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We introduce two- and one-dimensional (2D and 1D) systems of two linearly coupled Gross-Pitaevskii
equations (GPEs) with the cubic self-attraction and harmonic-oscillator (HO) trapping potential in each GPE.
The system models a Bose-Einstein condensate with a negative scattering length, loaded in a double-pancake
trap, combined with the in-plane HO potential. In addition to that, the 1D version applies to the light transmission
in a dual-core waveguide with the Kerr nonlinearity and in-core confinement represented by the HO potential.
The subject of the analysis is spontaneous symmetry breaking in 2D and 1D ground-state (GS, alias fundamental)
modes, as well as in 2D vortices and 1D dipole modes. (The latter ones do not exist without the HO potential.)
By means of the variational approximation and numerical analysis, it is found that both the 2D and 1D systems
give rise to a symmetry-breaking bifurcation (SBB) of the supercritical type. The stability of symmetric and
asymmetric states, produced by the SBB, is analyzed through the computation of eigenvalues for perturbation
modes and verified by direct simulations. The asymmetric GSs are always stable, while the stability region for
vortices shrinks and eventually disappears with the increase of the linear-coupling constant, κ . The SBB in the 2D
system does not occur if κ is too large (at κ > κmax); in that case, the two-component system behaves, essentially,
as its single-component counterpart. In the 1D system, both asymmetric and symmetric dipole modes feature an
additional oscillatory instability, unrelated to the symmetry breaking. This instability occurs in several regions
which expand with the increase of κ .

DOI: 10.1103/PhysRevA.96.033621

I. INTRODUCTION

A basic principle of the guided wave propagation in linear
media is that the ground state (GS) in such systems exactly
follows the symmetry of the guiding potential, while the first
excited state features the opposite parity. In particular, the
GS of a quantum particle trapped in a double-well potential is
always symmetric, with respect to the potential structure, while
the wave function of the first excited state is antisymmetric
[1]. Beyond the framework of the linear propagation, Bose-
Einstein condensates (BECs) are modeled by the Gross-
Pitaevskii equation (GPE), which contains the cubic term
representing repulsive or attractive interactions between atoms
[2]. Similar nonlinear Schrödinger equations (NLSEs), usually
with the cubic self-focusing (Kerr) nonlinearity, are well
known as models of the guided light transmission in optics [3].

It is well known, too, that if the GPE or NLSE contains a
symmetric trapping potential, the GS wave function follows its
symmetry only if the strength of the self-attractive nonlinearity
does not exceed a certain critical level. Above it, effects of
the spontaneous symmetry breaking kick in, destabilizing the
symmetric state and replacing it, as the GS, by an asymmetric
wave function. These effects were originally predicted in early
works [4] and have then drawn much attention, due to their
obvious physical interest. In particular, they have been studied
in detail in one-dimensional (1D) dual-core systems, which
represent nonlinear twin-core optical waveguides [5], modeled
by a pair of linearly coupled NLSEs. A similar system of 1D
linearly coupled GPEs may be realized as the model of a pair

of parallel cigar-shaped traps, filled by self-attractive BEC
and linearly coupled by tunneling of atoms [6]. The latter
model is a natural extension of the single GPE with a double-
well potential [7]. In these systems, a basic problem is the
spontaneous symmetry breaking in two-component solitons
(nonlinear confined modes), through the phase transitions
of the first or second kind, alias sub- and supercritical
bifurcations, respectively [8]. Experimentally, spontaneous
symmetry breaking has been demonstrated, in particular, in
lasing realized in various nonlinear-optical settings [9], in
BEC loaded in a double-well potential trap [10], and in optical
metamaterials [11].

Many theoretical and experimental results on the topic
of the spontaneous symmetry breaking in various nonlinear
systems, chiefly in the 1D geometry, have been collected
in a recently published volume [12] (see also a review in
Ref. [13]). Fewer theoretical results have been reported about
symmetry-breaking bifurcations (SBBs) in two-dimensional
(2D) systems. In the absence of trapping potentials, the SBB
of 2D two-component solitons was studied in the model of
the spatiotemporal light propagation in a dual-core waveguide
with the intrinsic cubic-quintic nonlinearity [14] (see also
Ref. [15]), which was adopted to prevent destruction of the
solitons by the collapse [16]. The analysis was performed for
fundamental solitons, with zero vorticity (S = 0), as well for
the spatiotemporal vortex solitons, with S = 1 (cf. Ref. [17],
as concerns the latter concept). The SBB for 2D fundamental
and vortex solitons in a two-layer BEC, supported by the lattice
potential acting in both layers, was studied in Ref. [18].
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In this work, we aim to propose a sufficiently fundamental
setting for the study of the symmetry-breaking phenomenol-
ogy in the 2D geometry: a system of two linearly coupled
GPEs with the cubic self-attraction and an isotropic harmonic-
oscillator (HO) potential. It directly applies to the BEC with
a negative scattering length, loaded in a combination of a
planar double-pancake trap and in-plane HO potential, the
linear coupling being provided by tunneling of atoms between
the parallel “pancakes.” We also consider a 1D version of
this system, which additionally applies to the spatial-domain
light propagation in dual-core planar optical waveguides.
This setting was largely unexplored, except for Ref. [19].
However, the model considered in that work was essentially
different, as it was based on 2D mean-field equations for dense
condensates, which include the GPE nonlinearly coupled to an
additional equation for the transverse width of the quasi-2D
layer, i.e., the 2D version of the nonpolynomial Schrödinger
equation (NPSE) [20]. As a result, the collapse area in the
parameter space of the coupled NPSEs, found in Ref. [20], is
much larger than in the system of the coupled GPEs considered
here. Another essential difference is that the instability of
vortices against splitting was only mentioned but not studied
in Ref. [20], while the present paper studies it in detail (see
Fig. 13 below).

The model is introduced in Sec. II. It is followed by
the consideration of the symmetry breaking of 2D confined
states, with S = 0 and S = 1, in Secs. II and III, by means
of the variational approximation (VA) and numerical meth-
ods, respectively. The corresponding SBB is identified as
a supercritical one, and stability regions for symmetric and
asymmetric 2D fundamental and vortex modes are found. In
the 1D system, the SBB and stability are addressed for the
GS solutions and dipole modes, i.e., the lowest excited states;
unlike the GSs and vortices, the 1D dipoles do not exist in
the absence of the HO potential. The paper is concluded by
Sec. IV.

II. THE MODEL

A. The two-dimensional setting

We consider the system of two linearly coupled 2D GPEs
for complex wave functions φ(x,y,t) and ψ(x,y,t) with the
cubic self-attractive nonlinearity and HO trapping potential,
written in the usual normalized form:

iφt = − 1
2 (φxx + φyy) − |φ|2φ + 1

2 (x2 + y2)φ − κψ, (1)

iψt = − 1
2 (ψxx + ψyy) − |ψ |2ψ + 1

2 (x2 + y2)ψ − κφ.

(2)

The coefficients in front of the Laplacian, cubic term, and
HO potential are set equal to 1 by means of rescaling,
the single irreducible parameter being the linear-coupling
coefficient, κ > 0. (Naturally, we assume that the scattering
lengths, i.e., strengths of the nonlinear terms, are equal
in both components.) Equations (1) and (2) can be easily
derived from the underlying 3D GPE by imposing a strong
confinement along the third direction (z axis), corresponding
to the double-pancake configuration, and a factorized Gaussian
wave function in the z direction around each local maximum,

with the width equal to the characteristic harmonic-oscillator
length [19].

It is relevant to relate scaled units in which Eqs. (1) and
(2) are written to their physical counterparts. Assuming the
gas of 7Li atoms, with scattering length ∼−0.1 nm, which
typically corresponds to the attractive interactions [21], the
transverse confinement provided by the harmonic-oscillator
potential with strength ω⊥ ≈ 10 kHz, and in-plane potential [in
Eqs. (1) and (2)] with much smaller strength, � ≈ 100 Hz, the
corresponding transverse and in-plane confining radii being,
respectively, r⊥ ≈ 1 and 10 μm, the scaled length and time
units in Eqs. (1) and (2) translate into ∼10 μm and 100 ms,
respectively. Thus, typical radii of the fundamental and vortex
modes presented below, which are ∼3 in the scaled units,
correspond ∼30 μm in physical units. Further, the actual
number of atoms in the condensate, N , is related to the scaled
norm of the wave function [see Eq. (9) below] by the formula

N ≈ 103N. (3)

Hence the SBB, which is shown below to take place at N � 3,
implies that the condensate must contain at least ∼3000 atoms.
In the 1D case considered below, estimates for the physical
time and length units are essentially the same, while the
relation between the actual number of atoms in the quasi-1D
condensate and its scaled norm is N ≈ 102N , instead of
Eq. (3).

Stationary solutions to Eqs. (1) and (2) with real chemical
potential μ are looked for as

{φ,ψ} = e−iμt+iSθ {�S(r),	S(r)}, (4)

where (r,θ ) are the polar coordinates, S = 0,1,2,... is the
vorticity [22], and real functions �S and 	S are determined as
solutions of coupled ordinary differential equations, with the
prime standing for d/dr:

μ�S = −1

2

(
�′′

S + 1

r
�′

S − S2

r2
�S

)
− �3

S + 1

2
r2�S − κ	S,

(5)

μ	S = −1

2

(
	 ′′

S + 1

r
	 ′

S − S2

r2
	S

)
− 	3

S + 1

2
r2	S − κ�S.

(6)

Symmetric solutions, with φ = ψ , are governed by the single
equation

iφt = − 1
2 (φxx + φyy) − |φ|2φ + 1

2 (x2 + y2)φ − κφ. (7)

On the other hand, in the limit of μ → −∞ the small
component of an extremely asymmetric solution is given by
the relation following from Eq. (6),

	S ≈ −(κ/μ)�S, (8)

with solution �S given by Eq. (5), in which the term κ	S is
omitted.

A crucially important issue is the stability of solutions to
Eqs. (1) and (2). In particular, antisymmetric states, with φ =
−ψ , are unstable, as κ > 0 implies that they have a positive,
rather than negative, coupling energy. Further, the known facts
are that all the solutions of the single equation (7) with S = 0
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are stable, and a part of vortices with S = 1 are stable too,
while all vortices with S � 2 are unstable [23,24]. Therefore,
in what follows below we consider only two cases, S = 0
(fundamental modes) and S = 1 (unitary vortices).

The basic objective of the analysis is to find an SBB
which destabilizes the symmetric states and replaces them
by nontrivial stable asymmetric ones, if the total norm of the
given state N exceeds a certain critical value:

N = Nφ + Nψ ≡ 2π

∫ ∞

0
�2

S(r)rdr + 2π

∫ ∞

0
	2

S(r) rdr

> N (S)
cr (κ). (9)

In fact, it is necessary to find N (S)
cr for S = 0 and 1 as

functions of κ and investigate the character of the SBB, which
is determined by dependence of the respective asymmetry
parameter,

θ ≡ |Nψ − Nφ|
N

, (10)

on N , for given S and κ .
To analyze stability of the stationary states, we search for

perturbed solutions to Eqs. (1) and (2) as

φ = [�S(r) + u1(r)eλt+iLθ + u∗
2(r)eλ∗t−iLθ ]eiSθ−iμt ,

(11)

ψ = [	S(r) + v1(r)eλt+iLθ + v∗
2 (r)eλ∗t−iLθ ]eiSθ−iμt ,

(12)

where u1,2(x,z) and v1,2(x,z) are perturbation eigenmodes
with integer azimuthal index L, and λ is the corresponding
(generally complex) instability growth rate. Linearization
around the stationary solutions leads to the Bogoliubov–de
Gennes (BdG) equations:

−1

2

(
u′′

1 + 1

r
u′

1 − (S + L)2

r2
u1

)
− �2(2u1 + u2)

+ 1

2
r2u1 − κv1 − μu1 = iλu1,

−1

2

(
u′′

2 + 1

r
u′

2 − (S − L)2

r2
u2

)
− �2(2u2 + u1)

+ 1

2
r2u2 − κv2 − μu2 = −iλu2,

−1

2

(
v′′

1 + 1

r
v′

1 − (S + L)2

r2
v1

)
− 	2(2v1 + v2)

+ 1

2
r2v1 − κu1 − μv1 = iλv1,

−1

2

(
v′′

2 + 1

r
v′

2 − (S − L)2

r2
v2

)
− 	2(2v2 + v1)

+ 1

2
r2v2 − κu2 − μv2 = −iλv2, (13)

which were solved numerically, with a boundary condition
demanding u(r) and v(r) to decay as r |S±L| at r → 0, and
exponentially at r → ∞. The instability is predicted by
the existence of (pairs of) eigenvalues with Re(λ) 
= 0. In

particular, all unstable eigenvalues which account for the
symmetry-breaking instability in the 2D and 1D systems con-
sidered below are (as usual) purely real, i.e., the corresponding
instability is not oscillatory. Complex eigenvalues are found in
the case of unstable 2D vortices (shown below in Figs. 11
and 12) and specific instability (which is unrelated to the
symmetry breaking) of 1D dipole modes [see Figs. 15(d) and
17 below].

B. Reduction to one dimension

The 1D version of Eqs. (1) and (2) is mathematically
obtained by dropping all terms containing y:

iφt = − 1
2φxx − |φ|2φ + 1

2x2φ − κψ, (14)

iψt = − 1
2ψxx − |ψ |2ψ + 1

2x2ψ − κφ. (15)

In terms of BEC, Eqs. (14) and (15) can be derived from
Eqs. (1) and (2), assuming a strong confinement along the
y direction and the corresponding factorization of the wave
function, with the Gaussian accounting for its structure in
the y direction. In addition to the BEC loaded in the double
trap, this system applies, as mentioned above, to optics as
well: with t replaced by propagation distance z, it models the
propagation of light in a dual-core planar waveguide with the
intrinsic Kerr nonlinearity and trapping potential representing
a guiding channel. In addition to the study of the symmetry
breaking of fundamental (spatially even) modes, in the 1D
case it is also relevant to address the same effect featured by
dipole (spatially odd) modes, i.e., the lowest excited state, in
terms of quantum mechanics. Note that unlike the solitonlike
fundamental states, which exist in the free 1D space, dipole
modes do not exist in the absence of the trapping potential.

Stationary solutions to Eqs. (1) and (2) with real chemical
potential μ are looked for as

{φ,ψ} = e−iμt {�(x),	(x)}, (16)

where real functions � and 	 are determined as solutions
of coupled ordinary differential equations, with the prime
standing for d/dx:

μ� = − 1
2�′′ − �3 + 1

2x2� − κ	, (17)

μ	 = − 1
2	 ′′ − 	3 + 1

2x2	 − κ�, (18)

cf. Eqs. (4)–(6). Symmetric solutions, with φ = ψ , obey the
single equation, which is the 1D version of Eq. (7):

iφt = − 1
2φxx − |φ|2φ + 1

2x2φ − κφ. (19)

Different solutions are characterized by their norm (in the
application to optics, it is the total power of the two-component
optical beam), which is defined by the 1D counterpart of
Eq. (9): N = Nφ + Nψ ≡ ∫ +∞

−∞ �2(x)dx + ∫ +∞
−∞ 	2(x)dx. At

N exceeding the respective critical value, N (1D)
cr (κ), the

asymmetry is defined as per the above equation (10). The
stability of 1D modes was investigated by means of the res-
pectively simplified system of BdG equations (13).
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III. THE ANALYTICAL CONSIDERATION:
THE VARIATIONAL APPROXIMATION

A. The two-dimensional system

A natural analytical approach to the solution of Eqs. (5)
and (6) is based on the VA. Here, it is presented for S = 0; for
S = 1 it can be elaborated, too, in a more cumbersome form.
The variational Ansatz is adopted as the GS wave function of
the 2D HO potential corresponding to Eqs. (5) and (6) [here,
�S(r) and 	S(r) are replaced by �(r) and 	(r)]:

{�(r),	(r)} = {A,B} exp
(− 1

2 r2
)
, (20)

with unknown amplitudes (variational parameters) A and B,
the norm of this Ansatz being

N (2D) ≡ N
(2D)
φ + N

(2D)
ψ = πA2 + πB2. (21)

This Ansatz implies that the nonlinearity is not too strong,
as otherwise, the nonlinear self-focusing essentially alters the
shape of the 2D trapped state, switching it from the GS of the
HO potential towards a Townes soliton [25], for which the VA
is built differently, using both the amplitude and width of the
mode as variational parameters [26]. (Actually, this version
of the VA was developed only for the single-component GPE
in the absence of the trapping potential.) In particular, strong
self-focusing makes the width of the localized modes smaller
than the HO width, which is implied in the Ansatz (20); the
same pertains to the 1D Ansätze, which are adopted below in
Eqs. (34) and (48). We do not aim to develop such an improved
version of the VA in the present work, as the resulting algebra
is rather cumbersome.

The VA is based on the Lagrangian corresponding to
Eqs. (5) and (6):

L =
∫ ∞

0
rdr

[
1

4
((�′)2 + (	 ′)2) − 1

4
(�4 + 	4)

+ 1

4
r2(�2 + 	2) − κ�	 − μ

2
(�2 + 	2)

]
. (22)

The substitution of Ansatz (20) in Lagrangian (22) yields the
following effective Lagrangian as a function of A and B:

Leff = 1

4
(1 − μ)(A2 + B2) − 1

16
(A4 + B4) − κ

2
AB. (23)

The corresponding Euler-Lagrange equations, ∂Leff/∂A =
∂Leff/∂B = 0, amount to a system of coupled cubic equations:

(1 − μ)A − κB − 1
2A3 = 0, (24)

(1 − μ)B − κA − 1
2B3 = 0. (25)

The symmetric solution of these equations is obvious:

A2 = B2 = 2(1 − κ − μ), (26)

the corresponding norm (21) being

N (2D)
symm = 4π (1 − κ − μ). (27)

The solution exists at N (2D) � 0, i.e.,

μ � μmax ≡ 1 − κ. (28)

(Note that 1 − κ may be both positive and negative.)

The asymmetric solution of Eqs. (24) and (25) can also be
found in an exact form,

A2 = 1 − μ +
√

(1 − μ)2 − 4κ2,

B2 = 1 − μ −
√

(1 − μ)2 − 4κ2, (29)

with the total norm

N (2D)
asymm = 2π (1 − μ). (30)

As it follows from Eqs. (28) and (29), only the symmetric
solution exists in the interval of

1 − 2κ < μ � 1 − κ. (31)

The asymmetric solution appears at

μ = μ(S=0)
cr ≡ 1 − 2κ,N = N (S=0)

cr ≡ 4πκ (32)

and exists at μ < 1 − 2κ .
The asymmetric solution (29) can be rewritten in terms of

the asymmetry parameter, defined by Eq. (10), and norm N

[see Eq. (21)]:

θVA =
√

1 −
(

4πκ

N

)2

. (33)

With the increase of N , the asymmetric solutions appears at
N = N (S=0)

cr , and θ grows monotonously as a function of N at
N > N (S=0)

cr . Thus, VA predicts the SBB of the supercritical
type.

B. The one-dimensional case

1. The ground state

The VA Ansatz for the 1D GS is adopted as the GS wave
function for the 1D HO potential corresponding to Eqs. (17)
and (18):

{�(r),	(r)} = {A,B} exp
( − 1

2x2
)
, (34)

with variational parameters A and B and the respective norm,

N (1D) ≡ N
(1D)
φ + N

(1D)
ψ = √

πA2 + √
πB2. (35)

The VA is based on the Lagrangian corresponding to Eqs. (17)
and (18):

L =
∫ +∞

−∞
dx

[
1

4
((�′)2 + (	 ′)2) − 1

4
(�4 + 	4)

+ 1

4
x2(�2 + 	2) − κ�	 − μ

2
(�2 + 	2)

]
, (36)

cf. Eq. (22). The substitution of Ansatz (34) in Lagrangian (36)
yields

1√
π

Leff = 1

2

(
1

2
− μ

)
(A2 + B2) − 1

4
√

2
(A4 + B4) − κAB.

(37)

The corresponding Euler-Lagrange equations, ∂Leff/∂A =
∂Leff/∂B = 0, amount to a system of coupled cubic equations
[cf. Eqs. (24) and (25) in the 2D system]:(

1

2
− μ

)
A − κB − 1√

2
A3 = 0, (38)
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(
1

2
− μ

)
B − κA − 1√

2
B3 = 0. (39)

The symmetric solution of these equations is

A2 = B2 =
√

2
(

1
2 − μ − κ

)
, (40)

the respective total norm (35) being

N (1D)
symm =

√
2π (1 − 2μ − 2κ). (41)

It exists at

μ � μ(1D)
max ≡ 1

2 − κ. (42)

The asymmetric solution of Eqs. (24) and (25) can be found
in an exact form too, cf. Eq. (29):

A2 = 1 − 2μ

2
√

2
+

√
(1 − 2μ)2

8
− 2κ2,

B2 = 1 − 2μ

2
√

2
−

√
(1 − 2μ)2

8
− 2κ2, (43)

with the total norm

N (1D)
asymm = 1

2

√
2π (1 − 2μ). (44)

As it follows from Eqs. (28) and (29), in the interval

1
2 − 2κ < μ � 1

2 − κ (45)

only the symmetric solution exists. The asymmetric one
appears at

μ = μ(1D)
cr = 1

2 − 2κ, N = N (1D)
cr = 2

√
2πκ, (46)

and exists at μ � 1
2 − 2κ .

The asymmetric solution (29) is characterized by the
asymmetry parameter, defined by Eq. (10), as a function of
the total norm, N [see Eq. (35)]:

θ
(1D)
VA =

√
1 − 8πκ2

N2
. (47)

Thus, with the increase of N , the asymmetric solution
appears at N = N (1D)

cr , and the corresponding SBB is of the
supercritical type, as well as predicted above in the 2D system,
contrary to the well-known weakly subcritical bifurcation for
1D solitons in the free space [5].

2. The dipole mode

The consideration of the SBB in the dipole mode is
especially interesting, as such a mode, unlike the even GS
soliton, does not exist in the absence of the HO trapping
potential. The corresponding VA Ansatz is naturally adopted
as [cf. Eq. (34)]

{�(r),	(r)} = {A,B}x exp
(− 1

2x2
)
, (48)

its norms being [cf. Eq. (35)]

Nφ = 1
2

√
πA2, Nψ = 1

2

√
πB2. (49)

The calculation of Lagrangian (36) with Ansatz (48)
yields

1√
π

L
(odd)
eff = 1

4

(
3

2
− μ

)
(A2 + B2) − 3

64
√

2
(A4 + B4)

− 1

2
κAB, (50)

cf. Eq. (37). Finally, the solution of the corresponding Euler-
Lagrange equation for A and B yields the following results,
cf. Eqs. (40) and (43) for the GS. The symmetric solution is

A2
odd = B2

odd = 8
√

2

3

(
3

2
− μ − κ

)
, (51)

the respective total norm being

N
(symm)
odd ≡ Nφ + Nψ = 8

3

√
2π

(
3

2
− μ − κ

)
, (52)

as per Eq. (49). Accordingly, this state exists at

μ � μ(1D,odd)
max ≡ 3

2
− κ. (53)

The asymmetric solution is

A2
odd = 8

3

⎡
⎣3 − 2μ

2
√

2
+

√
(3 − 2μ)2

8
− 2κ2

⎤
⎦,

B2
odd = 8

3

⎡
⎣3 − 2μ

2
√

2
−

√
(3 − 2μ)2

8
− 2κ2

⎤
⎦, (54)

with the total norm

N
(asymm)
odd = 2

3

√
2π (3 − 2μ), (55)

cf. Eq. (52). As it follows from here, only the symmetric dipole
mode exists in the interval

3
2 − 2κ < μ � 3

2 − κ, (56)

cf. Eq. (45). Its asymmetric counterpart appears at μ =
3
2 − 2κ, existing at μ � 3

2 − 2κ .
The asymmetric solution (54) can be rewritten in terms of

the asymmetry parameter defined by Eq. (10), and norm N ,
see Eq. (49):

θ
(1D,odd)
VA =

√
1 − 128πκ2

9N2
. (57)

Thus, with the increase of N , the asymmetric dipole mode
appears at

N (1D,odd)
cr = 8

√
2π

3
κ, (58)

and θ grows monotonously as a function of N at N > N (1D,odd)
cr ,

the corresponding SBB again being of the supercritical type.
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FIG. 1. (a) The cross section of the 2D profile of a stable
symmetric ground state with (κ,N ) = (0.4,1). (b, c) The same for a
stable asymmetric ground state with (κ,N ) = (0.4,4). Red solid and
black dashed curves designate numerical and VA results, respectively.

IV. NUMERICAL RESULTS

A. The two-dimensional system

1. Symmetric and asymmetric ground-state (GS)
modes with zero vorticity

GS solutions to Eqs. (5) and (6) with S = 0 were produced
by means of the imaginary-time-integration method [27],
applied to underlying equations (1) and (2). Then, the stability
of these solutions was identified through the computation of
their eigenvalue spectra as per Eq. (13) and further verified by
direct simulations of the perturbed evolution. The eigenvalue
spectra were explored for perturbations with L = 0, L = 1,
and L = 2. For the GSs, the perturbations with azimuthal
index L = 0 in Eqs. (11) and (12) are found, quite naturally,
to be the most dangerous ones, while for the vortices with
S = 1, the stability boundaries are always determined by the
eigenmodes with L = 1 or L = 2, which is natural too [23].
To test the stability in direct simulations, random noise at the
5% amplitude level was locally added to initial conditions.

First, in Fig. 1 we display typical examples of the numeri-
cally found stable symmetric and asymmetric 2D fundamental
states (being stable solutions, they represent the system’s
GS), along with their counterparts predicted by the VA,
which is based on Eqs. (20), (26), and (29), respectively. The
comparison of the numerical and VA solutions is presented
for identical values of the total norm. The numerical solutions
for the symmetric states, with � = 	, coincide with their
counterparts previously produced by the single-component
equation (7) with κ = 0 [23,24]. (Of course, the stability
of the symmetric states may be different in the single- and
two-component systems.)

In a systematic form, the numerical results for the sym-
metric states are presented, along with the respective VA
prediction, in terms of the relation between the total norm
N [see Eq. (21)] and chemical potential μ in Fig. 2(a). The
VA prediction stays close to the numerical result when the

FIG. 2. Total norm N versus chemical potential μ for (a) symmet-
ric (“SY”) and (b) asymmetric (“ASY”) ground states (modes with
S = 0) in the 2D system, for indicated values of coupling constant
κ . Red and black curves represent the numerical and variational
results, respectively, see Eqs. (27) and (30). The dashed segment
of the numerically generated N (μ) curve in (a) represents the branch
destabilized by the SBB. (c) Critical values of total norm N (S=0)

cr at
the symmetry-breaking point of the GS in the 2D system versus κ .
(d) Critical values of the respective chemical potential, μ(S=0)

cr , versus
κ . Again, red and black curves represent, severally, numerical and VA
results, see Eq. (32). The numerically found dependences displayed
in (c) and (d) terminate at the point determined by Eq. (60).

nonlinearity is relatively weak [in particular, the symmetric
states displayed in Fig. 1(a) for N = 1 correspond to a very
small discrepancy in Fig. 2(a)]. The discrepancy increases
as the nonlinearity grows stronger, causing, as said above,
the switch of the 2D wave function from the GS of the HO
towards the Townes soliton. In the limit of μ → −∞, the total
norm approaches the value N (S=0)

max ≈ 11.70, which is twice
the well-known norm of the Townes soliton, NTownes ≈ 5.85,
at which the critical collapse sets in [25]. (An approximate
variational prediction for it is NTownes = 2π [26].)

A typical N (μ) dependence for the 2D asymmetric GS is
displayed in Fig. 2(b), in which the numerically found and
VA-predicted curves commence at the respective SBB points.
In the limit of μ → −∞, the total norm approaches the above-
mentioned value NTownes, which asymptotically corresponds to
the Townes soliton in component �S=0, while the contribution
from 	S=0 vanishes, as per Eq. (8). Note that in both cases
shown in Figs. 2(a) and 2(b), the N (μ) dependences satisfy
the Vakhitov-Kolokolov criterion, dN/dμ < 0, which is the
well-known necessary stability condition for modes supported
by the self-focusing nonlinearity [25,28].

Proceeding to detailed results for the stability of the
symmetric and asymmetric 2D fundamental modes (alias
GSs), we note that, as it might be expected, the asymmetric
one is always stable when it exists (as the GS must be). The
symmetric state loses its stability beyond the SBB point,
i.e., at N > N (S=0)

cr , see Eq. (32). In direct simulations,
it spontaneously transforms into an asymmetric state with
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FIG. 3. (a, b) The numerically simulated evolution of an unstable
2D symmetric fundamental (S = 0) state (shown is cross-section
y = 0 ) with (κ,N ) = (0.2,3), which demonstrates the onset of
the spontaneous symmetry breaking with concomitant oscillations.
(c, d) The respective evolution of densities of the two components at
the center.

residual oscillations, as shown in Fig. 3. Panels (c) and (d)
in the figure demonstrate that an amplitude minimum in
one oscillating component is attained simultaneously with
the maximum in the other. This instability occurs in the
region of N (S=0)

cr < N < NTownes. At N > NTownes, the 2D
system suffers the onset of the collapse, as the spontaneous
symmetry breaking makes the norm in one component much
larger than in the other, allowing the larger norm to reach the
collapse threshold for the single component, N > NTownes. As
Fig. 4 demonstrates, the symmetry breaking accelerates in the
course of the collapse development, driven by the growing
nonlinearity strength in the collapsing component, while the
mate component suffers depletion, rather than collapse.

The main objective of the analysis is the SBB in the
two-component system. Basic results for the bifurcation acting
on the 2D fundamental modes are presented in Fig. 5 in

FIG. 5. Bifurcation diagrams, in the (N,θ ) plane, for the fun-
damental modes (ground states) with S = 0, at different values
of the linear-coupling constant: (a) κ = 0.2, (b) κ = 0.4, and
(c) κ = 0.6. Here, black and continuous (dashed) red curves represent
the variational results, and numerically found stable (unstable)
solutions, respectively.

the form of relations between asymmetry θ [defined as per
Eq. (10)] and total norm N . In agreement with the prediction
of the VA, the corresponding SBB is of the supercritical
type. The numerically found θ (N ) curves terminate at the
above-mentioned point of the onset of the critical collapse,
N = NTownes.

With the increase of the coupling constant κ , larger values
of N are required for the onset of the symmetry breaking;
therefore the accuracy of the VA prediction for the SBB
deteriorates at large κ . It is relevant to stress that the SBB
takes place in a finite interval of the values of the coupling
constant, 0 < κ � κmax, with κmax determined by the condition
that the symmetry breaking occurs at N = NTownes, i.e., by the
following equation:

N (S=0)
cr (κmax) = NTownes. (59)

FIG. 4. (a, b) The evolution of an unstable symmetric fundamental soliton (shown is cross section y = 0) with (κ,N ) = (0.2,11.5), which
demonstrates the acceleration of the symmetry breaking in the course of the development of the collapse. In panel (c), this is additionally
illustrated by the dependence of asymmetry θ between the two components [see Eq. (10)] on time for the same solution.
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FIG. 6. (a) A stable symmetric vortex with S = 1 and (κ,N ) =
(0.4,8). (b, c) Two components of a stable asymmetric vortex with
(κ,N ) = (0.4,8.8).

(At κ > κmax, the critical collapse occurs prior to the expected
onset of the SBB.) The respective numerical result is

κ (S=0)
max ≈ 0.8. (60)

It determines the termination points of the numerically found
dependences Ncr(κ) and μcr(κ) in Figs. 2(c) and 2(d).

2. Symmetric and asymmetric vortices with S = 1

Like GS, solutions of symmetric and asymmetric vortices
are also produced by means of imaginary-time-integration
method. Typical examples of shapes of stable symmetric
vortices are shown in Figs. 6(a)–6(c), respectively. Relations
between total norm and chemical potential for families of
vortices are displayed in Fig. 7, which shows that the stability
regions of the symmetric and asymmetric vortices expand and
shrink, respectively, with the increase of coupling constant κ .
To explain these findings, we note, first, that in the decoupled
limit, κ = 0, the stability region for the vortices was known
previously [23]:

0 � N � N (S=1)
cr (κ = 0) ≈ 15.6, (61)

which coincides with the stability boundary in Fig. 7(a) for
κ = 0. (It is multiplied by 2 in comparison with Ref. [23],
where the boundary was given for the single component.)

Next, the symmetric vortices in the coupled system feature
the SBB at the respective critical value of the norm, N (S=1)

cr (κ).
[The N (μ) curves for the asymmetric vortices in Fig. 7(b) for
each κ originate precisely at N = N (S=1)

cr (κ).] The numerically
found dependence N (S=1)

cr (κ) is displayed in Fig. 8, along with
the respective dependence on κ of the chemical potential at the
SBB point. They can be empirically fitted by linear relations,

N (S=1)
cr (κ) = 0.57 + 19.06κ,μ(S=1)

cr (κ) = 2 − 1.86κ. (62)

In fact, such linear dependences can be derived from the VA
for the vortices [cf. similar relations (32) predicted by the VA
for the modes with S = 0]. We do not present this extension
of the VA here in detail, as it is rather cumbersome.

FIG. 7. Total norm N versus chemical potential μ for symmetric
and asymmetric vortices with S = 1, at indicated values of the
coupling constant: (a) κ = 0.1, (b) κ = 0.15, and (c) κ = 0.2. The
decoupled system with κ = 0 is included in (a), too, for completeness’
sake. Inset (d) is a zoom of a small stability region which exists in
(c). Solid and dashed lines designate stable and unstable branches,
respectively. Arrows indicate points where the asymmetric vortices
loose their stability. They are N (S=1)

max for the asymmetric ones, see
Eq. (64).

With the further increase of κ , the value N (S=1)
cr (κ) attains

the above-mentioned stability limit for the decoupled system,
given by Eq. (61). As follows from Eq. (62), this happens at

κ = κ (S=1)
max ≈ 0.81, (63)

which is, interestingly, virtually the same as its counterpart
for the modes with S = 0, given by Eq. (60). Accordingly,
dependences N (S=1)

cr (κ) and μ(S=1)
cr (κ), displayed in Fig. 8,

terminate close to κ = κ (S=1)
max . At κ > κ (S=1)

max , no stable asym-
metric vortices exist, as the symmetric ones become unstable

FIG. 8. The critical value of the total norm at the symmetry-
breaking point N (S=1)

cr versus the coupling constant κ for vortices
with S = 1 corresponds to the black line with circles. The chemical
potential at the bifurcation point μ(S=1)

cr versus the coupling constant
κ is shown by the black line with triangles. As indicated in the
figure, these dependences can be fitted by linear relations (62). They
terminate at the point given by Eq. (63).
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FIG. 9. Bifurcation diagrams, in the (N,θ ) plane, for the vortices
with S = 1 at different values of the linear-coupling constant:
(a) κ = 0.1, (b) κ = 0.15, and (c) κ = 0.2. Stable and unstable
branches are shown by solid and dashed lines, respectively.

prior to the onset of the SBB. This fact explains the shrinkage
of the stability region for the asymmetric vortices with the
increase of κ , as observed in Figs. 7 and 13.

The SBB for vortices is illustrated by curves θ (N ) which
are displayed, for different values of κ , in Fig. 9, cf. similar
diagrams for the models with S = 0 in Fig. 5. These diagrams
clearly demonstrate that the the SBB for the vortices is also of
the supercritical type.

Symmetric vortices destabilized by the SBB spontaneously
transform into asymmetric ones with residual oscillations (see
Fig. 10), similar to the spontaneous transition from unstable
symmetric states with S = 0 to oscillating asymmetric modes,
as shown above in Fig. 3. Stable asymmetric vortices exist
in the interval of N (S=1)

cr < N < N (S=1)
max , where N (S=1)

max is the

FIG. 10. The evolution of an unstable 2D symmetric (S = 1)
vortex (shown is cross-section y = 0) with (κ,N ) = (0.4,8.8), which
demonstrates the onset of the spontaneous symmetry breaking with
residual oscillations.

largest norm up to which asymmetric vortices remain stable,
as shown in Fig. 7:

N (S=1)
max (κ = 0.1) ≈ 7.9, N (S=1)

max (κ = 0.15) ≈ 6.9,

N (S=1)
max (κ = 0.2) ≈ 4.9. (64)

At N > N (S=1)
max , two generic instability scenarios are

possible, starting from the symmetric input. One (splitting)
is shown in Fig. 11, which demonstrates that the evolution
of symmetric vortices combines the spontaneous symmetry
breaking between the φ and ψ components and splitting of
the vortex ring in two fragments, followed by the collapse of
the fragments in the component carrying a larger amplitude.
(It is ψ , in Fig. 11; the asymmetric collapse may be compared
to that displayed in Fig. 4 for the modes with S = 0.)
The second scenario (crescent instability) is illustrated by
Fig. 12: the asymmetric vortex rings spontaneously transform
into a crescent, which is followed by recovery of the ring.
After several cycles of such transformations, the crescent’s
component with a larger amplitude tends to evolve into
an approximately fundamental state, while the component
with a smaller norm develops a chaotic pattern. The former

FIG. 11. Numerically simulated evolution of an unstable symmetric vortex with S = 1 and (κ,N ) = (0.8,18), initiated by random noise (at
the amplitude level of 5%) added to the input. This is a typical example of the splitting instability.
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FIG. 12. Numerically simulated evolution of an unstable asymmetric vortex with S = 1 and (κ,N ) = (0.2,6), initiated by random noise (at
the amplitude level of 5%) added to the input. This figure presents a typical example of the crescent instability (see the main text).

component will eventually suffer collapse if the norm of the
emergent fundamental state exceeds the value corresponding
to the collapse onset. A similar scenario of the instability
development of vortices in single-component self-attractive
BEC was reported in Ref. [24].

In the single-component model, simulations of the evolu-
tion of the vortex with S = 1 reveal a robust dynamical regime
intermediate between the stability and the splitting followed by
the collapse. In the interval of the norm, which, in the present
notation, is

15.56 < N < 20, (65)

FIG. 13. The stability diagram for symmetric (a) and asymmetric
(b) vortices with S = 1 in the plane of (κ,N ). The red and gray colors
designate, respectively, stability and instability areas. In panel (a), the
small blue area represents instability with residual oscillations, while
the gray area below the dashed-dotted curve designates the crescent
instability similar to that shown in Fig. 12. Above the dotted line,
this instability leads to the collapse of the component with the larger
norm, but the collapse does not happen in the small gray subarea
below the dotted line. The gray area above the dashed-dotted and
dashed lines represents the splitting instability scenario displayed in
Fig. 11, while robust recurrent splitting-recombination cycles take
place in the gray area below the dashed curve. In panel (b), the gray
area under the dashed-dotted line represents the instability shown
in Fig. 12, while in the area between the dashed and dashed-dotted
lines instability similar to that in Fig. 12 occurs, finally leading to
the collapse. Finally, the gray area above the dashed curve represents
instability similar to that displayed in Fig. 11.

the vortex ring recurrently splits into two fragments that
recombine back into the ring [23,24]. In the present system,
systematic simulations demonstrate that such a stable regime

FIG. 14. (a, b) Typical examples of stable symmetric solutions
for the 1D ground-state and dipole modes, with (κ,N ) = (0.4,1). Red
solid and black dashed curves display the numerical and variational
results, respectively. (c, d) The numerically simulated onset of the
symmetry breaking in an unstable symmetric ground-state mode,
with (κ,N ) = (0.4,2.5). Panels (e) and (f) display several examples
of stable asymmetric ground-state solutions, with (κ,N ) = (0.4,2),
and dipole modes, with (κ,N ) = (0.4,2.7). Red and green solid
curves represent two different components, as produced by the nu-
merical solution, while black dashed lines depict their VA-predicted
counterparts.

033621-10



SPONTANEOUS SYMMETRY BREAKING OF FUNDAMENTAL . . . PHYSICAL REVIEW A 96, 033621 (2017)

FIG. 15. Total norm N versus chemical potential μ for symmetric
(“SY”) (a) and asymmetric (“ASY”) (b) 1D ground state at κ =
0.4. Red and black curves represent the numerical and variational
results, the latter given by Eqs. (41) and (44) for the symmetric and
asymmetric states, respectively. (c, d) The same for the 1D dipole
states, with the variational predictions given by Eqs. (52) and (55).
Dashed are unstable segments of the numerically generated branches.

does not occur at values of the coupling constant 0 < κ �
0.81, as the symmetry breaking destabilizes the fragments
after the first splitting (approximately in the same fashion
as shown in Fig. 11). At κ � 4.35, the linear coupling is
so strong that the dynamics of the two-component system
is identical to that of its single-component counterpart; hence
stable splitting-recombination cycles, symmetric with respect
to the φ and ψ components, take place in interval (65). In the
case of 0.81 < κ < 4.35, the splitting-recombination regime is
stable below the boundary in the (κ,N ) plane, which is shown
by the dashed line in Fig. 13(a).

B. The one-dimensional system

The VA for the 1D system, based on Eqs. (34) and (40), (43),
predicts stable symmetric GS and dipole modes in a virtually
exact form; see typical examples in Figs. 14(a) and 14(b).
Above the SBB point, unstable symmetric GSs spontaneously
transform into asymmetric counterparts with residual oscilla-
tions, as shown in Figs. 14(c) and 14(d), cf. the similar tran-
sition in the 2D system, displayed above in Fig. 3. The asym-
metric GSs are completely stable in their existence region.

Systematic results for the 1D GS and dipole modes are
reported by means of N (μ) dependences in Fig. 15, and bifur-
cation diagrams in Figs. 16 and 17, respectively. In addition,
critical values of the norm at which the symmetry-breaking
transition takes place for both the GS and dipole modes are
shown in Fig. 18. The figures also provide a comparison of
the VA predictions for these characteristics of the solution
families with the numerical findings. In agreement with the
VA result, the SBB in the 1D setting is of the supercritical type
(on the contrary to the weakly subcritical SBB for free-space

FIG. 16. Bifurcation diagrams, in the (N,θ ) plane, for the
1D ground-state modes, at different values of the linear-coupling
constant: (a) κ = 0.2, (b) κ = 0.4, (c) κ = 0.6, and (d) κ = 0.8. The
red and black curves represent numerical findings and VA predictions,
respectively.

1D solitons in the system of linearly coupled NLSEs [5]).
Further, it is worthy to note that the accuracy of the VA, based
on Ansätze (34) and (48), is better for the dipole modes than for
the GS. This is explained by the fact that the intrinsic structure
of the dipoles makes them broader, and hence their width is
closer to that imposed by the trapping potential, as implied by
the Ansätze, than to the smaller soliton’s width determined
by the self-trapping. Another noteworthy peculiarity revealed
by Fig. 18 is that the critical norm is somewhat higher for
the dipoles than for the GS. This fact, too, is explained by
the effectively broader shape of the dipoles, which makes the
nonlinearity somewhat weaker for them, in comparison with
the GS mode.

FIG. 17. The same as in Fig. 16, but for the 1D dipole modes.
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FIG. 18. (a) Critical values of total norm Ncr at which the 1D
ground state undergoes the symmetry-breaking transition versus
coupling coefficient κ . (b) The same for the 1D dipole states.
Again, red and black curves represent numerical and variational
results, respectively [see Eqs. (46) and (58), with regard to the VA
predictions].

When 1D symmetric dipole modes are destabilized by the
SBB, at the respective critical points, N = N

(dip)
cr , they spon-

taneously transform into asymmetric counterparts, featuring
residual oscillations (not shown here in detail), similar to the
same transition for the GS, cf. Figs. 14(c) and 14(d). A more
interesting finding, specific to the dipole mode, is that the
branches of the asymmetric solutions, which are completely
stable in the case of the 1D GSs, feature instability segments,
with respective complex instability eigenvalues, corresponding
to an oscillatory instability. As seen in Figs. 15(d) and 17,
these segments are relatively narrow for small κ , essentially
expanding at larger κ . In particular, at κ = 0.2 and 0.4,
the asymmetric dipole states remain stable, respectively, in
intervals N

(dip)
cr (κ = 0.2) = 1.24 < N < 2.9 and N

(dip)
cr (κ =

0.4) = 2.48 < N < 2.7 [see Figs. 17(a) and 17(b)]. Further-
more, Figs. 17(c) and 17(d) demonstrate that at κ = 0.6 and
0.8, this instability expands to a part of the originally stable
branches of the symmetric dipole modes below the SBB point.
Direct simulations show, in Fig. 19, that this specific type of
instability of the asymmetric and symmetric dipole modes
transforms them into robust, chaotically oscillating states.
This instability is not essentially related to the two-component
structure of the system, as the emerging chaotic states seem
effectively symmetric with respect to the two components.

V. CONCLUSION

The objective of this work is to study manifestations of the
spontaneous symmetry breaking of 2D fundamental modes

FIG. 19. The evolution of an unstable asymmetric dipole mode,
with (κ,N ) = (0.6,4), which transforms into a spatially confined
turbulent state.

and vortices, as well of 1D GS (ground state) and dipole
mode (the first excited state), in the two-component model
based on linearly coupled GPEs or NLSEs (Gross-Pitaevskii
or nonlinear Schrödinger equations), with cubic self-attraction
and the HO (harmonic-potential) trap. The system can be
implemented in a two-layer BEC, and the 1D version also
applies to dual-core optical waveguides. Although effects of
the spontaneous symmetry breaking were studied theoretically
and experimentally in many settings, these quite fundamental
realizations were not considered before.

Families of 2D fundamental and vortical states, with vortic-
ities S = 0 and S = 1, have been constructed by means of the
variational and numerical methods, and their stability has been
investigated by means of the computation of eigenvalues for
small perturbations and further verified in direct simulations.
The respective SBB (symmetry-breaking bifurcation) is of the
supercritical type (i.e., it represents a phase transition of the
second kind) in all the cases. The asymmetric fundamental
modes are completely stable, while asymmetric vortices keep
their stability in rather narrow intervals of values of the norm
N , suffering the splitting into two fragments and subsequent
collapse of the fragments at larger N , or featuring several
cycles of transformations between the vortex ring and crescent,
and eventually transforming into a fundamental state in one
component and a chaotic state in the other. The SBB occurs
if the linear-coupling constant κ falls below a certain value
κmax ≈ 0.81, which is practically the same for the modes
with S = 0 and S = 1. At κ > κmax, the strongly coupled
system behaves, essentially, as the single-component one; in
particular, vortices demonstrate the regime of stable splitting-
recombination cycles.

In 1D, families of GS and dipole solutions were found, too,
in the variational and numerical forms. They also demonstrate
the SBB of the supercritical type. The dipole modes are
especially interesting, as, unlike the GSs and 2D vortices,
they do not exist in the free space, and they are better
approximated by the variational Ansatz. A noteworthy feature
of the asymmetric and symmetric dipoles is the appearance,
with the increase of κ , of additional regions of oscillatory
instability, unrelated to the spontaneous symmetry breaking.
This instability transforms the dipoles into confined turbulent
states.

A subject for continuation of the present analysis may
be the study of Rabi oscillations between the two linearly
components, in the 2D and 1D geometries alike, cf. Ref. [7].
It may also be interesting to consider a generalization for
a system with a spinor (binary) wave function, which, in
particular, may feature linear interconversion between spinor
components inside each layer. In the latter context, the
consideration of the spinor wave function subject to spin-orbit
coupling [29] should be quite relevant. Lastly, it may be
interesting, too, to introduce a PT -symmetric version of the
system [30], with equal amounts of linear gain and loss added
to the two coupled equations, cf. Ref. [15].
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