⊥)2/2m + i0+ + 2mB

p̃2 + p̃2
⊥/α

]
. (A19)

We shift p̃ in the first term in the integrand by adding the constant vector p mB/M . Then we scale p̃⊥ in the entire integrand by
the factor

√
m/M such that the integral, with z′ = 2mB[ω − Ep − (p⊥ + k⊥)2/2M + i0+], becomes

	vac(p⊥ + k⊥,ω − Ep) = 2mB

1 + α−1

∫
d3p̃

(2π )3

[
1

z′ − p̃2
+ 1

p̃2

]
(A20)

= 2mB

2π2(1 + α−1)

∫ ∞

0
dp̃

z′

z′ − p̃2
(A21)

= − 2mBz′

4π2(1 + α−1)

∫ ∞

−∞
dp̃

1

(p̃ + √
z′)(p̃ − √

z′)
. (A22)

Noting that the pole at
√

z′ is located in the upper half complex plane, we perform the contour integral around the pole yielding∫ ∞
−∞ dp̃ [(p̃ + √

z′)(p̃ − √
z′)]−1 = iπ/

√
z′. The pair propagator simplifies to

	vac(p⊥ + k⊥,ω − Ep) =
⎧⎨
⎩

−i
√

mBmr√
2π

√|ω − Ep − (p⊥ + k⊥)2/2M| if ω − Ep − (p⊥ + k⊥)2/2M � 0
√

mBmr√
2π

√|ω − Ep − (p⊥ + k⊥)2/2M| if ω − Ep − (p⊥ + k⊥)2/2M < 0
(A23)

which is equivalent to the expression in Eq. (15).
Returning to �1 from Eq. (A18) we go to spherical coordinates (p,θ,φ) and substitute x = − cos θ :

�1(k⊥,ω) = 1

2π3

∫ ∞

0
dp

∫ 1

0
dx

∫ π

0
dφ

p2 v2
p

g−1 − eiψ
√

mBmr√
2π

√
|ω − Ep − (k2

⊥ + p2(1 − x2) + 2k⊥p
√

1 − x2 cos φ)/2M|
,

(A24)

where eiψ ∈ {1,−i} are integration variable-dependent phase factors given according to Eq. (A23). In the case k⊥ = 0 the φ

integration is trivial, and we get

�1(0,ω) = 1

2π2

∫ ∞

0
dp

∫ 1

0
dx

p2 v2
p

g−1 − eiψ
√

mBmr√
2π

√|ω − Ep − p2(1 − x2)/2M|
. (A25)

The derivate of �1(0,ω) with respect to ω is straightforward to compute:

∂ω�1(0,ω) = −
√

mBmr

4
√

2π3

∫ ∞

0
dp

∫ 1

0
dx

p2 v2
p eiψ [ω − Ep − p2(1 − x2)/2M]

|ω − Ep − p2(1 − x2)/2M|3/2
(
g−1 − eiψ

√
mBmr√

2π

√|ω − Ep − p2(1 − x2)/2M|)2 .

(A26)

Finally, we compute the limit of k−1
⊥ ∂k⊥�1(k⊥,ω) when k⊥ → 0 from Eq. (A24). We notice that the integrand of k−1

⊥ ∂k⊥�1(k⊥,ω)
consists of two terms when k⊥ is small. One of the terms is proportional to k−1

⊥ cos φ and the integral over φ vanishes. The
other term is constant with respect to φ and k⊥, and the φ integral just yields a factor of π . All taken together, we find that
k−1
⊥ ∂k⊥�1(k⊥,ω)|k⊥=0 = −M−1∂ω�1(0,ω), and so we do not have to implement this formula separately.
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