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Synthetic random flux model in a periodically driven optical lattice
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We propose a realization of a synthetic random flux model in a two-dimensional optical lattice. Starting from
Bose-Hubbard Hamiltonian for two atom species, we show how to use fast-periodic modulation of the system
parameters to construct a random gauge field. We investigate the transport properties of such a system and
describe the impact of time-reversal symmetry breaking and correlations in disorder on Anderson localization

length.
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I. INTRODUCTION

The fractional quantum Hall effect (QHE) has been
effectively described by the Chern-Simons field theory [1,2]
in which quasiparticles are weakly interacting fermions con-
structed by attaching an even number of flux quanta to the
electrons under a Chern-Simons transformation [3]. In such
a case, fractional QHE is effectively mapped into integer
QHE for the composite fermions suspended in an effective
magnetic field. At filling factor vy =1/2, the effective
magnetic field vanishes and composite fermions are subject
to random fluctuations of the gauge field induced by the
ordinary impurities. In this context, it is important to study
the localization properties of noninteracting charged particles
in the presence of a random magnetic field to understand the
half-filling system. The problem of charged particles moving
in a random magnetic field is also relevant to theoretical
studies of high-7, models where gauge field fluctuations
could significantly alter the critical temperature in high-T7,
superconductors [4].

Anderson (strong) localization (AL) follows its precursor,
a “weak localization” which describes a reduction of the con-
ductivity due to constructive interferences between electronic
paths and their time-reversed counterparts that hold at finite
temperatures and a regime of small disorder. Because of the
electron-electron and electron-phonon interactions, a direct
observation of Anderson localization in solid-state systems
is an impossible task and one has to rely on conductance
measurements (for review, see Ref. [5]). Still it has been
directly observed in experiments with light [6-9], microwaves
[10], ultrasound [11], and ultracold quantum gases experi-
ments [12—17]. Scaling theory of localization predicts that in
two-dimensional (2D) noninteracting particles are Anderson
localized, as an effect of quantum interference between time-
reversal symmetric paths. Standard disordered systems with
time-reversal symmetry have coherent backward scattering,
which results in the weak localization. The symmetry class
of the problem could be changed (thus qualitatively changing
results), for example, by addition of the spin-orbit coupling,
which creates antilocalization correction, leading to an ap-
pearance of the mobility edge in two-dimensional systems
[18,19]. Another possible route is an addition of the magnetic
field which breaks the time-reversal symmetry, destroys the
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interference effects, and results in the suppression of the
weak-localization correction [20-22], leading to an increase of
the localization length. The case of random flux model (RFM),
where disorder appears as a random gauge field, is a subclass
of systems with broken time-reversal symmetry. The existence
of the mobility edge for RFM in two dimensions was for a long
time a controversial issue with different predictions: Some of
them conclude that there exist extended states [23—28] while
other conclude that the localization length in the vicinity of the
band center is just extremely big so it could not be determined
numerically [29-31]. The RFM model with the diagonal
disorder presents the interesting interplay between the two
effects: Upon the appearance of random fluxes, Anderson
localization is weakened by breaking of the time-reversal
symmetry and simultaneously strengthened by the appearance
of a flux disorder [32,33].

Cold atoms provide a particularly good environment for
investigating AL. The ultracold atomic gases, especially “arti-
ficial crystals” (the optical lattices), provide an unprecedented
tunability of almost all parameters. The factors important for
the localization such as the dimensionality of the system or
the disorder distribution could be controlled. The interactions
could be switched off with the help of the Feshbach resonances
[36]. The off-diagonal disorder and particularly random
complex tunnelings—equivalent to random fluxes of gauge
field—could be created by the means of the fast periodic
modulation [34,35].

In this paper, we propose an experimental scheme allowing
the construction of the two-dimensional lattice system with
synthetic random magnetic fields. We show that time-reversal
symmetry breaking does not always lead to an increase of
localization length. We investigate transport properties of
systems, propose and analyze a competition between the
strengthening and the weakening of the localization by an
introduction of random fluxes, and present a simple toy model
explaining an unexpectedly strong localization in some of
cases with correlations.

The article is structured as follows: In Sec. II we describe the
model we use, a two-dimensional Bose-Hubbard Hamiltonian
for two atomic species. The first species, forming a diago-
nal disorder, is composed of immobilized atoms randomly
distributed in the lattice. A second one is formed by mobile
atoms that interact only with immobile atoms. Artificial gauge
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field is created by simultaneous fast periodic modulation of
the mobile-immobile atoms interactions and a lattice height.
Further in Sec. III, we present results of the numerical
calculation of the localization length. We identify observed
phenomena and present a simple model of transport through
one plaquette to justify appearing discrepancies of localization
length from the expected behavior. Finally, in Sec. IV we
conclude.

II. THE MODEL

In order to create a disordered potential in the optical
lattice, we consider randomly distributed frozen particles (f
superscript) with repulsive interactions. A second species of
atoms (mobile) are noninteracting bosons experiencing frozen
atoms as a disorder potential. For a deep lattice, the system
may be described by Bose-Hubbard model:

ZZ ta la; +tfaf'af)
+ Z %m(m

where i is the lattice site, a; and aiT are bosonic annihilation
and creation operators respectively, n; is a particle number
operator, ¢ is a hopping amplitude between nearest neighbors,
U and V are intraspecies and interspecies contact interaction
strengths, respectively, and (ij); denotes summing over the
nearest neighbors in a direction d which could be either x or y.
To obtain an appropriate disordered potential, we envision the
following scenario: At the beginning, only the frozen particles
are present in the lattice. By setting t* > U, we put the system
into a deep superfluid state. Now, the tunnehngs are changed
rapidly, for example, by a fast increase of the lattice depth,
and the occupation of the lattice sites after the quench will be
random and given by the Poisson distribution with the mean p'
(mean occupation of the frozen particles). Into such a prepared
system, the mobile particles could be injected. As we assume
that + = 0 and additionally that the mobile particles interact
only with the frozen ones (V # 0 and U = 0, where the latter
is obtained by the means of an optical or microwave Feshbach
resonance [36]), we get the Hamiltonian

—tZZa aj + n 2)

d (ij)a

Uf
— 1+ nf(nf = 1) + Valni (1

As a distribution of the frozen particles is now fixed, we could
treat nf as a number and consequently the last term of the
Hamiltonian (2) as just the on-site energy (¢; = an). This
means that the Hamiltonian (2) describes a two-dimensional
system with the diagonal (onsite) disorder taken from the
discrete Poisson distribution. In the next step, we want to add
a gauge field to this picture. As having the gauge field in the
lattice is equivalent to adding complex phases to the tunnelings,
we will proceed with creating complex phases using a fast
periodic modulation of the lattice parameters. In our case,
we use the simultaneous modulation of the interspecies
interaction V — V + V| sin(wt) and the tunneling rates r —
o + tld) Jfo(t), where o is the frequency of modulation and
fu(t) is some periodic function. An important point is that we
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allow different modulations of the tunneling rates in different
lattice directions. In an experiment, the modulation of the
interactions could be obtained by changing a magnetic field
in the vicinity of the Feshbach resonance [37,38], while the
tunneling rates could be changed by the modulation of the
lattice depth. The time-dependent Hamiltonian reads

Hi) =Y [to+1" fu0] D ala;

d (ij)a

+ Y [(Vo+ Visinwt)nf]n;. 3)

H(?) is time periodic, so we use Floquet theory [39—41] to de-
couple fast micromotion from long-term dynamics described
by a time-independent effective Hamiltonian. Obtaining the
exact effective Hamiltonian is usually a formidable task, but
the approximate result could be calculated using the Magnus
expansion [40,42], providing a series in powers of 1/w. In
most of the cases, the convergence rate of the series could
be enhanced by a transformation to a rotating frame; alas,
in our case it is impossible as time-dependent terms do not
commute with each other. Nevertheless, we could make a
partial transformation,

U = exp (i Vicoswt/w anni), 4)

which removes the time dependence from the onsite part of
the Hamiltonian and more importantly takes the system to a
frame in which the modulation is a symmetric function of
time (which makes the odd elements of the Magnus expansion
identically O [43]):

H'(t)=UHOU' = Z (Von)n,

%
+ Z [to + t,d)fw(t) Z eio ) 7"f)c"“"ta3aj. 3)
d
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In this frame, the Oth order of the Magnus expansion (simply a
time average of the Hamiltonian) already gives the result with
an error of the order of 1/ w*[44]:

Heff = (H/(t))]" = szg[fw]aja/ +

d (ij)a

(Vonf)n[, (6)

where (.)7 stands for a time averaging over period 7 = 27 /w.
The exact form of the effective tunneling rate Ji‘j depends on
the procedure of modulation f,. We consider two different
cases. First is the harmonic modulation'

J"LJJ'[COS wt] = ((to + 1\ cos wt)e' o w ol *ﬂf)coswt>T

tojo[ (n —n; ):| —i—ltld)j[ (n —nf)i|,

(7

where 7,(x) is nth-order Bessel function. If we set t( ) =
++/21y, Eq. (7) could be approximated as

Ji‘]’- [cos wt] ~ Ji‘f [cos wt]

= fyexp (:I:i tan~! [%(n; — nf)]) 8)
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Although that approximation works only in the close
vicinity of zero, especially for the phase, we will use it in
calculations alongside the exact form (7). fi”;[cos wt] has
several favorable features: Its amplitude is always one, so only
random fluxes are present (no random tunneling amplitudes);
its phase depends nonlinearly on the argument, so in the case
of the symmetric modulation in both directions (t{x) = t}y))
we could expect nonvanishing fluxes; and tan~! saturates on
4+ /2 and consequently the fluxes takes values smaller than
27 (2m isreached asymptotically for a very strong modulation)
so the flux amplitude is monotonic function of the modulation
strength.

A second option are periodic § kicks W,(t) =), 8(t +

2—”n), which gives
w

J4M,] = foexp [i%(nﬂ - nf)}- ©)

It has the desired property of the constant amplitude, but
unluckily its phase is changing linearly, so only for 7 # 1)
we will get nontrivial fluxes. Furthermore, its phase will
wind up, and as a result it is possible to get smaller fluxes
for stronger modulation and/or larger variation of particle
number. Although this modulation procedure could seem to be
experimentally demanding, it could be easily approximated by
the sum of the harmonic modulations: tfd) (cos wt + cos 2wt +
cos 3wt + ---), for t,(d) = +2¢#,. In contrast to the previous
case, here we have a very fast convergence both for the
amplitude and the phase.

In our model, the diagonal disorder is obviously correlated
with the off-diagonal one, as both are taken from the same
distribution of the frozen particles. It is worth checking what
impact on the localization this correlation has. To that end, we
consider also a different model in which we pick the onsite
energies and tunnelings independently. Such a model with
uncorrelated disorders is also possible to be experimentally
realized; it could be created, for example, by using two
different types of frozen atoms. Yet another variation we
consider is a model with solely diagonal disorder placed in
a staggered gauge field. A reason for introducing that model
is to distinguish effects due to breaking of the time-reversal
symmetry from those created by an appearance of a new type
of disorder.

III. RESULTS

In order to calculate the Anderson localization length
for system with diagonal and off-diagonal disorder we use
the modified MacKinnon and Kramer method [34,45]. We
numerically calculate two-point Green’s function in a quasi-
one-dimensional stripe of size M x N, where we increase
N to obtain a desired convergence. Each ith slice of a
stripe is described by a one-dimensional Hamiltonian H;
which is coupled to (i + 1)-th slice by H,,; matrix element.
Exponential decay of Green’s function smallest eigenvalue
allows us to extract the localization length, Ay (E), as a
function of energy for a fixed disorder amplitude. Next, by
changing stripe width M from 16 to 128 lattice sites we analyze
the scaling behavior of A ,(E)/M and extract two-dimensional
Anderson localization length [46].
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FIG. 1. Anderson localization length (in units of the lattice
constant) in function of the energy (in units of tunneling amplitude).
Diagonal disorder is given by Poisson distribution of frozen atoms
(with mean p;y = 2.5) and interaction amplitude V;, = 1.5. Black solid
curve is for undriven system and red dashed is for § modulation (9)
with modulation parameter V;/w = 1 (for the correlated disorder
case).

In calculations, we have used all three forms of effective
tunneling described in the preceding section. For harmonic
modulation of lattice height Jg [cos(wt)] (7) and its approx-

imation J:-”f[cos(a)t)] (8) we consider cases of symmetric

1™ =1 as well as antisymmetric 7' = —¢*) modulation.

For the § modulation ijl- [IL,] (9) only the antisymmetric case
is calculated as the symmetric one gives no flux trivially. All
presented results are calculated for interpecies interactions
value Vj, = 1.5 (which effectively marks the scale of the
onsite disorder). Qualitatively results for different Vj values
are similar but for smaller V; numerical errors grow due to
a rapidly growing localization length, while for the stronger
disorder the features become less distinctive. The mean density
of frozen particles is fixed to pr = 2.5. Because of the discrete
character of the disorder used, there is a risk that for some
energies and specific occupations of frozen particles the
resonant transport will occur and significantly alter the results.
To check if it is an issue in our case, we have done calculations
for disorder taken from the folded normal distribution (with
mean pr and variance ,/pr), which greatly resembles the
Poisson distribution. Results obtained in this way do not differ
significantly.

Figure 1 presents the localization length as a function of
energy for two cases: without the modulation and for a strong
6 modulation. The behavior shown is typical for considered
systems. We do not observe the mobility edge or separated
extended states so we could rely on the maximal localization
length (MLL)—a maximal value of the localization length
in the interval of energies studied—as a good measure of the
overall transport properties of the system for given parameters.

In Fig. 2, the MLL is plotted as a function of the modulation
amplitude V|/w. The upper panel shows results for the
antisymmetric harmonic modulation [comparing the exact (7)
and the approximate (8) variants], in the lower panel results
for § modulation (9) are presented. In both cases, models
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FIG. 2. The maximum localization length (in units of the lattice
constant) as a function of the parameter of modulation V;/w. Top:
Antisymmetric lattice modulation [fx> = —tfy ' Red squares and black
disks shows results for harmonic modulation (7) for correlated
and uncorrelated disorder respectively. Green diamonds and blue
triangles are results for approximated harmonic modulation (8) also
for correlated and uncorrelated cases. Bottom: Results for § lattice
modulation (9) red squares are results for diagonal disorder correlated
with off-diagonal, while black circles are for uncorrelated case (lines
are guides for the eye).

with correlated and uncorrelated disorder are considered.
Regardless, the correlations between diagonal and off-diagonal
disorder, the approximate results for the harmonic modulation
(8) agree well with the exact results (7) for V;/w up to 0.4;
see upper panel of Fig. 2. For modulations V|/w 2 0.4, the
amplitude of expression (7) starts to significantly differ from 1,
and the disorder that appears in absolute values of the tunneling
amplitudes seems to lower significantly the localization length.

The most striking of the observed effects is the large
discrepancy between the results for the correlated and un-
correlated disorder, visible for all three considered effective
tunnelings (both panels of Fig. 2). In the uncorrelated case, the
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FIG. 3. Top panel: A single lattice plaquette. By cutting the outer
connections at sites A and B, we could calculate tunneling through
plaquette from site 1 to site 2 as given by (10). Bottom panel: The
effective tunneling across the diagonal of the plaquette as a function
of Vi /w for uncorrelated (black circles) and correlated (red squares)
of §-type lattice modulations at a single energy E value. Similar
behavior is observed at other energies.

MLL grows rapidly after the appearance of the random fluxes
which is consistent with the growth of MLL expected when
the time reversal symmetry is being broken. Surprisingly, for
the correlated case, MLL grows much more slowly or even
shows a small decrease.

In an attempt to understand this effect, we analyze the
transport through a single plaquette disconnected from the
lattice (as in Fig. 3, top panel). The effective tunneling through
such a structure is calculated to be

IR e S ()

left = ———¢
T E— Von!,

E — V()l’l%

where the lattice sites are denoted as in Fig. 3 and E is energy
of the state. We calculate f.¢r for cases of the correlated and
uncorrelated disorder (using the effective tunneling for the
8 modulation case) and average it over disorder realizations.
The results are shown in the lower panel of Fig. 3 versus the
modulation parameter V;/w. As the states corresponding to
MML have typically energies around E = 3.15, this energy
is chosen for calculation of f.g (the results qualitatively do
not depend on E). We may observe qualitatatively similar
behavior of f.¢ for both correlated and uncorrelated disorder;
for the latter the growth of f. is significantly faster. For
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FIG. 4. Maximum localization length as a function of the mean of the absolute flux through a single plaquette (left) and as a function of
the variance of the flux through plaquette (right). Results are presented for the case of no correlation between the diagonal and the off-diagonal
disorder. Black diamonds correspond to the approximate symmetric harmonic modulation (8) while red circles to the approximate antisymmetric
harmonic modulation (tl(x) = —tfy)). Blue squares stand for the 6 modulation (9) and green triangles denote for the pure diagonal disorder in

the staggered field (lines are drawn to guide the eye).

sufficiently large V;/w > 0.7 the difference between the two
cases disappears.

Those results indicate that understanding of the surprising
behavior observed for the correlated disorder cannot be
obtained in the single plaquette model. Apparently the in-
terference of different paths involving several plaquettes is
responsible for the observed behavior for small and moderate
V1 / .

As the correlations between the diagonal disorder and the
flux disorder affect localization properties strongly, we should
use results for the uncorrelated case to check the possible
dependence of the MLL on the flux through a single plaquette.
Plotting MLL for the uncorrelated case as a function of a mean
absolute flux through lattice plaquette (Fig. 4, left panel), we
can observe a similar behavior for the approximate harmonic
modulation (for symmetric and antisymmetric versions) as
well as for the § modulation (we do not consider here the exact
harmonic modulation as it gives also the disorder in absolute
values of tunnelings, which obscures the effects discussed).
For smaller V/w values, those curves coincide with (also
plotted) results for the diagonal disorder in the staggered field.
This suggests that breaking of the time-reversal symmetry is
a more important effect in this regime. For bigger fluxes, the
results for the disordered systems start to diverge from one for
the staggered field—this marks the region in which the random
character of the fluxes gives a significant contribution to MLL.
As we could see in the right panel of Fig. 4, all three models
scale in similar manner also as a function of the variance of
the flux.

For correlated disorder, the Anderson localization length
can diverge for specific momenta. In the vicinity of such
singularities, there are intervals of momenta values in which
the localization length is typically very large, allowing atoms
with those momenta to leave the finite system. In that way,
the band-pass filter for momenta is formed, as wave functions
for momenta outside of those (typically tiny) intervals remain

Anderson localized. Such a mechanism has been proposed for
BEC in speckle potential in one dimensional (1D) [47] and in
periodically driven 1D optical lattice [34,48].

The model presented in this paper can be utilized to
construct a band-pass filter for the center of energy band in
two dimensions (2D). Using the example of studied above
static disorder with amplitude V, = 1.5, let us consider an
optical lattice system of size 30 x 30. All atoms are Anderson
localized and remain in the system. Now, applying harmonic
antisymmetric modulation with V;/w =1 MLL for E ~ 4
increases to 55 lattice site (Fig. 1) and atoms with energy
distribution centered at £ & 4 can escape from the system.

IV. CONCLUSIONS

In this paper, we have presented a method for creating
two-dimensional disordered system with artificial random
gauge field for the ultracold atoms in the optical lattice using
fast periodic modulations of atoms interaction. We showed that
the time-reversal symmetry breaking does not necessary lead
to increase of the Anderson localization length. The presented
model could be used to quantum simulation of high-T,
superconductors models where scattering on random gauge
field could significantly lower the critical temperature [4].
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