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Connection between nonlocal one-body and local three-body correlations of the Lieb-Liniger model

Maxim Olshanii,1,* Vanja Dunjko,1 Anna Minguzzi,2 and Guillaume Lang2

1Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
2Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France

(Received 5 May 2017; published 19 September 2017)

We derive a connection between the fourth coefficient of the short-distance Taylor expansion of the one-body
correlation function, and the local three-body correlation function of the Lieb-Liniger model of δ-interacting
spinless bosons in one dimension. This connection, valid at arbitrary interaction strength, involves the fourth
moment of the density of quasimomenta. Generalizing recent conjectures, we propose approximate analytical
expressions for the fourth coefficient covering the whole range of repulsive interactions, validated by comparison
with accurate numerics. In particular, we find that the fourth coefficient changes sign at interaction strength
γc � 3.816, while the first three coefficients of the Taylor expansion of the one-body correlation function retain
the same sign throughout the whole range of interaction strengths.
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I. INTRODUCTION

One-dimensional quantum systems are generically more
strongly correlated than their higher-dimensional counterparts,
due to the inevitability of collisions when particles cross each
other. The one-dimensional Bose gas with contact interactions,
known as the Lieb-Liniger model, is the paradigm of such
systems [1]. This model well describes experiments with
ultracold atoms in tight waveguides and some of its correlation
functions have been experimentally probed in all interaction
regimes [2–9]. From a theoretical point of view, since the
model is integrable, its k-body correlations can in principle
be obtained explicitly at all orders k, since they are linked to
the (infinite) set of integrals of motion. In practice, however, the
exact analytical calculation at arbitrary interaction strength is
tremendously difficult for two reasons: the coefficients of their
Taylor expansion at small distance are related to each other in
a nontrivial way, and the defining system of equations, in turn
derived using the Bethe ansatz, is technically very challenging.
In the thermodynamic limit, finding an explicit expression
for the various spatially nonlocal, equal time correlations
from Bethe ansatz techniques actually requires to link them
to the moments of the density of quasimomenta, and thus
to solve a type II homogeneous Fredholm integral equation
with Lorentzian kernel, whose exact analytic solution is yet
unknown.

In this work, we focus on the link between nonlocal
correlation functions of the Lieb-Liniger model and its
integrals of motion, thus elucidating a special structure of
the ground state for this integrable model. In particular, we
derive a relation, first proposed in Ref. [10], that links the
fourth coefficient of the Taylor expansion of the one-body
correlation function at short distances with various moments
of the quasimomentum distribution and their derivatives with
respect to the coupling constant. Then, we use a recently
developed method [11,12], and generalize recent conjectures
[12–14], to evaluate these quantities with excellent accuracy
in a wide range of interaction strengths.
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The paper is organized as follows: In Sec. II we introduce
the Hamiltonian of the system and the relevant notations.
We also define the notion of connection, which is the key
concept in this work, and illustrate it in simple cases. Then, in
Sec. III we derive a connection between the fourth coefficient
of the Taylor expansion of the one-body correlation function at
short distances, c4, the local three-body correlation function,
and the fourth moment of the density of pseudomomenta,
which is one of the main results of this work. In Sec. IV,
we provide conjectures about the moments of the density of
pseudomomenta, and we illustrate them in Sec. V where we
find, in particular, that c4 changes sign at interaction strength
γ � 3.8. In Sec. VI, we summarize our main results and give
an outlook to our work.

II. HAMILTONIAN AND DEFINITIONS

In this work, we consider a one-dimensional system of N

indistinguishable pointlike bosons of mass m subject to contact
interactions, known as the Lieb-Liniger model. We choose
periodic boundary conditions, possibly realized by using a
ring geometry. The Hamiltonian of the system reads

Ĥ = h̄2

2m

⎡
⎣ N∑

i=1

− ∂2

∂x2
i

+ 2c

N−1∑
i=1

N∑
j=i+1

δ(xi − xj )

⎤
⎦, (1)

where the first term of the right-hand side stands for the kinetic
energy, {xi} label the positions of the atoms, δ is the Dirac
delta function, c = 2/a is related to the coupling constant,
with a = −a1D > 0 for repulsive interactions, and a1D is the
one-dimensional scattering length related to the many-body
wave function by �(. . . ,xi, . . . ,xj , . . .) ∝ |xi − xj | − a1D +
· · · . The usual one-dimensional coupling constant of the model
is g1D = −2h̄2/(ma1D) = (h̄2/m)c [15].

The action of the Hamiltonian on the Bethe ground state
|χN 〉 of the many-body system reads

Ĥ|χN 〉 =
N∑

i=1

λ2
i |χN 〉, (2)
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the eigenvalue is the sum of Bethe rapidities λi squared, and
the ground state in coordinate representation reads [16,17]

χN (x1, . . . ,xN ) = const ×
∑
σ∈SN

(−1)P[σ ]
N−1∏
i=1

N∏
j=i+1

[
λσi

− λσj

− 2i

a
sgn(xi − xj )

]
exp

[
i

N∑
k=1

λσk
xk

]
. (3)

In Eq. (3), σ are elements of the symmetry group SN , i.e.,
permutations of N elements, P[σ ] is their parity, and σi

denotes the image of i by σ . These eigenstates are also
eigenfunctions of all conservation laws, as required by the
integrability of the model.

The correlation functions we are interested in are the k-body
density matrices normalized to unity by choice of the constant
in Eq. (3), and such that

ρk(x1, . . . xk; x ′
1, . . . ,x

′
k)

≡
∫

dxk+1 · · · dxNχ∗
N (x ′

1, . . . ,x
′
k,xk+1, . . . ,xN )

×χN (x1, . . . ,xN )

= ρk(x1 − x ′
1, . . . ,xk − x ′

k; 0, . . . ,0), (4)

due to Galilean invariance. In particular, in this work we
consider the one-body density matrix, whose series expansion
at short distance can be written as

ρ1(x; x ′) = 1

L

+∞∑
l=0

cl(n|x−x ′|)l . (5)

In what follows we also make use of the notation

gk ≡ N !

(N − k)!

ρk(0, . . . ,0; 0, . . . ,0)

nk
, (6)

where n = N/L is the mean linear density, the system being
of size L. Correlations gk are referred to as k-body local
correlations; they represent the probability to find k atoms at
the same place and time. It is quite intuitive that the combined
effect of geometry and interactions enforces gk+1 < gk at finite
interaction strengths, and that gk are decreasing functions of
the interaction strength.

The first aim of this work is to illustrate the fact that, due to
the integrability of the model, those correlations are related to
each other via the moments e2k of the dimensionless density
of quasimomenta g(z; α), defined as the solutions of the set
of Bethe equations derived by Lieb and Liniger [1] in the
thermodynamic limit N → ∞, L → ∞, at fixed N/L and at
zero temperature:

g(z; α) − 1

2π

∫ 1

−1
dy

2αg(y; α)

α2 + (y − z)2
= 1

2π
, (7)

γ

∫ 1

−1
dyg(y; α) = α, (8)

and

e2k(γ ) =
∫ 1
−1 dyg(y; α(γ ))y2k[ ∫ 1
−1 dyg(y; α(γ ))

]2k+1 , (9)

where α is a positive coefficient and γ ≡2/(na) is the Lieb
parameter, representing the natural dimensionless coupling
constant of the model. The quantities e2k are integrals of
motions of the model: for example, e2 corresponds to the
thermodynamic limit of the ground-state energy E2 = ∑

i λ
2
i ,

through E2 = Nn2e2. More generally, we define E2k =
Nn2ke2k , and e2k+1 = 0 from parity arguments.

To finish with, we define connections as functionals F such
that

F(cl(γ ),gk(γ ),{en(γ ),e′
n(γ ), . . . },γ ) = 0, (10)

where ′ denotes differentiation with respect to γ . We denote
each connection by a pair of indices (l,k), where by convention
an index is 0 if the corresponding quantity in the notation above
does not appear in the functional. This compact notation helps
in classifying the connections. To illustrate this concept, we
derive the first few connections from conservation laws.

The first conserved quantity is

Ĥ0 =
N∑

i=0

∂0

∂x0
i

= N, (11)

the number of atoms. Trivially,

〈χN |Ĥ0|χN 〉 = N〈χN |χN 〉 = N (12)

since the Bethe eigenstate is normalized to unity. On the other
hand,

〈χN |Ĥ0|χN 〉 =N

∫
dx1 · · · dxNχ∗

N (x1, . . . ,xN )χN (x1, . . . ,xN )

= N

∫
dx1

∫
dx ′

1δ(x1 − x ′
1)

∫
dx2 · · · dxN

×χ∗
N (x ′

1, . . . ,xN )χN (x1, . . . ,xN )

= NLρ1(x; 0)|x=0 = Nc0 = Ng1, (13)

hence

c0 = g1 = e0 = 1, (14)

yielding the connections (0,0) and (0,1).
The second conserved quantity is

Ĥ1 =
N∑

i=0

∂

∂xi

(15)

and, proceeding as before, we find

c1 = e1 = 0, (16)

the connection of type (1,0), in agreement with Ref. [18].
Then, from the Hamiltonian we obtain

〈χN |Ĥ|χN 〉 = Nn2e2. (17)

We also evaluate

〈χN |
N∑

i=1

− ∂2

∂x2
i

|χN 〉 = NL
∂2

∂x2
ρ1(x; 0)|x=0

= 2Nn2c2, (18)
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and

〈χN |
N−1∑
i=1

N∑
j=i+1

δ(xi − xj )|χN 〉 = N

2
ng2, (19)

hence the connection of order (2,2),

− 2c2 + γg2 = e2. (20)

The connection of type (0,2) is obtained by applying the
Hellmann-Feynman theorem to the Hamiltonian and reads [19]

g2 = e′
2. (21)

Combining the connections of orders (2,2) and (0,2) yields
order (2,0), i.e. [18],

c2 = 1
2 (γ e′

2 − e2). (22)

III. DERIVATION OF THE CONNECTION OF ORDER (4,3)

In this section, we derive a new connection, namely,

24c4 − 2γ 2g3 = e4 − γ e′
4. (23)

It is the connection of type (4,3) according to our nomencla-
ture.

First, we introduce an operator Ĥ4 that yields, when applied
to an eigenstate (3), the fourth integral of motion, E4,

Ĥ4|χN 〉 = E4|χN 〉, (24)

with

E4 =
N∑

i=1

λ4
i . (25)

From these definitions, by construction the higher Hamiltonian
Ĥ4 can be written explicitly as [20–22]

Ĥ4 =
N∑

i=1

∂4

∂x4
i

+ 48

a2

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

δ(xi − xj )δ(xj − xk)

− 4

a

N−1∑
i=1

N∑
j=i+1

{(
∂2

∂x2
i

+ ∂2

∂x2
j

+ ∂2

∂xi∂xj

)
δ(xi − xj )

+ δ(xi − xj )

(
∂2

∂x2
i

+ ∂2

∂x2
j

+ ∂2

∂xi∂xj

)}

+ 8

a2

N−1∑
i=1

N∑
j=i+1

δ2(xi − xj )

= ĥ
(1)
4 + 48κ2ĥ

(2)
4 − 4κĥ

(3)
4 + 8κ2ĥ

(4)
4 , (26)

where κ = 1
a

.
For convenience, we introduce the auxiliary operator

Q̂4 = 1

κ
Ĥ4, (27)

and apply the Hellmann-Feynman theorem to it:

〈χN |
(

d

dκ
Q̂4(κ)

)
|χN 〉 = d

dκ

(
1

κ
E4(κ)

)
. (28)

The left-hand side is related to operator Ĥ4 introduced above
by

〈χN |
(

d

dκ
Q̂4(κ)

)
|χN 〉 = − 1

κ2
〈χN |ĥ(1)

4 |χN 〉+48〈χN |ĥ(2)
4 |χN 〉

+ 8〈χN |ĥ(4)
4 |χN 〉. (29)

We evaluate the terms of the right-hand side separately.
First, we find

〈χN |ĥ(1)
4 |χN 〉 = NL

∂4

∂x4
ρ1(x; 0)

∣∣∣∣
x=0

= 12Ln4c3δ(0) + 24Ln5c4. (30)

Actually, the infinity in the form of δ(0) is canceled by the
analogous divergence produced by

〈χN |ĥ(4)
4 |χN 〉 = 1

2Ln2g2δ(0) (31)

as can be shown using the connection of order (3,2),

c3 = 1

3

1

(na)2
g2. (32)

The latter is deduced from (0,2) above, Eq. (21), and (3,0) that
reads [18]

c3 = γ 2

12
e′

2. (33)

We remark that conversely, starting from the sole requirement
that Ĥ4 is divergence free, Eq. (32) naturally follows from our
derivation, which can thus be seen as a new and independent
proof of this connection. Then, (3,0) is derived by combination
with (0,2).

Another way to derive (3,2) is as follows: due to the contact
condition, one can write

ρk(x1, . . . ,xk; x ′
1, . . . ,x

′
k)

=
+∞∑
m=0

ρ
(m)
k

(
x1 + x ′

1

2
,x2, . . . ,xk; x ′

2, . . . ,x
′
k

)
|x1 − x ′

1|m.

(34)

Since

ρ1 =
∫

dx2ρ2(x1,x2; x ′
1,x2) (35)

and∫
dx2|x1−x2||x ′

1−x2| =x1→x ′
1

1

3
|x1−x ′

1|3 + · · · , (36)

where the dots represent a regular function, one finds the
general result

ρ
(3)
k (0, . . . ; 0, . . . ) = N − k

3a2
ρk+1(0, . . . ; 0, . . . ) (37)

or, written another way,

c
(k)
3 = γ 2

12
gk+1, (38)

a higher-order connection from which (3,2) follows as a
corollary.
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To finish with, we evaluate

〈χN |ĥ(2)
4 |χN 〉 = 1

6Ln3g3. (39)

Inserting Eqs. (30), (31), and (39) into Eqs. (28) and
(29) ends the derivation. We now comment on the physical
meaning of Eq. (23). The fact that g3 appears stems from
ĥ

(2)
4 in Eq. (26), that involves three-body processes provided

N � 3. The coefficient c4, that stems from ĥ
(1)
4 , is related to the

higher kinetic energy in that the momentum operator applied
to the density matrix generates the coefficients of its Taylor
expansion when taken at zero distance.

One can even go further, combining the connection (0,3)
[23,24],

g3(γ ) = 3

2

e′
4

γ
− 5

e4

γ 2
+

(
1 + γ

2

)
e′

2 − 2
e2

γ
− 3

e2e
′
2

γ
+ 9

e2
2

γ 2
,

(40)

with the connection (4,3), Eq. (23), to obtain the connection
(4,0),

c4(γ ) = γ e′
4

12
− 3

8
e4 + 2γ 2 + γ 3

24
e′

2 − γ e2

6
− γ e2e

′
2

4
+ 3

4
e2

2,

(41)

given in Ref. [10] without proof. The right-hand sides of these
last two equalities involve moments of the pseudomomentum
distribution only, and it is a general fact that all correlations of
the model are defined through connections of type (l,0) and
(0,k), as a consequence of integrability.

IV. CONJECTURES ABOUT THE EXACT MOMENTS
OF THE DENSITY OF PSEUDOMOMENTA

As illustrated above, local correlation functions are linked
to the even-order moments e2k of the density of pseudomo-
menta (we recall that odd ones are trivially null by parity).
Their exact and explicit analytical expression is not known
to date, only the first few terms of their exact asymptotic
expansions in the weakly and strongly interacting regimes have
been computed exactly. To go further and cover the full range
of repulsive interaction strengths γ ∈ [0, + ∞[, we generalize
to arbitrary moments recent conjectures about the ground-state
energy.

A. Conjecture in the weakly interacting regime

The first conjecture concerns the Taylor expansion of e2k in
the weakly interacting regime, and reads

e2k(γ ) =
+∞∑
i=0

a2k,i

π i
γ k+i/2, (42)

where {a2k,i} are real coefficients. This is a generalization to
arbitrary k of the conjecture proposed in Ref. [13] for e2.

According to Eq. (9), a trivial necessary condition is
a0,i = δi,0, where δ.,. is the Kronecker symbol. The ex-
act nontrivial coefficients unambiguously found so far are
a2,0 =1, a2,1 =−4/3 [1], a2,2 =ζ (2)−1 [13], where ζ is

the Riemann zeta function, a4,0 =2, and a4,1 =−88/15
[23]. Based on accurate numerics by Prolhac, Lang con-
jectured a2,3 =3ζ (3)/8 − 1/2. Prolhac also proposed a2,4 =
a2,3/3 and a2,5 = −45ζ (5)/1024 + 15ζ (3)/256 − 1/32 [14].
Higher-order coefficients a2,i are numerically known with high
accuracy up to order i =10 [14].

Using the conjecture (42) together with the known expan-
sion at low α, heuristically introduced in Ref. [25] and proven
in Ref. [26] (we refer to Appendix A for a derivation of the
first part),

g(z; α) � α�1

√
1 − z2

2πα
+ 1

4π2
√

1 − z2

[
z ln

(
1 − z

1 + z

)

+ ln

(
16π

α

)
+ 1

]
, (43)

combined with Eqs. (7)–(9), we find the general form of the
first two coefficients at fixed order k,

a2k,0 = 1

k + 1

(
2k

k

)
= Ck, (44)

where {Ck} denote the Catalan numbers, and

a2k,1 =
(

2k

k

)
− 24k(2k+1

k

) 1

k + 1

k∑
i=0

[
1

22i

(
2i

i

)]2

. (45)

B. Conjecture in the strongly interacting regime

In the strongly interacting regime, we generalize a re-
cent conjecture on e2 [12] by stating that the asymptotic
expansion in 1/γ is partially resummed in a natural way
as

e2k(γ ) =
(

γ

2 + γ

)2k +∞∑
i=0

π2(k+i)

(2 + γ )3i
L2k,i(γ ), (46)

where L2k,i are polynomials with rational coefficients, such
that L2k,0 = 1/(2k + 1) and L2k,i�1 is of degree i − 1. Using
a basis of orthogonal polynomials to systematically find a
1/γ expansion of the moments as explained in Refs. [11,12],
together with the conjecture Eq. (46), we find the following by
identification:

L4,1(X) = 32

35
,

L4,2(X) = −1984

1575
X + 3424

1575
,

L4,3(X) = 8192

3465
X2 − 37376

5775
X + 169728

45045
,

L4,4(X) = −47104

9009
X3 + 59337728

3378375
X2

− 61582336

3378375
X + 137573632

23648625
,

L4,5(X) = 192512

15015
X4 − 765952

15925
X3 + 80326709248

1206079875
X2

− 594448384

14189175
X + 295196160000

38192529375
,
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L4,6(X) = −335872

9945
X5 + 132872192

984555
X4

−2316542492672

10416144375
X3 + 3689660465152

18091198125
X2

−184095784026112

2406129350625
X + 12238234443776

1260353469375
.

(47)

V. ILLUSTRATIONS

In this section, we illustrate the various results obtained
above. Within our approach, in order to evaluate g3 and c4

with good accuracy from Eqs. (40) and (41), it is crucial
to correctly evaluate not only e2 and e4, but also their
derivatives. For e2, we refer to previous studies [12,14], where
it was found that the combination of the weakly interacting
expansion of Ref. [14] and the conjectural partial resummation
in the strongly interacting regime of Ref. [12] yields excellent
agreement with accurate numerics. In this work, we checked
that e′

2 obtained from the conjectures in their respective ranges
is also numerically exact for all interaction strengths, as shown
in Appendix B.

More important, we benchmark the conjectures on the
fourth moment. In Fig. 1 we plot e4 from the conjectures
Eq. (42) and Eq. (46) over the experimentally relevant range
γ ∈ [0,10] and find excellent agreement with the numerical
integration of the Bethe ansatz equations (6)–(8). The coef-
ficients used in the weakly interacting regime are found by
fitting data at γ � 1 and the whole curve thereby obtained
closely follows numerical solution of the Bethe equations
for interaction strengths γ > 1, validating the conjecture.
However, our numerical data are not accurate enough to guess
the analytical exact value of the unknown coefficients a4,i for
i � 2.

While no discrepancy between the conjecture from the
strongly interacting regime, Eq. (46), and numerical solution of

FIG. 1. Dimensionless fourth moment of the distribution of
quasimomenta e4 as a function of the dimensionless interaction
strength γ . Analytical result from the conjecture (47) (solid blue
line) is in excellent agreement with independent accurate numerics
from the authors (red and black dots) for all interaction strengths. The
conjecture in the weakly interacting regime, Eq. (42), with appropriate
coefficients (black dashed line) reproduces numerical calculations
with excellent accuracy up to intermediate interactions.

FIG. 2. Derivative of the dimensionless fourth moment of the
distribution of quasimomenta e4 with respect to the dimensionless
interaction strength γ as a function of the latter. Using the analytical
results either from the conjectures (47) (solid blue line) at strong
interactions or Eq. (42) (dashed black line) at weak interactions, one
finds an excellent agreement with accurate numerics (black dots) for
all interaction strengths.

the Bethe ansatz equations is seen on this graph, by looking at
e′

4 shown in Fig. 2, one sees that the large-γ expansion displays
spurious oscillations at intermediate interactions; hence an
appropriate combination of both conjectures at weak and
strong coupling is needed to recover agreement with numerical
calculations over the whole range of interaction strengths.

We have also checked that our numerical data for e2 and
e4, when used in Eq. (40), yield g3(γ ) in close agreement with
accurate approximate expressions obtained in Ref. [23] by
fitting on the numerical solution of Eqs. (7)–(9), and (40),
as illustrated in Appendix C. Having performed all these
verifications, we plot in Fig. 3 the coefficient c4 as a function
of γ from numerical calculations and the conjectures on e2 and
e4. We find that c4 changes sign at γ = γc � 3.8. We evaluated
the value with more accuracy as γc = 3.8160616255908 . . . by
comparing two independent numerical solutions of the Bethe
ansatz equations, with agreement of all digits up to this order.
This change of sign had already been predicted, based on
numerical analysis in Ref. [27], that suggested 1 < γc < 8.
In Fig. 4 we plot the known coefficients c2, c3, and c4 as

FIG. 3. Dimensionless coefficient c4 as a function of the dimen-
sionless interaction strength γ , as predicted from the conjectures
(solid blue and dashed black lines), compared to accurate numerics
(red dots). A sign inversion occurs around γ = 3.8.
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FIG. 4. Dimensionless coefficients c2, c4, and c3 (black, blue,
and red lines, from bottom to top, respectively) as predicted from
conjectures, as functions of the dimensionless interaction strength γ .

functions of γ . They are also known by direct calculation in
the Tonks-Girardeau regime of infinite interaction strength,
where their values are c2 =−π2/6, c3 =π2/9, and c4 =
π4/120, respectively, in agreement with our results in the limit
γ → +∞, but higher-order terms are known as well in this
regime, such as c5 = −11π4/1350 . . . [28–30]. Note that very
high interaction strengths are needed to approach the value
in the Tonks-Girardeau regime up to a few percent; thus it
is quite difficult, for the observable ρ1, to reach this regime
experimentally.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, in this work we have derived an exact relation
linking the fourth coefficient of the Taylor expansion of the
one-body correlation function at short distances and the local
three-body correlation function of the Lieb-Liniger model.
This connection can be recast in a form where c4 is expressed
in terms of moments of the density of pseudomomenta.
We have investigated the fourth moment e4 in detail and
provided conjectural expressions that are extremely accurate
in the whole range of interaction strengths. Both analyti-
cally and numerically, we find that c4 changes sign around
γ = 3.8.

In outlook, it would be interesting to investigate the link
between c5 and the coefficient of the first subleading, high-
momentum 1/p6 term of the momentum distribution n(p)
of the gas, beyond the well-known Tan contact (i.e., the
coefficient of the leading 1/p4 term). Knowing more terms
of the Taylor expansion of g1 and n(p) also allows one to
probe in a finer way the validity of the renormalization group–
Luttinger liquid approach by comparing their predictions at
large distances or short momenta [10]. In the perspective of
taking a harmonic trapping into account, it also allows one
to discuss the validity of the local density approximation
[18] by comparison with exact numerics [31]. To this aim,
the equation of state from the 1/γ expansion is accurate in
the strongly interacting regime, while the conjecture thereby
deduced is also accurate at intermediate γ [32]. The attractive
regime of the super-Tonks-Girardeau gas may also provide
new insights [33,34]. To finish with, the equivalence between
Eq. (40) and another one derived in Refs. [35,36], that does not

involve the momenta e2k but requires solving other Fredholm
integral equations instead, checked numerically so far, still
awaits rigorous proof. It will provide an interesting alternative
way to tackle connections, especially in out-of-equilibrium
situations. Another approach from field theory, based on an
appropriate nonrelativistic limit of the sinh-Gordon model,
has also shown remarkable efficiency already [37,38] as com-
pared with previous Bethe ansatz results [19,39,40]. The full
characterization of the local correlations gk seems, however,
especially challenging and insightful. Even the connection
(0,3) has not been derived yet based on Bethe ansatz techniques
only.
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APPENDIX A: DERIVATION OF
THE SEMICIRCULAR LAW

In this Appendix, we provide a derivation of the semicircu-
lar law verified by the density of pseudomomenta at very small
interactions, i.e., the dominant term of the solution to Eq. (7)
in the limit α → 0, that reads

g(z; α) �α�1

√
1 − z2

2πα
. (A1)

This derivation is based on the methods of Ref. [41]. First,
the kernel of the integral equation is rewritten as

2α

α2 + (y − z)2
=

∫ +∞

−∞
dpe−α|p| cos[p(y − z)]. (A2)

Then the Fourier integral theorem, stating that

f (z) = 1

2π

∫ +∞

−∞
dyf (y)

∫ +∞

−∞
dp cos[p(y − z)], (A3)

is applied to g to transform Eq. (7) into

2
∫ +∞

0
dp(1 − e−αp)

∫ 1

−1
dyg(y; α) cos(py) = 1 (A4)

after a few simplifications.
To go further, g(y; α) is expanded over the basis of

Gegenbauer polynomials {Un}, that are orthogonal on [−1,1],
as

g(y; α) =
√

1 − y2
+∞∑
n=0

An(α)U2n(y). (A5)
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FIG. 5. Derivative e′
2 of the dimensionless energy as a function

of the dimensionless interaction strength γ , as predicted from the
conjectures (solid blue and dashed black lines), compared to accurate
numerics (red dots).

Thus, to lowest order in α, Eq. (A4) becomes

2α

∫ +∞

0
dpp

∫ 1

−1
dy

√
1 − y2A0 cos(py) = 1, (A6)

and using the property∫ 1

−1
dy

√
1 − y2 cos(py) = π

J1(p)

p
, (A7)

where J1 is the first Bessel function, Eq. (A6) becomes

2πA0α

∫ +∞

0
dpJ1(p) = 2πA0 = 1, (A8)

and one obtains Eq. (A1) as announced.

APPENDIX B: TEST OF THE CONJECTURES FOR e′
2

In Fig. 5, we plot e′
2 from the conjectures with known

coefficients from Refs. [12,14] and compare with accurate
numerics. The agreement is pretty satisfying over the whole
range of interactions.

APPENDIX C: TEST OF OUR NUMERICAL DATA FOR g3

In Fig. 6, we compare the local three-body operator g3

obtained numerically and accurate expressions from Ref. [23].
The agreement is excellent.

FIG. 6. Dimensionless three-body local correlation function g3,
as a function of the dimensionless interaction strength γ obtained
numerically (dots) compared to the three accurate expressions in
Ref. [23] (solid black, red, and blue lines) in a wide range of
interaction strengths.

[1] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605
(1963).

[2] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac,
G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature (London)
429, 277 (2004).

[3] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004).

[4] T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. Lett. 95,
190406 (2005).

[5] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.
Pupillo, and H.-C. Nägerl, Science 325, 1224 (2009).

[6] E. Haller, M. Rabie, M. J. Mark, J. G. Danzl, R. Hart, K. Lauber,
G. Pupillo, and H.-C. Nägerl, Phys. Rev. Lett. 107, 230404
(2011).

[7] T. Jacqmin, B. Fang, T. Berrada, T. Roscilde, and I. Bouchoule,
Phys. Rev. A 86, 043626 (2012).

[8] N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C.
Fort, and J.-S. Caux, Phys. Rev. A 91, 043617 (2015).

[9] F. Meinert, M. Panfil, M. J. Mark, K. Lauber, J.-S. Caux, and
H.-C. Nägerl, Phys. Rev. Lett. 115, 085301 (2015).

[10] V. Dunjko and M. Olshanii, J. Phys. A: Math. Theor. 44, 055206
(2011).

033624-7

https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1038/nature02530
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1126/science.1100700
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1126/science.1175850
https://doi.org/10.1103/PhysRevLett.107.230404
https://doi.org/10.1103/PhysRevLett.107.230404
https://doi.org/10.1103/PhysRevLett.107.230404
https://doi.org/10.1103/PhysRevLett.107.230404
https://doi.org/10.1103/PhysRevA.86.043626
https://doi.org/10.1103/PhysRevA.86.043626
https://doi.org/10.1103/PhysRevA.86.043626
https://doi.org/10.1103/PhysRevA.86.043626
https://doi.org/10.1103/PhysRevA.91.043617
https://doi.org/10.1103/PhysRevA.91.043617
https://doi.org/10.1103/PhysRevA.91.043617
https://doi.org/10.1103/PhysRevA.91.043617
https://doi.org/10.1103/PhysRevLett.115.085301
https://doi.org/10.1103/PhysRevLett.115.085301
https://doi.org/10.1103/PhysRevLett.115.085301
https://doi.org/10.1103/PhysRevLett.115.085301
https://doi.org/10.1088/1751-8113/44/5/055206
https://doi.org/10.1088/1751-8113/44/5/055206
https://doi.org/10.1088/1751-8113/44/5/055206
https://doi.org/10.1088/1751-8113/44/5/055206


OLSHANII, DUNJKO, MINGUZZI, AND LANG PHYSICAL REVIEW A 96, 033624 (2017)

[11] Z. Ristivojevic, Phys. Rev. Lett. 113, 015301 (2014).
[12] G. Lang, F. Hekking, and A. Minguzzi, SciPost Phys. 3, 003

(2017).
[13] C. A. Tracy and H. Widom, J. Phys. A: Math. Theor. 49, 294001

(2016).
[14] S. Prolhac, J. Phys. A: Math. Theor. 50, 144001 (2017).
[15] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[16] M. Gaudin, La Fonction d’Onde de Bethe (Masson, Paris, 1983).
[17] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quan-

tum Inverse Scattering Method and Correlation Functions
(Cambridge University Press, London, 1993).

[18] M. Olshanii and V. Dunjko, Phys. Rev. Lett. 91, 090401 (2003).
[19] D. M. Gangardt and G. V. Shlyapnikov, Phys. Rev. Lett. 90,

010401 (2003).
[20] E. Gutkin, Ann. Inst. Henri Poincare C 2, 67 (1985).
[21] B. Davies and V. E. Korepin, arXiv:1109.6604.
[22] B. Davies, Physica A 167, 433 (1990).
[23] V. V. Cheianov, H. Smith, and M. B. Zvonarev, Phys. Rev. A

73, 051604(R) (2006).
[24] V. V. Cheianov, H. Smith, and M. B. Zvonarev, J. Stat. Mech.

(2006) P08015.
[25] V. Hutson, Math. Proc. Cambridge Philos. Soc. 59, 211 (1963).
[26] M. Wadati, J. Phys. Soc. Jpn. 71, 2657 (2002).
[27] J.-S. Caux, P. Calabrese, and N. A. Slavnov, J. Stat. Mech. (2007)

P01008.

[28] H. G. Vaidya and C. A. Tracy, Phys. Rev. Lett. 42, 3 (1979).
[29] P. J. Forrester, N. E. Frankel, T. M. Garoni, and N. S. Witte,

Phys. Rev. A 67, 043607 (2003).
[30] D. M. Gangardt, J. Phys. A: Math. Gen. 37, 9335 (2004).
[31] J. Decamp, J. Jünemann, M. Albert, M. Rizzi, A. Minguzzi, and

P. Vignolo, Phys. Rev. A 94, 053614 (2016).
[32] G. Lang, P. Vignolo, and A. Minguzzi, Eur. Phys. J. Spec. Top.

226, 1583 (2017).
[33] M. Kormos, G. Mussardo, and A. Trombettoni, Phys. Rev. A 83,

013617 (2011).
[34] L. Piroli, P. Calabrese, and F. H. L. Essler, Phys. Rev. Lett. 116,

070408 (2016).
[35] M. Kormos, Y.-Z. Chou, and A. Imambekov, Phys. Rev. Lett.

107, 230405 (2011).
[36] B. Pozsgay, J. Stat. Mech. (2011) P11017.
[37] M. Kormos, G. Mussardo, and A. Trombettoni, Phys. Rev. Lett.

103, 210404 (2009).
[38] M. Kormos, G. Mussardo, and A. Trombettoni, Phys. Rev. A 81,

043606 (2010).
[39] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and

G. V. Shlyapnikov, Phys. Rev. Lett. 91, 040403 (2003).
[40] D. M. Gangardt and G. V. Shlyapnikov, New J. Phys. 5, 79

(2003).
[41] Y. S. Tyupkin, V. A. Fateev, and A. S. Shvarts, Sov. J. Nucl.

Phys. 22, 321 (1975).

033624-8

https://doi.org/10.1103/PhysRevLett.113.015301
https://doi.org/10.1103/PhysRevLett.113.015301
https://doi.org/10.1103/PhysRevLett.113.015301
https://doi.org/10.1103/PhysRevLett.113.015301
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1103/PhysRevLett.91.090401
https://doi.org/10.1103/PhysRevLett.90.010401
https://doi.org/10.1103/PhysRevLett.90.010401
https://doi.org/10.1103/PhysRevLett.90.010401
https://doi.org/10.1103/PhysRevLett.90.010401
https://doi.org/10.1016/S0294-1449(16)30412-7
https://doi.org/10.1016/S0294-1449(16)30412-7
https://doi.org/10.1016/S0294-1449(16)30412-7
https://doi.org/10.1016/S0294-1449(16)30412-7
http://arxiv.org/abs/arXiv:1109.6604
https://doi.org/10.1016/0378-4371(90)90126-D
https://doi.org/10.1016/0378-4371(90)90126-D
https://doi.org/10.1016/0378-4371(90)90126-D
https://doi.org/10.1016/0378-4371(90)90126-D
https://doi.org/10.1103/PhysRevA.73.051604
https://doi.org/10.1103/PhysRevA.73.051604
https://doi.org/10.1103/PhysRevA.73.051604
https://doi.org/10.1103/PhysRevA.73.051604
https://doi.org/10.1088/1742-5468/2006/08/P08015
https://doi.org/10.1088/1742-5468/2006/08/P08015
https://doi.org/10.1088/1742-5468/2006/08/P08015
https://doi.org/10.1017/S0305004100002152
https://doi.org/10.1017/S0305004100002152
https://doi.org/10.1017/S0305004100002152
https://doi.org/10.1017/S0305004100002152
https://doi.org/10.1143/JPSJ.71.2657
https://doi.org/10.1143/JPSJ.71.2657
https://doi.org/10.1143/JPSJ.71.2657
https://doi.org/10.1143/JPSJ.71.2657
https://doi.org/10.1088/1742-5468/2007/01/P01008
https://doi.org/10.1088/1742-5468/2007/01/P01008
https://doi.org/10.1088/1742-5468/2007/01/P01008
https://doi.org/10.1103/PhysRevLett.42.3
https://doi.org/10.1103/PhysRevLett.42.3
https://doi.org/10.1103/PhysRevLett.42.3
https://doi.org/10.1103/PhysRevLett.42.3
https://doi.org/10.1103/PhysRevA.67.043607
https://doi.org/10.1103/PhysRevA.67.043607
https://doi.org/10.1103/PhysRevA.67.043607
https://doi.org/10.1103/PhysRevA.67.043607
https://doi.org/10.1088/0305-4470/37/40/002
https://doi.org/10.1088/0305-4470/37/40/002
https://doi.org/10.1088/0305-4470/37/40/002
https://doi.org/10.1088/0305-4470/37/40/002
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1103/PhysRevA.94.053614
https://doi.org/10.1140/epjst/e2016-60343-6
https://doi.org/10.1140/epjst/e2016-60343-6
https://doi.org/10.1140/epjst/e2016-60343-6
https://doi.org/10.1140/epjst/e2016-60343-6
https://doi.org/10.1103/PhysRevA.83.013617
https://doi.org/10.1103/PhysRevA.83.013617
https://doi.org/10.1103/PhysRevA.83.013617
https://doi.org/10.1103/PhysRevA.83.013617
https://doi.org/10.1103/PhysRevLett.116.070408
https://doi.org/10.1103/PhysRevLett.116.070408
https://doi.org/10.1103/PhysRevLett.116.070408
https://doi.org/10.1103/PhysRevLett.116.070408
https://doi.org/10.1103/PhysRevLett.107.230405
https://doi.org/10.1103/PhysRevLett.107.230405
https://doi.org/10.1103/PhysRevLett.107.230405
https://doi.org/10.1103/PhysRevLett.107.230405
https://doi.org/10.1088/1742-5468/2011/11/P11017
https://doi.org/10.1088/1742-5468/2011/11/P11017
https://doi.org/10.1088/1742-5468/2011/11/P11017
https://doi.org/10.1103/PhysRevLett.103.210404
https://doi.org/10.1103/PhysRevLett.103.210404
https://doi.org/10.1103/PhysRevLett.103.210404
https://doi.org/10.1103/PhysRevLett.103.210404
https://doi.org/10.1103/PhysRevA.81.043606
https://doi.org/10.1103/PhysRevA.81.043606
https://doi.org/10.1103/PhysRevA.81.043606
https://doi.org/10.1103/PhysRevA.81.043606
https://doi.org/10.1103/PhysRevLett.91.040403
https://doi.org/10.1103/PhysRevLett.91.040403
https://doi.org/10.1103/PhysRevLett.91.040403
https://doi.org/10.1103/PhysRevLett.91.040403
https://doi.org/10.1088/1367-2630/5/1/379
https://doi.org/10.1088/1367-2630/5/1/379
https://doi.org/10.1088/1367-2630/5/1/379
https://doi.org/10.1088/1367-2630/5/1/379



